用户名: 密码: 验证码:
血管组织三维模型重建及力学特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three-dimensional modeling of vascular tissue and its mechanical characteristics
  • 作者:徐泽玮 ; 朱莉娅 ; 李宗安 ; 唐文来 ; 何昱煜 ; 杨继全
  • 英文作者:Xu Zewei;Zhu Liya;Li Zongan;Tang Wenlai;He Yuyu;Yang Jiquan;Nanjing Normal University, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing;
  • 关键词:心血管疾病 ; 血管组织 ; 三维模型重建 ; 有限元分析 ; 3D打印 ; 血管移植 ; 人工血管
  • 英文关键词:cardiovascular diseases;;vascular tissue;;three-dimensional model reconstruction;;finite element analysis;;three-dimensional printing;;vascular graft;;artificial blood vessel
  • 中文刊名:中国组织工程研究
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:南京师范大学江苏省三维打印装备与制造重点实验室;
  • 出版日期:2019-04-12
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:20
  • 基金:国家自然科学基金(51705259),项目负责人:朱莉娅;; 江苏省自然科学基金(BK20150973),项目负责人:朱莉娅;; 江苏省重点研发计划项目(BE2018010-1,BE2018010-2),项目负责人:杨继全~~
  • 语种:中文;
  • 页:48-53
  • 页数:6
  • CN:21-1581/R
  • ISSN:2095-4344
  • 分类号:R318
摘要
背景:血管移植是治疗心血管疾病的主要方法,自体或异体血管存在来源有限、免疫排斥反应、无生长能力等问题,基于3D打印与组织工程技术的人工血管构建为解决上述问题提供了新思路。目的:以MC算法为核心,对血管组织的CT医疗影像数据进行三维模型重建,并对重建模型进行有限元分析。方法:首先通过Mimics软件对人体血管组织的医学影像进行有效提取,完成血管组织的三维重建和优化处理,设计4种壁厚与外直径不等的人工血管组织模型(宽薄型:外直径10 mm,壁厚1.7 mm;宽厚型:外直径10 mm,壁厚2.0 mm;窄薄型:外直径8 mm,壁厚1.7 mm;窄厚型:外直径8 mm,壁厚2.0 mm),然后利用有限元软件分析4组血管组织的受力情况,得出适合用于植入的人工血管模型。结果与结论:(1)在施加相同拉力时,窄薄型组位移变化最大,宽薄型组其次,宽厚型组位移最小;(2)在施加同等径向压力时,宽薄型组位移变化最大,窄厚型组位移最小,宽厚型组位移略小于窄薄型组;(3)结果显示,"宽厚型"结构具备更强的抗压及抗拉能力,适合作为人工血管植入。
        BACKGROUND: Vascular transplantation is the main method for treating cardiovascular diseases. Autologous or xenogenous blood vessels exist in limited source, immunological rejection and no growth ability. Artificial blood vessel construction based on three-dimensional printing and tissue engineering technology provides new ideas for solving the above problems.OBJECTIVE: To reconstruct the three-dimensional model of CT data of vascular tissue with MC algorithm as the core, and to analyze the reconstruction model with finite element method.METHODS: Firstly, the medical image of human vascular tissue was extracted effectively by Mimics software, and the three-dimensional reconstruction and optimization of vascular tissue were completed. Four kinds of artificial vascular tissue models with different wall thickness and external diameter were designed(wide and thin type: external diameter 10 mm, wall thickness 1.7 mm; wide and thick type: external diameter 10 mm, wall thickness 2.0 mm; narrow and thin type: external diameter 8 mm, wall thickness 1.7 mm; narrow and thick type: external diameter 8 mm, wall thickness 2.0 mm). Then the stress of four groups of vascular tissue was analyzed by finite element software, and the suitable artificial vascular model for implantation was obtained.RESULTS AND CONCLUSION:(1) When the same tension was applied, the displacement of the narrow-thin group changed the most,followed by the wide-thin group and the wide-thick group the least.(2) When the same radial pressure was applied, the displacement of the wide-thin group changed the most, the narrow-thick group the least, and the displacement of the wide-thick group was slightly smaller than that of the narrow-thin group.(3) These results show that the "wide and thick" structure has strong compressive and tensile resistance, and is suitable for vascular prosthesis implantation.
