用户名: 密码: 验证码:
四川广元上寺乐平统大隆组遗迹化石及其古环境意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Trace Fossils of the Lopingian Dalong Formation from the Shangsi Section and Their Palaeoenvironmental Significance
  • 作者:张鑫 ; 张立军
  • 英文作者:Zhang Xin;Zhang Lijun;Institute of Resource and Environment,Henan Polytechnic University;Key Laboratory of Biogenic Trace and Sedimentary Minerals of Henan Province,Henan Polytechnic University;Central Plains Economic Zone Coal Seam (Shale)Gas Henan Collaborative Innovation Center,Henan Polytechnic University;
  • 关键词:广元上寺 ; 乐平统 ; 生物大灭绝 ; 遗迹化石 ; 缺氧
  • 英文关键词:Shangsi in Guangyuan;;Lopingian;;mass extinction;;trace fossils;;anoxia
  • 中文刊名:地质科技情报
  • 英文刊名:Geological Science and Technology Information
  • 机构:河南理工大学资源环境学院;河南理工大学河南省生物遗迹与成矿过程重点实验室;河南理工大学中原经济区煤层(页岩)气河南协同创新中心;
  • 出版日期:2019-03-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(41602112);; 河南省高等学校重点科研项目(17A170001);; 中国博士后科学基金项目(2016M592288)
  • 语种:中文;
  • 页:37-44
  • 页数:8
  • CN:42-1240/P
  • ISSN:1000-7849
  • 分类号:Q911.28
摘要
四川广元上寺乐平统大隆组中上部海相硅质岩、硅质灰岩中赋存较为丰富的遗迹化石,可识别出觅食迹、居住迹5属7种,包括Chondrites targionii,Chondrites isp.,Palaeophycus isp.,Planolites montanus,Planolites isp.,Thalassinoides isp.和Zoophycos isp.。结合遗迹化石组合及其分布特征、生物扰动指数以及地球化学数据(铁化合物比率和总有机碳的变化特征),乐平统大隆组顶部整体处于缺氧富硫或贫氧富氧交替出现的沉积环境,并非持续的缺氧环境。
        Abundant trace fossils are preserved in marine siliceous stone and siliceous limestone, which occur in the middle and upper parts of the Lopingian Dalong Formation from the Shangsi section. The ichnoassemblages represent types of domichnia and fodinichnia, consisting of 5 ichnogenera and 7 ichnospecies of Chondrites isp., Chondrites targionii, Planolites isp., Planolites montanus, Palaeophycus isp., Thalassinoides isp. and Zoophycos isp.. These ichnoassemblages and their palaeoecological features, bioturbation index and geochemical data(Fe compound ratio and the TOC(total organic carbon)) indicate that the latest Permian Dalong Formation was overall anoxic/eurixic, but interrupted by brief periods of aerobic conditions.
引文
[1] Stanley S M.Estimates of the magnitudes of major marine mass extinctions in Earth history[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(42):6325-6334.
    [2] Black B A,Elkins-Tanton L T,Rowe M C,et al.Magnitude and consequences of volatile release from the Siberian Traps[J].Earth & Planetary Science Letters,2012,317/318(2):363-373.
    [3] 殷鸿福,黄思骥.华南二叠纪-三叠纪之交的火山活动及其对生物绝灭的影响[J].地质学报,1989,63(2):169-180.
    [4] Ogden D E,Sleep N H.Explosive eruption of coal and basalt and the end-Permian mass extinction[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(1):59-62.
    [5] Kaiho K,Chen Z Q,Sawada K.Possible causes for a negative shift in the stable carbon isotope ratio before,during and after the end-Permian mass extinction in Meishan,South China[J].Journal of the Geological Society of Australia,2009,56(6):799-808.
    [6] Joachimski M M,Lai X,Shen S,et al.Climate warming in the latest Permian and the Permian-Triassic mass extinction[J].Geology,2012,40(3):195-198.
    [7] Chen B,Joachimski M M,Shen S Z,et al.Permian ice volume and palaeoclimate history:Oxygen isotope proxies revisited[J].Gondwana Research,2013,24(1):77-89.
    [8] Svensen H,Planke S,Polozov A G,et al.Siberian gas venting and the end-Permian environmental crisis[J].Earth & Planetary Science Letters,2009,277(3):490-500.
    [9] Wignall P B,Twitchett R J.Extent,duration,and nature of the Permian-Triassic superanoxic event; catastrophic events and mass extinctions; impacts and beyond[J].Special Paper of the Geological Society of America,2002,356:395-413.
    [10] Kiessling W,Simpson C.On the potential for ocean acidification to be a general cause of ancient reef crises[J].Global Change Biology,2015,17(1):56-67.
    [11] Yin H,Xie S,Luo G,et al.Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan[J].Earth-Science Reviews,2012,115:163-172.
    [12] Kaiho K,Kajiwara Y,Nakano T,et al.End-Permian catastrophe by a bolide impact:Evidence of a gigantic release of sulfur from the mantle[J].Geology,2001,29(9):815-818.
    [13] Cao C Q,Zheng Q F.Geological event sequences of the Permian-Triassic transition recorded in the microfacies in Meishan section[J].Science in China,2009,52(10):1529-1536.
    [14] Feng Q,Algeo T J.Evolution of oceanic redox conditions during the Permo-Triassic transition:Evidence from deepwater radiolarian facies[J].Earth-Science Reviews,2014,137:34-51.
