用户名: 密码: 验证码:
江汉平原黏土沉积物粒径与有机碳分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution Characteristics of Particle Size and Organic Carbon in Clay Sediments in Jianghan Plain
  • 作者:刘锐 ; 马腾 ; 邱文凯 ; 刘妍君
  • 英文作者:LIU Rui;MA Teng;QIU Wenkai;LIU Yanjun;School of Environmental Studies, China University of Geosciences (Wuhan);State Key Laboratory of Biogeology and Environmental Geology;
  • 关键词:江汉平原 ; 沉积相 ; 黏土沉积物 ; 粒径 ; 有机碳
  • 英文关键词:Jianghan Plain;;sedimentary facies;;clay sediments;;particle size;;organic carbon
  • 中文刊名:环境科学与技术
  • 英文刊名:Environmental Science & Technology
  • 机构:中国地质大学(武汉)环境学院;生物地质与环境地质国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金资助项目(41630318)
  • 语种:中文;
  • 页:200-207
  • 页数:8
  • CN:42-1245/X
  • ISSN:1003-6504
  • 分类号:P593
摘要
该文以江汉平原不同埋藏深度的湖积、冲-湖积、残坡积3种沉积相黏土沉积物中的有机碳形态的分布特征为研究对象,通过测试钻孔沉积物粒径及TOC、HFOC、LFOC,分析不同沉积环境条件下有机碳的赋存特性及粒径组分对有机碳形态和含量的影响。结果表明:(1)湖积相钻孔A粒径频率曲线主要为单峰,沉积环境较稳定,TOC含量为1.72~17.71 mg/g,呈波动式逐渐降低;(2)冲积相钻孔B粒径频率曲线有单峰、双峰、三峰3种峰型,水动力条件不稳定,TOC含量为1.77~19.57 mg/g,不同深度含量差别较大;(3)坡积相钻孔C粒径频率曲线主要为双峰,TOC含量为1.44~4.37 mg/g,含量较低且具有波动性,受成土母质碳含量影响较大;(4)TOC和HFOC普遍与颗粒较细的粒径组分呈正相关,黏粒和细粉粒对沉积物有机碳存在较强的吸附作用,对有机碳的保存有重要的影响。
        The distribution characteristics of organic carbon in clay sediments of three sedimentary facies in different burial depths in Jianghan Plain, including lacustrine, alluvial-lacustrine and el-dlQ were studied. The occurrence characteristics of organic carbon and the effects of particle size components on the morphology and content of organic carbon were analyzed by measuring the grain size and TOC, HFOC, LFOC of borehole sediments under different sedimentary environments. The results show that the grain size frequency curves of borehole A in lacustrine facies are mainly unimodal. The sedimentary environment is stable, and the TOC content is 1.72~17.71 mg/g, which is gradually decreasing in a fluctuating manner. The grain size frequency curves of borehole B in alluvial facies have many peaks, such as unimodal, bimodal and three peaks, and the hydrodynamic conditions is unstable, and the TOC content is 1.77~19.57 mg/g. The frequency curves of borehole C particle size of boreholes in slope sedimentary facies are mainly bimodal, and the TOC content is 1.44~4.37 mg/g. The content of TOC is low and fluctuant, which is greatly influenced by the carbon content of soil parent material. TOC and HFOC are generally positively correlated with the finer particle size components. Cosmid and fine powder fraction have strong adsorption on organic carbon in sediments, which has an important impact on the preservation of organic carbon.
引文
[1]李恋卿,潘根兴,龚伟.太湖地区几种水稻土的有机碳储存及其分布特性[J].科技通报,2000(6):421-426.Li Lianqing,Pan Genxing,Gong Wei.Storage and distribution characteristics of organic carbon in several paddy soils in Taihu Lake[J].Bulletin of Science and Technology,2000(6):421-426.
    [2]赵万苍.达里诺尔有机碳形态分布特征[D].呼和浩特:内蒙古大学,2010.Zhao Wancang.Morphological Distribution Characteristics of Organic Carbon in Dali Noor[D].Hohhot:Inner Mongolia University,2010.
    [3]Polizzotto M L,Kocar B D,Benner S G,et al.Near-surface wetland sediments as a source of arsenic release to ground water in Asia[J].Nature,2008,454(7203):505.
    [4]Wang Y X,Ma T,Ryzhenko B N,et al.Model for the formation of arsenic contamination in groundwater.1.Datong Basin,China[J].Geochemistry International,2009,47(7):713-724.
    [5]Konikow L F,Neuzil C E.A method to estimate groundwater depletion from confining layers[J].Water Resources Research,2007,43(7):931-936.
    [6]Hendry M J,Wassenaar L I.Transport and geochemical controls on the distribution of solutes and stable isotopes in a thick clay-rich till aquitard,Canada[J].Isotopes in Environmental and Health Studies,2004,40(1):3-19.
    [7]Wallschlager D,Desai M,Spengler M,et al.How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments[J].Journal of Environmental Quality,1998,27(5):1044-1054.
