用户名: 密码: 验证码:
酸雨胁迫下接种土壤微生物对栾树幼苗生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Soil Microbe Inoculation on Koelreuteria paniculata Seedlings Growth under Simulated Acid Rain Stress
  • 作者:陈璐璐 ; 雷妮娅
  • 英文作者:CHEN Lulu;LEI Niya;College of Forestry, Beijing Forestry University;
  • 关键词:酸雨胁迫 ; 土壤接种 ; 泡囊-丛枝菌根真菌 ; 生物量 ; 叶氮磷比
  • 英文关键词:acid stress;;soil inoculation;;vesicle-arbuscular mycorrhizal fungi;;seedling biomass;;leaf N:P
  • 中文刊名:生态环境学报
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:北京林业大学林学院;
  • 出版日期:2019-03-18
  • 出版单位:生态环境学报
  • 年:2019
  • 期:03
  • 基金:中央高校基本科研业务费专项资金(YX2014-11)
  • 语种:中文;
  • 页:14-21
  • 页数:8
  • CN:44-1661/X
  • ISSN:1674-5906
  • 分类号:S792.99;S714.3
摘要
为探讨菌根真菌对宿主植物在酸雨逆境中的调节作用,以华北地区森林群落常见树种栾树(Koelreuteria paniculata)幼苗为研究对象,采用双因素完全随机试验设计开展盆栽试验,设置了3个酸雨梯度(pH分别为3.5、4.5、5.6)及2种土壤微生物接种方式(接种、不接种),对各处理下幼苗生长情况、叶片氮磷含量、根内泡囊-丛枝菌根真菌(Vescile-Arbuscular Mycorrhizal fungi)定殖情况进行测定及分析。结果表明:(1)栾树幼苗根系泡囊-丛枝菌根真菌表现出趋酸性的特征,其侵染率在pH 3.5中定殖率最高(76.3%),在pH 5.6中定殖率最低(34.4%);(2)在pH 3.5和pH 4.5酸雨处理中,接种土壤微生物显著促进了栾树幼苗的生长(P<0.05),但在p H 5.6处理则无显著促进作用(P>0.05),接种土壤微生物显著降低了3种酸雨胁迫下栾树幼苗叶片氮及氮磷比值,栾树幼苗在强酸胁迫下有更高的菌根依赖性(pH3.5:MD=54.2%,p H4.5:MD=38.7%,pH5.6:MD=0);(3)相关性分析表明,在pH3.5和pH4.5处理中,菌根真菌侵染率与苗木生物量、株高、基径、叶片氮及叶片氮磷比等显著相关(P<0.05),而在pH 5.6处理中则均无显著相关关系。栾树幼苗泡囊-丛枝菌根真菌在强酸胁迫下表现出提高定殖率的适应策略;强酸胁迫下(pH 3.5、pH 4.5),泡囊-丛枝菌根真菌对栾树幼苗生长的调节作用较弱酸胁迫(pH5.6)明显;接种土壤微生物通过提高泡囊-丛枝菌根真菌的侵染率促进强酸雨下栾树幼苗基径、株高、地上及地下生物量。研究结果在一定程度上反映了接种土壤微生物对酸胁迫下栾树幼苗的促生长作用模式及调节作用。
        Acid rain affecting plant growth and development has been becoming a worse problem all over the world.Vescile-arbuscular mycorrhizal fungi has been shown to enhance plant tolerance for many biotic and abiotic stresses. However, the influences of Vescile-arbuscular mycorrhizal fungi on plant tolerance to acid stress of forest tree species are incompletely understood.To test our hypothesis that the symbiont would improve Koelreuteria paniculate tolerance for acid rain, a greenhouse pot experiment with a two-factor factorial design was conducted. Seedlings were cultivated in inoculated or sterilized soils and exposed to one of 3 different acid stress intensity(pH 3.5, pH 4.5, pH 5.6) during one growing season. Plant growth, nutrient uptake rate,nitrogen-phosphorus ratio as well as mycorrhizal fungi colonization of each and every harvested seedling were investigated to assess the microbiota-plant interaction under stressful conditions of strong acidity. The results showed that acid stress increased vescile-arbuscular mycorrhizal fungi colonization of seedling root, with the highest colonization rate of 76.3% under the greatest simulated rain acidity. Soil microbial inoculation improved plant growth to get a higher biomass, stem diameter, and plant height accumulation for seedlings exposed to both pH 3.5 and pH 4.5 acid rain treatments(P<0.05), simultaneously, higher mycorrhizae dependence(MD) of Koelreuteria paniculate seedlings was objected in pH 3.5 and pH 4.5 acid rain treatments(pH 3.5: MD=54.2%,pH 4.5: