用户名: 密码: 验证码:
·Cl引发3种环状含有NH结构有机化合物的大气转化机制及动力学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Atmospheric Transformation Mechanism and Kinetics of Three Cyclic NH-containing Compounds Initiated by ·Cl
  • 作者:刘聪 ; 马芳芳 ; 付自豪 ; 谢宏彬 ; 陈景文
  • 英文作者:Liu Cong;Ma Fangfang;Fu Zihao;Xie Hongbin;Chen Jingwen;Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) ,School of Environmental Science and Technology,Dalian University of Technology;
  • 关键词:含有NHx结构有机化合物 ; 量子化学 ; 转化机制 ; 动力学 ; 氯自由基
  • 英文关键词:NHx-containing compounds;;quantum chemical calculation;;transformation mechanism;;kinetics;;chlorine radicals
  • 中文刊名:生态毒理学报
  • 英文刊名:Asian Journal of Ecotoxicology
  • 机构:大连理工大学环境学院工业生态与环境工程教育部重点实验室;
  • 出版日期:2019-08-15
  • 出版单位:生态毒理学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金(21677028,21876024)
  • 语种:中文;
  • 页:70-77
  • 页数:8
  • CN:11-5470/X
  • ISSN:1673-5897
  • 分类号:X51
摘要
氯自由基(·Cl)的高氧化性及其内陆来源的新发现使得·Cl在评估有机污染物的大气归趋方面起着比以往更为重要的作用。含有NH_x(x=1,2)结构的有机化合物不仅是大气中一类潜在的有机污染物,也是大气中致癌性亚硝胺的前驱体—N中心自由基的重要来源。前人研究发现,·Cl与含有NH_x(x=1,2)结构的有机化合物具有独特的相互作用且其反应具有结构依赖性。目前,大多数研究只关注链状含有NH_x(x=1,2)结构有机化合物的反应,而对于环状含有NH结构有机化合物的反应研究却很少。本研究使用量子化学和动力学模拟相结合的方法研究·Cl引发3种环状含有NH结构有机化合物(吗啉(MOR)、哌啶(PIP)和吡咯烷(PYR))的大气转化机制及动力学。结果发现,·Cl夺取3种环状含有NH结构有机化合物中N—H的H原子形成N中心自由基是最可行的反应路径。在298 K和1 atm下,计算的反应速率常数分别为5.0!10-10(MOR)、5.1!10-10(PIP)和4.9!10-10(PYR) cm~3·molecule-1·s-1,且具有正的温度依附性。结合可获得的·OH引发反应的反应速率常数,评估·Cl对MOR和PIP转化的贡献分别为·OH的2.6%~26%和6.9%~69%。上述研究结果为将来建立·Cl引发含有NH_x(x=1,2)结构有机化合物反应的结构-活性关系、全面评估含有NH_x(x=1,2)结构有机化合物的大气归趋和环境风险提供数据支持。
        The new findings on continental source of·Cl and its high reactivity toward organic compounds make the importance of·Cl in determining the atmospheric fate of volatile organic pollutants be higher than previously expected. NH_x-containing(x = 1,2) compounds are potential organic pollutants in atmosphere and also the important source of N-center radicals,the precursors of carcinogenic nitrosamines. Early studies indicated that there is special interaction between ·Cl and NH_x-containing compounds and their reaction kinetics and mechanism mainly depend on the specific structure of NH_x-containing compounds. Up to now,many studies focused on·Cl initiated reactions of chain organic compounds containing NH_xstructure. However,little study has been done on the cyclic NH_x-containing compounds. In the present work,quantum chemical methods and kinetic modeling were employed to investigate the reaction mechanisms and kinetics of·Cl initiated reactions of three cyclic NH_x-containing compounds i.e. morpholine(MOR),piperidine(PIP) and pyrrolidine(PYR). Results showed that ·Cl initiated three cyclic NH_x-containing compounds reactions exclusively lead to N-center radicals via N—H abstraction. At 298 K and 1 atm,the calculated reaction rate constants(kCl) are 5.0 !10-10,5.1 !10-10 and 4.9 !10-10 cm~3·molecule-1·s-1 for MOR,PIP and PYR,respectively. The kClvalues of three reactions have positive temperature dependence. Combined with available data of corresponding ·OH initiated reactions of MOR and PIP,the contributions of ·Cl in the transformation of MOR and PIP are estimated to be 2.6% ~ 26% and 6.9% ~ 69% relative to·OH,respectively. This study provides the indispensable data to establish the structure-activity relationship analysis for ·Cl initiated reactions of NH_x-containing compounds and to assess the atmospheric fate and environmental risk of NH_x-containing compounds.