引文
[1]Mozaffarian D,Benjamin EJ,Go AS,et al.Executive Summary:Heart Disease and Stroke Statistics--2016 Update:A Report From the American Heart Association.Circulation.2016;133(4):447-454.
    [2]郑幸龙,向俊西,李建辉,等.工程组织及器官的血管化:研究现状与应用进程[J].中国组织工程研究,2014,18(15):2427-2433.
    [3]Bono N,Meghezi S,Soncini M,et al.A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models.Ann Biomed Eng.2017;45(6):1496-1510.
    [4]陶梅,张磊,向虎,等.具有三层管壁结构组织工程血管支架的生物力学性能[J].中国生物医学工程学报,2006,25(6):728-732.
    [5]魏正英,杜军,卢秉恒,等.一种4D打印成型人工血管支架的方法[P].CN104116578A.2014.
    [6]Norotte C,Marga F,Niklason L,et al.Scaffold-Free Vascular Tissue Engineering Using Bioprinting.Biomaterials.2009;30(30):5910-5917.
    [7]Xu C,Chai W,Huang Y,et al.Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes.Biotechnol Bioeng.2012;109(12):3152-3160.
    [8]Lorensen WE.Marching cubes:A high resolution 3D surface construction algorithm[C]//Conference on Computer Graphics and Interactive Techniques.ACM.1987;21(4):163-169.
    [9]叶青.三维重建技术在医学图像中的研究与应用[D].西安:西安电子科技大学,2009.
    [10]Peng TH.Three-dimensional reconstruction of blood vessel and nerve in the upper limb[A].Chinese Society for Anatomical Sciences.Abstracts of the 18th Congress of the International Federation of Associations of Anatomists(IFAA 2014)[C].Chinese Society for Anatomical Sciences:,2014:1.
    [11]胡泽龙.医学图像中血管的三维重建的研究与应用[D].成都:电子科技大学,2015.
    [12]陈淑滢,钟梅,王志坚,等.基于CT数据人离体胎盘血管网数字化三维模型重建研究[C]//粤桂妇产科学学术交流会议暨2013年广东省医学会妇产科学学术年会,2013.
    [13]谷方,崔益群,曾兵,等.基于CT增强连续扫描数据的颅面部血管三维重建数字化模型[J].中国组织工程研究与临床康复,2010,14(9):1531-1534.
    [14]贾同,魏颖,吴成东.基于几何形变模型的三维肺血管图像分割方法[J].仪器仪表学报,2010,31(10):2296-2301.
    [15]于荣欢,邓宝松,吴玲达,等.三维标量场并行等值面提取与绘制技术[J].计算机辅助设计与图形学学报,2012,24(2):244-251.
    [16]杨宗悦.基于MC和RC算的DICOM图像三维重建系统的设计与实现[D].武汉:华中科技大学,2008.
    [17]Bishop ES,Mostafa S,Pakvasa M,et al.3-D bioprinting technologies in tissue engineering and regenerative medicine:Current and future trends.Genes Dis.2017;4(4):185-195.
    [18]石更强,宋晓冰.基于ANSYS软件血管支架的有限元分析[J].生物医学工程学杂志,2015,32(5):1004-1008.
    [19]唐习强,梁烨,陈宏明,等.腹主动脉内膜中层厚度在高血压病患者中的特征及其临床意义[J].右江医学,2014,42(5):513-517.
    [20]Zhang H,Zhang HW,Gu YX.A Three-Layer Model of the Mechanical Behaviour of Blood Vessel Walls[C]//Computational Mechanics:Proceedings of ISCM2007,2007:309-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700