用户名: 密码: 验证码:
玉米抗旱相关基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分胁迫是主要的非生物胁迫因子之一,严重影响植物生长及农作物生产。本研究在我们前期研究的干旱胁迫诱导的差减文库中克隆了三个受干旱诱导表达的基因:ZmFBL2、ZmCKS2和ZmBTF3b。
     ZmFBL2基因编码蛋白ZmFBL2含有一个F-box结构域和一个富含亮氨酸结构域(LRR)。F-box结构域最初是在细胞周期蛋白F的N末端被鉴定的,命名为F-box。F-box蛋白在N末端都含有保守的F-box结构域(约含有40-50个氨基酸)。F-box蛋白在C末端含有一个或多个高度可变的蛋白-蛋白互作结构域,如富含亮氨酸的结构域LRR、Kelch、WD40(Trp和Asp)和三十四肽重复单位TPR,这些结构域可以对底物进行特异的结合。过去的几年中,高等植物拟南芥、矮牵牛、水稻、玉米中已经鉴定出数个F-box蛋白。这些F-box蛋白在植物花发育、自交不亲、种子发育、生理节奏调节、防卫反应、生长素信号途径、茉莉酸信号途径、水杨酸信号途径以及非生物胁迫响应等过程起重要作用。本研究克隆得到玉米中受干旱诱导表达的一个F-box蛋白ZmFBL2,并研究其结构与功能。
     ZmCKS2含有一个CKS(cyclin-dependent kinase regulatory subunit)结构域,该结构域在真核生物中高度保守;ZmBTF3b是一个含有169个氨基酸的蛋白,含有一个保守的NAC (nascent polypeptide-associated complex)结构域。
     主要研究结果如下:
     1、应用同源克隆的方法获得ZmFBL2基因的cDNA全长,结构分析发现,ZmFBL2蛋白N端含有典型的F-box结构域,C端含有LRR结构域;通过PCR扩增并获得ZmFBL2基因组DNA及启动子序列;ZmFBL2基因组含有四个外显子和三个内含子;ZmFBL2启动子含有早期应答脱水胁迫、响应高盐、冷、水杨酸、ABA、氧化胁迫等非生物胁迫的顺式作用元件以及胚、胚乳、种子发育、光诱导、昼夜节律调节相关的调控元件。
     2、组织差异性表达分析结果表明,ZmFBL2在玉米幼叶、穗位叶、开花期根及雄穗中表达量较高,其中穗位叶中表达量最高;在脱水和PEG处理下,ZmFBL2在地上部分和地下部分均表现显著上调表达趋势;在冷处理条件下,ZmFBL2在地下部分的表达量无显著的变化趋势,但是在地上部分表达量有显著的上调表达趋势。在NaCl处理条件下,ZmFBL2在地上部分及地下部分均显示上调表达趋势,但未达到显著上调表达水平;在响应4种外源激素信号分子时,ZmFBL2对MJ处理无显著的诱导表达变化,而在应答2,4-D和ABA两个外源激素时均表现出上调表达模式;对SA处理表现出下调表达趋势。
     3、通过同源克隆,获得玉米中10个MSK(maize skp1-like gene)基因,分别命名为MSK1-10。酵母双杂交结果表明,F-box蛋白(1-368氨基酸)可以与MSK1、MSK2、MSK9及ZmMADS6、ZmMADS7互作。F2(1-75氨基酸)可以与MSK1、MSK2、MSK5、MSK9、CKS及ZmMADS4、ZmMADS6、ZmMADS7互作。而F1(76-368氨基酸)、F3(1-38氨基酸)不能与任何MSK蛋白或ZmMADS蛋白互作。β-半乳糖苷酶显色检验分析也验证了以上互作结果的可靠性。
     4、应用20%PEG处理在营养土中生长至10天的过表达转基因株系及野生型拟南芥,结果表明过表达转基因株系存活率明显高于野生型;在含有0.3μM ABA、150mM NaCl的MS固体培养基上,过表达转基因株系存活率明显高于野生型;而在含有350mM甘露醇MS固体培养基上,表达转基因株系与野生型存活率差异不明显。
     5、在本研究的过程中还通过同源克隆的方法克隆得到干旱诱导表达的ZmCKS2和ZmBTF3b基因。ZmCKS2基因编码的蛋白ZmCKS2是细胞周期依赖性蛋白激酶的亚基。该基因启动子序列中含有多个与逆境胁迫相关的顺式作用元件;ZmCKS2基因在幼穗中表达量最高,并受干旱胁迫和茉莉酸甲酯处理上调表达,受冷胁迫和外源ABA处理下调表达。说明该基因可能在玉米应答逆境胁迫过程中起重要作用。ZmBTF3b基因编码的蛋白ZmBTF3b含有保守的新生多肽复合体(NAC)结构域;酵母单杂交试验表明该蛋白C末端具有转录激活功能。该基因启动子序列中有多个与逆境胁迫相关的顺式作用元件;表达模式分析表明该基因在花丝、幼穗、雄穗、幼根和开花期根中表达量相对较高,叶子中表达量相对较低,并且在根部受脱水干旱和PEG处理上调表达,受冷胁迫和NaCl处理下调表达。结果表明,该基因可能与玉米在应答逆境胁迫过程中起重要作用。
Water stress is one of the major environmental stresses that seriously affect plant growth and crop yield worldwide. In this study we cloned three drought induced genes ZmFBL2, ZmCKS2 and ZmBTF3b from our previous drought related SSH library.