MD=38.7%, pH5.6: MD=0). On the other hand, it decreased the leaf nitrogen concentration and nitrogen to phosphorus ratio of seedlings under all the three stressful conditions(P<0.05). Correlation analysis showed that the plant performance indices have a strong relationship with the vescile-arbuscular mycorrhizal fungi colonization under pH 3.5 and pH 4.5(P<0.05) but not in pH 5.6 situation. As a conclusion, vescile-arbuscular mycorrhizal fungi could play a very important role in plant resistance to acid stress and facilitate nutrient uptake and growth performance of Koelreuteria paniculate seedlings. While being exposed to strong stress of acid deposition, Koelreuteria paniculate seedlings would adopt a typical adaptive strategy by increasing mycorrhizal fungi colonization to take advantages of root-fungi associations in regulating nutrient absorption and promoting seedling growth.
引文
BAGHEL R K,SHARMA R,PANDEY A K,2009.Activity of acid phosphatase in the ectomycorrhizal fungus Cantharellus tropicalis under controlled conditions[J].Journal of Tropical Forest Science,21(3):218-222.
    CHRISTOPHE C,MARIE-PIERRE T,STEPHANE U,2010.Laccaria bicolor S238N improves Scots pine mineral nutrition by increasing root nutrient uptake from soil minerals but does not increase mineral weathering[J].Plant and Soil,328(1-2):145-154.
    COURTY P E,BUEE M,DIEDHION A G,et al.,2010.The role of ectomycorrhizal communities in forest ecosystem processes:New perspectives and emerging concepts[J].Soil Biology and Biochemistry,42(5):679-698.
    KLIRONOMOS J N,2002.Feedback with soil biota contributes to plant rarity and invasiveness in communities[J].Nature,417(6884):67-70.
    KONGPUN A,DELL B,RERKASEM B,2011.Alleviating acid soil stress in cowpea with a local population of arbuscular mycorrhizal fungi[J].African Journal of Biotechnology,10(65):14410-14418.
    LAU J A,LENNON J T,2011.Evolutionary ecology of plant-microbe interactions:soil microbial structure alters selection on plant traits[J].New Phytologist,192(1):215-224.
    MCNAMARA N P,BLACK H I J,BERESFORD N A,et al.,2003.Effects of acute gamma irradiation on chemical,physical and biological properties of soils[J].Applied Soil Ecology,24(2):117-132.
    MCGONIGLE T P,MILLER M H,EVANS DG,et al.,1990.A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi[J].New Phytologist,115(3):495-501.
    NELSON D W,SOMMERS L E,1982.Total carbon,organic carbon,and organic matter[M]//Page A L,Miller R H,Keeney D R,et al.,eds.Methord of soil analysis.American Society of Agronomy and Soil Science Society of America.Madison,WI,101-129.
    NIE M,PENDALL E,BELL C,et al.,2013.Positive climate feedbacks of soil microbial communities in a semi-arid grassland[J].Ecology Letter,16(2):234-241.
    PHILLIPS J M,HAYMAN D S,1970.Improved procedures for clearing roots and staining parasitic and vesicular-arbusular mycorrhizal fungi for rapid assessment of infection[J].Transactions of the British Mycological Society,55(1):158-161.