    [15] Twitchett R J,Barras C G.Trace fossils in the aftermath of mass extinction events[J].Geological Society, London,Special Publications,2004,228(1):397-418.
    [16] Twitchett R J,Wignall P B.Trace fossils and the aftermath of the Permo-Triassic mass extinction:Evidence from northern Italy[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1996,124(1):137-151.
    [17] Luo M,Shi G,Gong Y M,et al.Early Triassic trace fossils in Huaxi region of Guiyang and their implications for biotic recovery after the end-Permian mass extinction[J].Journal of Palaeogeography,2007,9(5):519-532.
    [18] Fraiser M L,Bottjer D J.Opportunistic behaviour of invertebrate marine tracemakers during the Early Triassic aftermath of the end-Permian mass extinction[J].Journal of the Geological Society of Australia,2009,56(6):841-857.
    [19] 罗茂,时国,龚一鸣.贵阳花溪早三叠世遗迹化石及其对二叠纪末生物大灭绝事件后生物复苏的启示[J].古地理学报,2007,9(5):519-532.
    [20] Luo M,George A D,Chen Z Q.Sedimentology and ichnology of two Lower Triassic sections in South China:Implications for the biotic recovery following the end-Permian mass extinction[J].Global & Planetary Change,2016,144:198-212.
    [21] 赵小明,童金南.浙江煤山钻孔二叠-三叠系界线剖面遗迹化石的两幕式变化[J].中国科学:地球科学,2010(9):1241-1249.
    [22] 殷鸿福,童金南,丁梅华,等.扬子区晚二叠世—中三叠世海平面变化[J].地球科学:中国地质大学学报,1994(5):627-632.
    [23] 童金南,殷鸿福.早三叠世生物与环境研究进展[J].古生物学报,2009,48(3):497-508.
    [24] 何幼斌,罗进雄.中上扬子地区晚二叠世长兴期岩相古地理[J].古地理学报,2010,12(5):497-514.
    [25] 金若谷,黄恒铨.四川广元上寺二叠系—三叠系界线剖面沉积特征及环境演变[C]//地层古生物论文集.北京:中国学术期刊电子杂志出版社,1987:33-35.
    [26] Taylor A M,Goldring R.Description and analysis of bioturbation and ichnofabric[J].Journal of the Geological Society,1993,150(1):141-148.
    [27] Ekdale A A,Bromley R G.Cretaceous chalk ichnofacies in Northern Europe[J].Géobios,1983,17(84):201-204.
    [28] Pemberton S G,Frey R W.Trace fossil nomenclature and the Planolites-Palaeophycus Dilemma[J].Journal of Paleontology,1982,56(4):843-881.
    [29] Fillion D,Pickerili R K.On Arthraria antiquata Billings,1872 and its relationship to diplocraterion torell,1870 and Bifungites Desio,1940[J].Journal of Paleontology,1984,58(3):683-696.
    [30] 杨式溥.中国遗迹化石[M].北京:科学出版社,2004:34-262.
    [31] Wetzel A,Werner F.Morphology and ecological significance of Zoophycos,in deep-sea sediments off NW Africa[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1980,32(1):185-212.
    [32] Kotake N.Deep-sea echiurans:Possible producers of Zoophycos[J].Lethaia,2010,25(3):311-316.
    [33] Gong Y M,Shi G R,Zhang L J,et al.Zoophycos composite ichnofabrics and tiers from the Permian neritic facies in South China and south-eastern Australia[J].Lethaia,2010,43(2):182-196.
    [34] Zhang L J,Fan R Y,Gong Y M.Zoophycos macroevolution since 541 Ma[J].Scientific Reports,2015,5:14954.doi:10.1038/srep14954.
    [35] 龚一鸣.遗迹化石Chondrites的指相意义和阶层分布[J].古生物学报,2004,43(1):94-102.
    [36] Frey R W,Seilacher A.Uniformity in marine invertebrate ichnology[J].Lethaia,1980,13(3):183-207.
    [37] Ekdale A A,Mason T R.Characteristic trace-fossil associations in oxygen-poor sedimentary environments[J].Geology,1988,16(8):720-723.
    [38] Taylor A,Goldring R,Gowland S.Analysis and application of ichnofabrics[J].Earth-Science Reviews,2003,60(3):227-259.
    [39] Xiang L,Schoepfer S D,Zhang H,et al.Oceanic redox evolution across the end-Permian mass extinction at Shangsi,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,448(S1):59-71.
    [40] Clarkson M O,Poulton S W,Guilbaud R,et al.Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments[J].Chemical Geology,2014,382(11):111-122.
    [41] Zhang L J,Buatois L A,Mángano M G,et al.Uppermost Permian trace fossils along a shelf to slope transect in South China and their implications for oceanic redox evolution and extinction pattern[J].Global & Planetary Change,2018,167:74-86.
    [42] Rodríguez-Tovar F J,Uchman A.Oceanic anoxic event at the Cenomanian-Turonian boundary interval (OAE-2):Ichnological approach from the Betic Cordillera,southern Spain[J].Lethaia,2010,42(4):407-417.
    [43] Wu H,Zhang S,Hinnov L A,et al.Time-calibrated Milankovitch cycles for the Late Permian[J].Nature Communications,2013,4(9):2452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700