     ZmFBL2 is a F-box protein, contein a F-box domain and LRR domain. F-box domain was fistly found at the N-terminal region of cyclin F. At the N terminus of F-box proteins contained a conserved F-box motif (about 40~50 amino acid) and at the carboxy-terminal, F-box proteins often contained highly variable protein-protein interaction domains, such as WD40 repeat (Trp and Asp), Leu-rich repeat (LRR), tetratricopeptide repeat (TPR) and kelch repeat. In the past few years, many F-box proteins have been cloned in higher plants such as Arabidopsis, petunia, rice and maize. These F-box proteins played essential roles in flowering development, self-incompatibility, light signalling and clock control, plant hormone response pathways and abiotic stress. In this study, we isolated an drought induced gene ZmFBL2, a new F-box gene in maize. Its structure and functions was analized.
     ZmCKS2 was predicted to contain a CKS (cyclin-dependent kinase regulatory subunit) structural domain, which was highly conserved in eukaryotes kingdom. ZmBTF3b encoded a putative transcription factor of 169 amino acids with a conserved NAC (nascent polypeptide-associated complex) domain.
     The main results were as follows:
     1. In this study we cloned the full-length cDNA of ZmFBL2, by using in silico and homology-based cloning techniques. The deduced protein of ZmFBL2 was predicted to contain a F-box structural domain, which was highly conserved in eukaryotes kingdom and a Leu-rich repeat (LRR) domains at the carboxy terminal. The promoter of ZmFBL2 was predicted to contain important regulatory elements including core promoter elements and drought, high salt, cold, SA, ABA, oxygen responsive, light regulation and embryo, endosperm, seeds development elements.
     2. Real-time quantitative PCR (qRT-PCR) analysis revealed that ZmFBL2 was highly expressed in leaves at seedling stage, ear leaves, roots at flowering stage and tassels and was up-regulated under dehydration, PEG, cold, NaCl, 2,4-D and ABA treatment while was down-regulated under SA .
     3. We cloned the full-length cDNA of ten MSK (maize skp1-like gene) genes by using in silico and homology-based cloning techniques. Yeast hybrid assay revealed that F-box protein interacted specifically with MSK1、MSK2、MSK9 and ZmMADS6、ZmMADS7 and the F-box domain was necessary.β-Galactosidase filter assays verified the reliability of the results.
     4. Ten days old lins grown in organic fertilizer was treated by 20% PEG 6000. Survival rates of transgenic Arabidopsis was higher than WT Arabidopsis. On MS medium with ABA and NaCl, survival rates of transgenic lines was also higher than WT. But there was no obvious difference on MS medium with mannitol.