引文
[1] Young C J,Washenfelder R A,Edwards P M,et al.Chlorine as a primary radical:Evaluation of methods to understand its role in initiation of oxidative cycles[J].Atmospheric Chemistry and Physics,2014,14(7):3427-3440
    [2] Faxon C B,Allen D T. Chlorine chemistry in urban atmospheres:A review[J]. Environmental Chemistry,2013,10(3):221-233
    [3] Riedel T P,Bertram T H,Crisp T A,et al. Nitryl chloride and molecular chlorine in the coastal marine boundary layer[J]. Environmental Science&Technology,2012,46(19):10463-10470
    [4] Atkinson R,Baulch D L,Cox R A,et al. Evaluated kinetic and photochemical data for atmospheric chemistry:Supplement III. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry[J]. Journal of Physical and Chemical Reference Data,1989,18:881-1097
    [5] Ji Y M,Wang H H,Gao Y P,et al. A theoretical model on the formation mechanism and kinetics of highly toxic air pollutants from halogenated formaldehydes reacted with halogen atoms[J]. Atmospheric Chemistry and Physics,2013,13(22):11277-11286
    [6] Sun Y H,Zhang Q Z,Wang W X. Adsorption and heterogeneous reactions of Cl ONO2and N2O5on/with Na Cl aerosol[J]. RSC Advances,2016,6(52):46336-46344
    [7] Keene W C,Khalil M A K,Erickson D J,et al. Composite global emissions of reactive chlorine from anthropogenic and natural sources:Reactive chlorine emissions inventory[J]. Journal of Geophysical Research,1999,104:8429-8440
    [8] Finlayson-Pitts B J. Chlorine chronicles[J]. Nature Chemistry,2013,5(8):724
    [9] Knipping E M,Lakin M J,Foster K L,et al. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous Na Cl aerosols[J]. Science,2000,288:301-306
    [10] Wingenter O W,Sive B C,Blake N J,et al. Atomic chlorine concentrations derived from ethane and hydroxyl measurements over the equatorial Pacific Ocean:Implication for dimethyl sulfide and bromine monoxide[J].Journal of Geophysical Research,2005,110:D20308
    [11] Wang D Y S,Hildebrandt Ruiz L. Secondary organic aerosol from chlorine-initiated oxidation of isoprene[J].Atmospheric Chemistry and Physics,2017,17(22):13491-13508
    [12] Nicovich J M,Mazumder S,Laine P L,et al. An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH3NH2,(CH3)2NH,and(CH3)3N[J]. Physical Chemistry Chemical Physics,2015,17(2):911-917
    [13] Thornton J A,Kercher J P,Riedel T P,et al. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry[J]. Nature,2010,464:271-274
    [14] Mielke L H,Furgeson A,Osthoff H D. Observation of Cl NO2in a mid-continental urban environment[J]. Environmental Science&Technology,2011,45(20):8889-8896
    [15] Phillips G J,Tang M J,Thieser J,et al. Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions[J]. Geophysical Research Letters,2012,39(10):L10811
    [16] Bannan T J,Booth A M,Bacak A,et al. The first UK measurements of nitryl chloride using a chemical ionization mass spectrometer in central London in the summer of 2012,and an investigation of the role of Cl atom oxidation[J]. Journal of Geophysical Research:Atmospheres,2015,120:5638-5657
    [17] Liu X X,Qu H,Huey L G,et al. High levels of daytime molecular chlorine and nitryl chloride at a rural site on the north China plain[J]. Environmental Science&Technology,2017,51(17):9588-9595
    [18] Zhou W,Zhao J,Ouyang B,et al. Production of N2O5and Cl NO2in summer in urban Beijing,China[J]. Atmospheric Chemistry and Physics, 2018, 18(16):11581-11597
    [19] Le Breton M,HallquistM,Pathak R K,et al. Chlorine oxidation of VOCs at a semi-rural site in Beijing:Significant chlorine liberation from Cl NO2and subsequent gas-and particle-phase Cl-VOC production[J].Atmospheric Chemistry and Physics,2018,18(17):13013-13030
    [20] Xie H B,Ma F F,Wang Y F,et al. Quantum chemical study on·Cl-initiated atmospheric degradation of monoethanolamine[J]. Environmental Science&Technology,2015,49(22):13246-13255
    [21] Xie H B,Li C,He N,et al. Atmospheric chemical reactions of monoethanolamine initiated by OH radical:Mechanistic and kinetic study[J]. Environmental Science&Technology,2014,48(3):1700-1706