    RAMLALL C,VARGHESE B,RAMDHANI S,et al.,2015.Effects of simulated acid rain on germination,seedling growth and oxidative metabolism of recalcitrant-seeded Trichila dregeana grow in its natural seed bank[J].Physiologis Plantarum,153(1):149-160.
    VANCE E D,BROOKES P C,JENKINSON D S,1987.An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,19(6):703-707.
    VOSATKA M,DODD J C,1998.The role of different arbuscular mycorrhizal fungi in the growth of Calamagrostis villosa and Deschampsia flexuosa,in experiments with simulated acid rain[J].Plant and Soil,200:251-263.
    VOSATKA M,BATKHUUGYIN E,ALBRECHTOVA J,1999.Response of three arbuscular mycorrhizal fungi to simulated acid rain and aluminium stress[J].Biologia Plantarum,42(2):289-296.
    ZHAO R X,GUO W,BI N,et al.,2015.Arbuscular mycorrhizal fungi affect the growth,nutrient uptake and water status of maize(Zea mays L.)grown in two types of coal mine spoils under drought stress[J].Applied Soil Ecology,88:41-49.
    蔡梦莎,2012.模拟不同酸雨处理对杜英与石栎生长及叶绿素荧光特性的影响[D].临安:浙江农林大学.CAI M S,2012.Research on chlorophyⅡFluorescence characteristics and growth action law regularity of Eleocarpus sylvestris and Lithocarpus glaber under different simulated acid rain[D].Linan:Zhejiang A&F University.
    毕银丽,陈书琳,孔维平,等,2014.接种微生物对大豆及其根际土壤的影响[J].生态科学,33(1):121-126.BI Y L,CHEN S L,KONG W P,et al.,2014.Effects of microorganism inoculation on growth of soybean and its rhizosphere soil[J].Ecolohical Science,33(1):121-126.
    丁凡,廉培勇,曾德慧,2011.松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系[J].生态学杂志,30(1):77-81.DING F,LING P Y,ZENG D H,2011.Characteristics of plant leaf nitrogen and phosphorus stoichiometry in relation to soil nitrogen and phosphorus concentration in Songnen plain meadow[J].Chinese Journal of Ecology,30(1):77-81.
    冯曾威,王宁,朱红惠,等,2017.低pH影响丛枝菌根真菌丛枝发育和磷的吸收[J].菌物学报,36(7):950-962.FENG Z W,WANG N,ZHU H H,et al.,2017.Influences of low pH on the arbuscule development and phosphorus uptake of Rhizophagus intraradices[J].Mycosystema,36(7):950-962.
    蒋胜竞,刘永俊,石国玺,等,2014.丛枝菌根真菌物种多样性及其群落构建机制研究进展[J].生命科学,26(2):169-180.JIANG S J,LIU Y J,SHI G X,et al.,2014.The diversity and community assembly of arbuscular mycorrhizal fungi:a review[J].Chinese Bulletin of Life Sciences,26(2):169-180.
    吕超群,田汗勤,黄耀,2007.陆地生态系统氮沉降增加的生态效应[J].植物生态学报,31(2):207-215.LU C Q,TIAN H Q,HUANG Y,2007.Ecological effects of increased nitrogen deposition in terrestrial ecosystems[J].Journal of Plant Ecology(Chinese Version),31(2):207-215.
    梁倩倩,李敏,刘润进,等,2014.全球变化下菌根真菌的作用及其作用机制[J].生态学报,34(21):6039-6048.LIANG Q Q,LI M,LIU R J,et al.2014.Function and functioning mechanisms of mycorrhizal fungi under global changes[J].Acta Ecologica Sinica,34(21):6039-6048.
    刘润进,陈应龙,2007.菌根学[M].北京:科学出版社.LIU R J,CHEN Y L,2007.Mycorrhizology[M].Beijing:Science Press.