     5. Two other drought induced genes ZmCKS2 and ZmBTF3b were cloned in this study. The deduced protein of ZmCKS2 was predicted to contain a CKS (cyclin-dependent kinase regulatory subunit) structural domain, which was highly conserved in eukaryotes kingdom. The promoter of ZmCKS2 was predicted to contain important regulatory elements including core promoter elements and drought, high salt, cold, ABA, light regulation, copper and oxygen responsive elements. Real-time quantitative PCR (qRT-PCR) analysis revealed that ZmCKS2 was highly expressed in ears while its expression was very low in roots and leaves at seedling stage and was up-regulated under drought or MeJA treatment but down-regulated under cold or ABA treatment. Under NaCl stress ZmCKS2 showed no obvious change. These results revealed that ZmCKS2 might be involved in multiple pathways of plants responding to different environmental conditions. The cloned ZmBTF3b gene encoded a putative transcription factor of 169 amino acids with a conserved NAC (nascent polypeptide-associated complex) domain. Transcriptional activity analysis showed that ZmBTF3b might be a functional transcription factor. Real-time quantitative PCR (qRT-PCR) analysis revealed that ZmBTF3b was highly expressed in silks, ears and tassels and was up-regulated under dehydration or PEG treatment while was down-regulated under cold, NaCl, ABA or SA. ZmBTF3b might have the transcriptional activation activity and play an essential role in response to abiotic stresses.
引文
1.李广旭,吴茂森,何晨阳.水稻转录因子OsBTF3对不同病原菌和信号分子的基因表达反应.植物病理学报,2009,39(3):272~277.
    2.李广旭,吴茂森,吴静,何晨阳.受病原细菌诱导表达增强的水稻转录因子基因OsBTF3的分子鉴定.中国农业科学,2009,42(7):2608~2614.
    3.李会勇,黄素华,赵久然,王凤格,张中保,毛毅辉,王秀堂,石云素,宋燕春,王国英,黎裕,王天宇.应用抑制差减杂交法分离玉米幼苗期叶片土壤干旱诱导的基因.中国农业科学,2007,40(5):882~888.
    4.李智念,王光明,曾之文.植物干旱胁迫中的ABA研究干旱地区农业研究.2003,21(2):99~104.
    5.刘延锋,曾洪梅,玉山江,杨秀芬,毛建军,邱德文.极细链格孢菌peaT1基因在毕赤酵母中的表达与功能分析.生物工程学报,2009,25(3):413~417.
    6.田波,陈永燕,严远鑫,李德铢.一个竹类植物MADS盒基因的克隆及其在拟南芥中的表达.科学通报,2005,50(2):145~151.
    7.谢先芝,吴乃虎.高等植物基因的内含子.科学通报,2002,47(17):731~737.
    8. Alagramam K., Naider F., Becker J.M.. A recognition component of the ubiquitin system is required for peptide transport in Saccharomyces cerevisiae. Molecular Microbiology, 1995, 15:225~234.
    9. Angers, A., Ramjaun, A.R., and McPherson, P.S.. The HECT domain ligase itch ubiquitinates endophilin and localizes to the trans-Golgi network and endosomal system. Journal of Biological Chemistry, 2004, 279, 11471~11479.
    10. Aristarkhov A., Eytan E., Moghe A., Admon A., Hershko A., Ruderman J. V.. E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proceedings of the National Academy of Sciences of USA, 1996, 93: 4294~4299.
    11. Azevedo C., Santos-Rosa M.J., and Shirasu K.. The U-box protein family in plants. Trends in Plant Science, 2001, 6: 354~358.
    12. Bachmair A., Varshavsky A.. The degradation signal in a short-lived protein. Cell, 1989, 56:1019~1032.
    13. Bashir T., Dorrello N.V., Amador V., Guardavaccaro D., Pagano M.. Control of the SCF(Skp2-Cks1)ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature, 2004, 428:190~193.
    14. Beatrix B., Sakai H., Wiedmann M.. Theαandβsubunit of the nascent polypeptide-associated complex have distinct functions. Journal of Biological Chemistry, 2000, 275: 37838~37845.