    [8]Drouillard K G,Ciborowski J,Lazar R,et al.Estimation of the uptake of organochlorines by the mayfly Hexagenia limbata(Ephemeroptera:Ephemeridae)[J].Journal of Great Lakes Research,1996,22(1):26-35.
    [9]Friedman G M.Address of retiring president of the international association of sedimentology:difference in size distributions of populations of particles among sands from various origins[J].Sedimentology,1979,26:3-22.
    [10]Shepard F P.Nomenclature based oil sand silt clay ratios[J].Journal of Sedimentary Petrology,1954,24:151-158.
    [11]韩璐,黄岁樑,王乙震.海河干流柱芯不同粒径沉积物中有机质和磷形态分布研究[J].农业环境科学学报,2010(5):955-962.Han Lu,Huang Suiliang,Wang Yizhen.Distribution of organic matter and phosphorus forms in sediments of different sizes in the main stream of Haihe River[J].Journal of Agroenvironmental Science,2010(5):955-962.
    [12]于培松,薛斌,潘建明,等.长江口和东海海域沉积物粒径对有机质分布的影响[J].海洋学研究,2011(3):202-208.Yu Peisong,Xue Bin,Pan Jianming,et al.Effects of sediment size on organic matter distribution in the Yangtze River Estuary and East China Sea[J].Journal of Marine Science,2011(3):202-208.
    [13]陈芳,张海涛,王天巍,等.江汉平原典型土壤的系统分类及空间分布研究[J].土壤学报,2014(4):761-771.Chen Fang,Zhang Haitao,Wang Tianwei et al.Systematic classification and spatial distribution of typical soils in Jianghan Plain[J].Acta Pedologica Sinica,2014(4):761-771.
    [14]杨帆,付艳,梁和国.江汉平原地区人工湿地系统水文地质概况[J].中国矿业,2014(S2):110-113.Yang Fan,Fu Yan,Liang Heguo.Hydrogeological survey of constructed wetland system in Jianghan Plain[J].China Mining,2014(S2):110-113.
    [15]王玉竹,肖和艾,周萍,等.江汉平原农田土壤有机碳分布与变化特点:以潜江市为例[J].环境科学,2015(9):3422-3428.Wang Yuzhu,Xiao He'ai,Zhou Ping,et al.Distribution and variation characteristics of soil organic carbon in farmland of Jianghan Plain:a case study of Qianjiang City[J].Environmental Science,2015(9):3422-3428.
    [16]张涛.基于GIS的江汉平原土壤养分空间分异及土壤有机碳研究[D].武汉:华中农业大学,2015.Zhang Tao.Spatial Distribution of Soil Nutrients and Soil Organic Carbon in Jianghan Plain Based on GIS[D].Wuhan:Huazhong Agricultural University,2015.
    [17]邰继承.不同土地利用和起源农田土壤有机碳及其组分含量变化[D].南京:南京农业大学,2012.Tai Jicheng.Changes of Soil Organic Carbon and Its Components in Farmland with Different Land Use and Origin[D].Nanjing:Nanjing Agricultural University,2012.
    [18]Janzen H H,Campbell C A,Brandt S A,et al.Light-fraction organic-matter in soils from long-term crop rotations[J].Soil Science Society of America Journal,1992,56(6):1799-1806.
    [19]武天云,Jeff J S,李凤民,等.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004(4):717-722.Wu Yuntian,Jeff J S,Li Fengmin et al.Research progress of soil organic matter concept and grouping technology[J].Chinese Journal of Applied Ecology,2004(4):717-722.
    [20]张钰东,石建省,周爱国.激光粒度分析法在深州市第四纪沉积环境分析中的应用[J].中国科学院大学学报,2014(4):517-523.Zhang Yudong,Shi Jianxing,Zhou Aiguo.Application of laser particle size analysis to quaternary sedimentary environment analysis in Shenzhou[J].Journal of the Chinese Academy of Sciences,2014(4):517-523.
    [21]刘丹.廊坊市第四纪沉积物粒度特征及沉积环境分析[D].北京:中国地质大学(北京),2012.Liu Dan.Grain Size Characteristics and Sedimentary Environment of Quaternary Sediments in Langfang[D].Beijing:China University of Geosciences(Beijing),2012.
    [22]滕飞,李福春,吴志强,等.高岭石和蒙脱石吸附胡敏酸的对比研究[J].中国地质,2009(4):892-898.Teng Fei,Li Fuchun,Wu Zhiqiang,et al.Comparative study on adsorption of fulvic acid by kaolinite and montmorillonite[J].Geology of China,2009(4):892-898.
    [23]任秀娥,童成立,孙中林,等.温度对不同粘粒含量稻田土壤有机碳矿化的影响[J].应用生态学报,2007(10):2245-2250.Ren Xiu'e,Tong Chengli,Sun Zhonglin,et al.Effect of temperature on soil organic carbon mineralization in paddy fields with different clay contents[J].Journal of Applied Ecology,2007(10):2245-2250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700