    刘润进,唐明,陈应龙,2017.菌根真菌与植物抗逆性研究进展[J].菌物研究,15(1):70-88.LIU R J,TANG M,CHEN Y L,2017.Recent advances in the study of mycorrhizal fungi and stress resistance of plants[J].Journal of Fungal Research,15(1):70-88.
    梁晓琴,2013.模拟酸雨对蒙古栎和栓皮栎生理生态特征的影响[D].济南:山东大学.LIANG X Q,2013.Effects of simulated acid rain on ecophysiological characterstics of Quercus mongolica and Quercus variabilis seedlings[D].Jinan:Shandong University.
    王琳,陈展,尚鹤,2014.外生菌根真菌在酸雨胁迫下对马尾松土壤微生物代谢功能的影响[J].林业科学,50(7):99-104.WANG L,CHEN Z,SHANG H,2014.Effects of ectomycorrhizal fungi(Pisolithus tinctorius)of masson pine(Pinus massoniana)on soil microbial metabolic function under simulated acid rain[J].Scientia Silvae Sinicae,50(7):99-104.
    韦莉莉,卢昌熠,丁晶,等,2016.菌根真菌参与地下植物-土壤系统的养分交流与调控[J].生态学报,36(14):4233-4243.WEI L L,LU C Y,DING J,et al.2016.Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbial system[J].Acta Ecologica Sinica,36(14):4233-4243.
    俞飞,宋琦,刘美华,等,2016.模拟酸雨不同处理对催秃瓣杜英幼苗生物量和生理的影响[J].林业科学,5(52):92-100.YU F,SONG Q,LIU M H,et al.,2016.Effects of different acid rain treatments on biomass allocation and physiological characteristics in Elaeocarpus glabripetallus seedlings[J].Scientia Silvae Sinicae,5(52):92-100.
    于浩,陈展,尚鹤,等,2017.野外模拟酸雨胁迫下接种外生菌根真菌对马尾松幼苗的缓解作用[J].生态学报,37(16):5418-5427.YU H,CHEN Z,SHANG H,et al.,2017.Effects of ectomycorrhizal fungi on seedlings of Pinus massoniana under simulated acid rain[J].Acta Ecologica Sinica,37(16):5418-5427.
    张春英,2008.云锦杜鹃菌根及其菌根真菌多样性研究[D].北京:北京林业大学.ZHANG C Y,2008.Diversity of Ericoid mycorrhiza and the related fungi isolated from hair roots of Rhododendron fortune L.[D].Beijing:Beijing Forestry University.
    张海艳,2013.模拟酸雨对不同类型玉米种子萌发和幼苗生长的影响[J].应用生态学报,24(6):1621-1626.ZHANG H Y,2013.Effects of simulated acid rain on seed germination and seedling growth of different type corn(Zea mays)[J].Chinese Journal of Applied Ecology,24(6):1621-1626.
    张爽,廖红,王秀荣,2014.不同丛枝菌根真菌对大豆耐酸、铝能力的影响[J].中国油料作物学报,36(5):616-622.ZHANG S,LIAO H,WANG X R,2014.Effects of different arbuscular mycorrhizal fungi species on plant tolerance to low pH and aluminum toxicity in soybean[J].Chinese Journal of Oil Crop Sciences,36(5):616-622.
    张旭红,2003.丛枝菌根真菌在不同土壤环境因子下的适应性研究[D].保定:河北农业大学.ZHANG X H,2003.The adaptability of arbuscular mycorrhizal fungi to different soil environmental factors[J].Baoding:Hebei Agricultural University.
    赵昕,阎秀峰,2006.丛枝菌根真菌对喜树幼苗生长和氮、磷吸收的影响[J].植物生态学报,30(6):947-953.ZHAO X,YAN X F,2006.Effects of arbuscular mycorrhizal fungi on the growth and absorption of nitrogen and phosphorus in Camptotheca Acuminata seedlings[J].Journal of Plant Ecology,30(6):947-953

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700