    15. Burch T.J., Haas A.L.. Site-directed mutagenesis of ubiquitin. Differential roles for arginine in the interaction with ubiquitin-activating enzyme. Biochemistry, 1994, 33: 7300~7307.
    16. Calderon-Villalobos L.I., Nill C., Marrocco K., Kretsch T., and Schwechheimer C.. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress. Gene, 2007, 392: 106~116.
    17. Calhoun E.S., Jones J.B., Ashfaq R., Adsay V., Baker S. J., Valentine V., Hempen P. M., Hilgers W., Yeo C.J., Hruban R.H. and Kern S.E.. BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) Mutations in Distinct Subsets of Pancreatic Cancer. American Journal of Pathology, 2003, 163: 1255-1260.
    18. Cardozo T. and Pagano M.. The SCF ubiquitin ligase: insights into a molecular machine. Nature Reviews Molecular Cell Biology, 2004, 5: 739~751.
    19. Chen W., Provart N.J., Glazebrook J., Katagiri F., Chang H.S., Eulgem T., Mauch F., Luan S., Zou Whitham S.A., et al.. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 2002, 14: 559~574.
    20. Clifford R., Lee M.H., Nayak S., Ohmachi M., Giorgini F. and Schedl T.. FOG2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the C elegans hermaphrodite germline. Development, 2000, 127(24): 5265~5276 .
    21. Coates J.C., Laplaze L., Haseloff J.. Armadillo-related proteins promote lateral root development in Arabidopsis. Proceedings of the National Academy of Sciences of USA, 2006, 103:1621~1626.
    22. Cooper B., Clarke J.D., Budworth P., Kreps J., Hutchison D., Park S., Guimil S., Dunn M., Luginbuhl P., Ellero C. et al.. A network of rice genes associated with stress response and seed development.Proceedings of the National Academy of Sciences of USA, 2003, 100: 4945~4950.
    23. Cooper B., Hutchison D., Park S., Guimil S., Luginbuh L.P., Ellero C., Goff S.A., Glazebrook J.. Identification of rice (Oryza sativa) proteins linked to the cyclin-mediated regulation of the cell cycle. Plant Moecularl Biology, 2003, 53: 273~279.
    24. Coux O., Tanaka K. and Goldberg A.L.. Structure and functions of the 20S and 26S proteasomes. Annual Review of Biochemistry, 1996, 65: 801~847.
    25. Cox J.H., Galardy P., Bennink J.R., Yewdell J.W.. Presentation of endogenous and exogenous antigens is not affected by inactivation of E1 ubiquitin-activating enzyme in temperature-sensitive cell lines. Journal of Immunology, 1995, 154: 511~519.
    26. De Veylder L., Segers G., Glab N., Casteels P., Van Montagu M., Inze D.. The Arabidopsis Cks1At protein binds the cyclin-dependent kinases Cdc2aAt and Cdc2bAt. Febs Letters, 1997, 412: 446~452.
    27. Demarini D.J., Papa F.R., Swaminathan S., Ursic D., Rasmussen T.P., et al.. The yeast SEN3 gene encodes a regulatory subunit of the 26S proteasome complex required for ubiquitin-dependent protein degradation in vivo. Mol Cell Biol, 1995, 15: 6311~6321.
    28. Deng J.M., Behringer R.R.. An insertional mutation in the BTF3 transcription factor gene leads toan early postimplantation lethality in mice. Transgenic Research, 1995, 4: 264~269.
    29. Deshaies R.J.. 1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annual Review of Cell and Developmental Biology, 15:435~467.
    30. Deveraux Q., Ustrell V., Pickart C., Rechsteiner M.. A 26 S protease subunit that binds ubiquitin conjugates.Journal of Biological Chemistry, 1994, 269: 7059~7061.
    31. Dewitte W., Murray J.A.H.. The plant cell cycle. Annual Review of Plant Biology, 2003, 54:235~264.
    32. Devos S., Laukens K., Deckers P., Van Der Straeten D., Beeckman T., Inze D., van Onckelen H., Witters E., Prinsen E.. A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Molecular Plant Microbe Interactions, 2006, 19: 1431~1433.