    [22] Ge X L,Wexler A S,Clegg S L. Atmospheric amines—Part I. A review[J]. Atmospheric Environment,2011,45(3):524-546
    [23] Yao L,Wang M Y,Wang X K,et al. Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions[J]. Atmospheric Chemistry and Physics,2016,16(22):14527-14543
    [24] Qiu C,Zhang R Y. Multiphase chemistry of atmospheric amines[J]. Physical Chemistry Chemical Physics,2013,15(16):5738-5752
    [25]唐孝炎,张远航,邵敏.大气环境化学(第二版)[M].北京:高等教育出版社,2006:156-169
    [26] Ma F F,Ding Z Z,Elm J,et al. Atmospheric oxidation of piperazine initiated by·Cl:Unexpected high nitrosamine yield[J]. Environmental Science&Technology,2018,52(17):9801-9809
    [27] McKee M L,Nicolaides A,Radom L. A theoretical study of chlorine atom and methyl radical addition to nitrogen bases:Why do Cl atoms form two-center-three-electron bonds whereas CH3radicals form two-center-twoelectron bonds?[J]. The Journal of American Chemical Society,1996,118:10571-10576
    [28] Xie H B,Ma F F,Yu Q,et al. Computational study of the reactions of chlorine radicals with atmospheric organic compounds featuring NHx-pi-bond(x=1,2)structures[J]. The Journal of Physical Chemistry A,2017,121(8):1657-1665
    [29] Sen Gupta S,Indulkar Y,Kumar A,et al. Kinetics of gas-phase reaction of OH with morpholine:An experimental and theoretical study[J]. The Journal of Physical Chemistry A,2010,114:7709-7715
    [30] Lu M,Zhang J H,Yao Y,et al. Renewable energy storage via efficient reversible hydrogenation of piperidine captured CO2[J]. Green Chemistry,2018,20:4292-4298
    [31] Bae H S,Cho Y G,Oh S E,et al. Anaerobic degradation of pyrrolidine and piperidine coupled with nitrate reduction[J]. Chemosphere,2002,48:329-334
    [32] Liu F X,Bi X H,Zhang G H,et al. Concentration,size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou,China[J]. Atmospheric Environment,2017,171:279-288
    [33] Ahlrichs R,Br M,Hser M,et al. Electronic structure calculations on workstation computers:The program system turbomole[J]. Chemical Physics Letters,1989,162(3):165-169
    [34]于棋.羟基自由基引发多溴联苯醚替代品的大气转化机制及动力学[D].大连:大连理工大学,2017:36-37Yu Q. Atmospheric transformation mechanism and kinetics of alternatives of polybrominated diphenyl ethers initiated by OH radical[D]. Dalian:Dalian University of Technology,2017:36-37(in Chinese)
    [35] Frisch M J,Trucks G W,Schlegel H B,et al. Gaussian09[CP]. Wallingford,CT:Gaussian,Inc,2009
    [36] Reed A E,Weinstock R B,Weinhold F. Natural population analysis[J]. The Journal of Chemical Physics,1985,83(2):735-746
    [37] Barker J R,Nguyen T L,Stanton J F,et al. MultiWell program suite[CP]. Ann Arbor,MI:University of Michigan,2014
    [38] Barker J R. Multiple-well,multiple-path unimolecular reaction systems. I. MultiWell computer program suite[J]. International Journal of Chemical Kinetics,2001,33:232-245
    [39] Robinson P J,Holbrook K A. Unimolecular Reactions[M]. New York:John Wiley&Sons,1972:64-108
    [40] Gilbert R G,Smith S C. Theory of Unimolecular and Recombination Reactions[M]. London:Blackwell Scientific Publications,1990:319
    [41] Joback K G,Reid R C. Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications,1987,57:233-243
    [42] Georgievskii Y,Klippenstein S J. Long-range transition state theory[J]. The Journal of Chemical Physics,2005,122(19):194103
    [43] Eckart C. The penetration of a potential barrier by electrons[J]. Physics Review,1930,35(11):1303-1309
    [44] Yu Q,Wang P,Ma F F,et al. Computational investigation of the nitrosation mechanism of piperazine in CO2capture[J]. Chemosphere,2017,186:341-349
    [45] Hunter E P L,Lias S G. Evaluated gas phase basicities and proton affinities of molecules:An update[J]. Journal of Physical and Chemical Reference Data,1998,27(3):13-656
    [46] Gao H,Wang M M,Jin T Y,et al. Direct dynamics study on hydrogen abstraction reaction of morpholine with hydroxyl radical[J]. Theoretical Chemistry Accounts,2015,134(8):96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700