    33. Devoto A., Ellis C., Magusin A., Chang H.S., Chilcott C., Zhu T., Turner J.G.. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions.Plant Molecular Biology, 2005, 58: 497~513.
    34. Devoto A., Nieto-Rostro M., Xie D., Ellis C., Harmston R., Patrick E., Davis J., Sherratt L., Coleman M., Turner J.G.. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant Journal , 2002, 32: 457~466.
    35. Dharmasiri N., Dharmasiri S. and Estelle M.. The F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 441~445.
    36. Dieterle M., Zhou Y.C., Schafer E., Funk M., Kretsch T.. EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes and Development, 2001, 15: 939~944.
    37. Ditt R.F., Kerr F.K., de Figueiredo P., Delrow J., Coma L., Nester E.W.. The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact, 2006, 19: 665~681.
    38. Du J., Huang Y.P, Xi J., Cao M.J., Ni W.S., Chen X., Zhu J.K., Oliver D.J., Xiang C.B.. Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant Journal, 2008, 56: 653~664.
    39. Dunn R.., Klos D.A., Adler A.S. and Hicke L.. The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. Journal of Cell Biology, 2004, 165:135~144.
    40. Fang S., Jensen J.P., Ludwig R.L., Vousden K.H., Weissman A.M.. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. Journal of Biological Chemistry, 2000, 275: 8945~5891.
    41. Finley D., Chau V.. Ubiquitination. Annu Rev Cell Biol, 1981, 7: 25~69.
    42. Finley D., Varshavsky A.. The ubiquitin system: functions and mechanisms.Trends in Biochemical Sciences, 1985, 10: 343~346.
    43. Freemont P.S., Hanson I.M., Trowsdale J.. A novel cysteine-rich sequence motif. Cell, 1991, 64:483~484.
    44. Gagne J.M., Downes B.P., Shiu S.H., Durski A.M. and Vierstra R.D.. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proceedings of the National Academy of Sciences of USA, 2002, 99: 11519~11524.
    45. Galan J.M., Wiederkehr A., Seol J.H., Haguenauer-Tsapis R., Deshaies R.J., Riezman H., Peter M.. Skp1p and the F-box protein Rcy1p form a non-SCF complex involved in recycling of the SNARESnc1p in yeast. Molecular and Cellular Biology, 2001, 21: 3105~3117.
    46. Gallagher E., Gao M., Liu Y.C., and Karin M. Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proceedings of the National Academy of Sciences of USA, 2006, 103:1717~1722.
    47. Gray C.W., Slaughter C.A., DeMartino G.N.. PA28 activator protein forms regulatory caps on proteasome stacked rings. Journal of Molecular Biology, 1994, 236:7~15.
    48. Gray W.M., Kepinski S., Rouse D., Leyser O., and Estelle M. Auxin regulates SCFTIR1-dependent degradation of the Aux/IAA proteins. Nature, 2001, 414: 271~276.
    49. Guan Y., Nothnagel E.A.. Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiology, 2004, 135: 1346~1366.
    50. Gwizdek C., Hobeika M., Kus B., Ossareh-Nazari B., Dargemont C. and Rodriguez M.S.. The mRNA nuclear export factor Hpr1 is regulated by Rsp5-mediated ubiquitylation. Journal of Biological Chemistry, 2005, 280:13401~13405.
    51. Hamilton M.H., Tcherepanova I., Huibregtse J.M., and McDonnell D.P. Nuclear import/export of hRPF1/Nedd4 regulates the ubiquitin-dependent degradation of its nuclear substrates. Journal of Biological Chemistry, 2001, 276: 26324~26331.
    52. Han L., Mason M., Risseeuw E.P., Crosby W.L., Somers D.E.. Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing.Plant Journal, 2004, 40:291~301.
    53. Hatakeyama S. and Nakayama K.I.. U-box proteins as a new family of ubiquitin ligases. Biochem Biophys Res Commun, 2003, 302: 635~645.
    54. Hepworth S.R., Klenz J.E., Haughn G.W.. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta, 2006, 223: 769~778.
    55. Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current Opinion in Cell Biology, 1995, 7: 215~223.
    56. Hochstrasser M.. Ubiquitin-dependent protein degradation. Annual Review of Genetics, 1996, 30:405~439.
    57. Huang L., Kinnucan E., Wang G., Beaudenon S., Howley P.M., Huibregtse J.M. and Pavletich N.P. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science, 1999, 286: 1321~1326.
    58. Huibregtse J.M., Scheffner M., Beaudenon S., Howley P.M.. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proceedings of the National Academy of Sciences of USA, 1995, .92: 2563~2567.
    59. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM. 1995.Afamily of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proceedings of the National Academy of Sciences of USA, 92:2563~2567
    60. Huntley R.P., Murray J.A.H.. The plant cell cycle. Current Opinion in Plant Biology, 1999, 2: 440~446.
    61. Imaizumi T., Schultz T.F., Harmon F.G., A Ho. L., Kay S.A..FKF1 F-box protein mediates cyclicdegradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293~297.
    62. Imaizumi T., Tran H.G., Swartz T.E., Briggs W.R., Kay S.A.. FKF1 is essential for photoperiodic specific light signalling in Arabidopsis. Nature, 2003, 426:302~306.
    63. Itahana K., MaoH., Jin A., Itahana Y., Clegg H.V., et al.. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell, 2007, 12:355~366.
    64. Jacqmard A., De Veylder L., Segers G., de Almeida Engler J., Bernier G., Montagu M.V., Inze D.. Expression of CKS1At in Arabidopsis thaliana indicates a role for the protein in both the mitotic and the endoreduplication cycle. Planta, 1999, 207: 496~504.
    65. Jain M., Nijhawan A., Arora R., Agarwal P., Ray S., Sharma P., Kapoor S., Tyagi A.K., Khurana J.P.. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiology, 2007, 143: 1467~1483.
    66. Jentsch S.. The ubiquitin conjugation system. Annual Review of Genetics, 1992, 26:177~205.
    67. Jiang Y.Q., Yang B., Harris N.S., Deyholos M.K.. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 2007, 58: 3591~3607.
    68. Jin J., Cardozo T., Lovering R.C., Elledge S.J., Pagano M. and Harper J.W.. Systematic analysis and nomenclature of mammalian F-box proteins. Genes and Development, 2004, 18(21): 2573~2580.
    69. Joazeiro C.A.,Wing S.S., Huang H., Leverson J.D., Hunter T., Liu Y.C.. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science, 1999, 286: 309~312.
    70. Jurado S., Diaz-Trivino S., Abraham Z., Manzano C., Gutierrez C., Pozo C.. SKP2A, an F-box protein that regulates cell division, is degraded via the ubiquitin pathway. Plant Journal, 2008, 53:828~834.
    71. Kanneganti V., Gupta A.K.. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 2008, 66: 445~462.
    72. Kepinski S., Leyser O.. Auxin-induced SCFTIR1–Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proceedings of the National Academy of Sciences of USA, 2004, 101:12381~12386.
    73. Kepinski S., Leyser O.. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435:446~451.
    74. Kim H.S., Delaney T.P.. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell, 2002, 14: 1469~1482.
    75. Kipreos E.T., Pagano M.. The F-box protein family. Genome Biology, 2000, 1: 3002.1~3002.7.
    76. Kuroda H., Takahashi N., Shimada H., Seki M., Shinozaki K., Matsui M.. Classification andexpression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiology, 2002, 43: 1073~1085.
    77. Lan L., Li M., Lai Y., Xu W., Kong Z., Ying K., Han B., Xue Y. Microarray analysis reveals similarities and variations in genetic programs controlling pollination/fertilization and stress responses in rice (Oryza sativa L.). Plant Molecular Biology, 2005, 59: 151~164.
    78. Laufs P., Coen E., Kronenberger J., Traas J. and Doonan J.. Separable roles of UFO during floral development revealed by conditional restoration of gene function. Development, 2003, 130: 785~796.
    79. Lauring B., Sakai H., Kreibich G., Wiedmann M.. Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the USA, 1995, 92: 5411~5415.
    80. Lechner E., Achard P., Vansiri A., Potuschak T., and Genschik P.. F-box proteins everywhere. Current Opinion in Plant Biology, 2006, 9(6): 631~638.
    81. Levin J.Z. and Meyerowitz E.M.. UFO: An Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell, 1995, 7: 529~548.
    82. Li M., Brooks C.L., Kon N., Gu W.. A dynamic role of HAUSP in the p53-Mdm2 pathway. Molecules and Cells, 2004, 13: 79~86.
    83. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402~408.
    84. Lorick K.L., Jensen J.P., Fang S., Ong A.M., Hatakeyama S., Weissman A.M.. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proceedings of the National Academy of Sciences of USA, 1999, 96: 11364~11369.
    85. Madura K., Dohmen R.J., Varshavsky A.N.. Recognin/Ubc2 interactions in the N-end rule pathway.Journal of Biological Chemistry, 1993, 268:12046~12054.
    86. Mandel M.A., Yanofsky M.F..A gene triggering flower formation in Arabidopsis. Nature, 1995, 337: 522~524.
    87. Marchese A., Raiborg C., Santini F., Keen J.H., Stenmark H., and Benovic J.L. The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Developmental Cell, 2003, 5: 709~802.
    88. Markesich D.C., Gajewski K.M., Nazimiec M.E., Beckingham K.. Bicaudal encodes the Drosophila beta NAC homolog a component of the ribosomal translational machinery. Development, 2000, 127: 559~572.
    89. Martinsson-Ahlzén H., Liberal V., Grünenfelder B., Chaves S.R., Spruck C.H, Reed S.I.. Cyclin-dependent kinase-associated proteins cks1 and cks2 are essential during early embryogenesis and for cell cycle progression in somatic cells. Molecular and Cellular Biology, 2008, 28(18): 5698~5709.
    90. Mas P., Kim W.Y., Somers D.E., Kay S.A.. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 2003, 426:567~570.
    91. Moon J.,Parry G.,Estele M..The ubiquitin proteasome pathway and plant development.Plant Cell, 2004, 16: 3181~3195.
    92. Neumann S., Petfalski E., Brugger B., Grosshans H., Wieland F., Tollervey D. and Hurt E.. Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. Embo Reports, 2003, 4: 1156~1162.
    93. Page A.M., Hieter P.. The anaphase-promoting complex: new subunits and regulators.Annual Review of Biochemistry, 1999, 68:583~609.
    94. Peters J.M., Cejka Z., Harris J.R., Kleinschmidt J.A., Baumeister W.. Structural features of the 26 S proteasome complex. Journal of Molecular Biology, 1993, 234: 932~937.
    95. Potocky M., Elias M., Profotova B., Novotna Z., Valentova O., Zarsky V.. Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta, 2003, 217: 122~130.
    96. Poyurovsky M.V., Jacq X., Ma C., Karni-Schmidt O., Parker P.J., Chalfie M., Manley J.L., and Prives C.. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. Molecules and Cells, 2003, 12: 875~887.
    97. Poyurovsky M.V., Priest C., Kentsis A., Borden K.L., Pan Z.Q., et al. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. Embo Journal, 2007, 26(1): 90~101.
    98. Qiu L., Joazeiro C., Fang N., Wang H. Y., Elly C., Altman Y., Fang D., Hunter T. and Liu Y.C.. Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. Journal of Biological Chemistry, 2000, 275: 35734~35737.
    99. Reynard G.J., Reynolds W., Verma R., Deshaies R.J.. Cksl is required for G1 cyclin-cyclin dependent kinase activity in Budding Yeast. Molecular and Cellular Biology, 2000, 20: 5858~5864.
    100. Risseeuw E.P., Daskalchuk T.E., Banks T.W., Liu E., Cotelesage J., Hellmann H., Estelle M., Somers D.E. and Crosby W.L.. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant Journal, 2003, 34: 753~767.
    101. Rodrigo-Brenni M.C., Morgan D.O.. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell, 2007, 130:127~139.
    102. Rubin D.M., Finley D.. The proteasome: a protein-degrading organelle? Current Biology, 1995, 5: 854~858.
    103. Ruegger M., Dewey E., Gray W.M., Hobbie L., Turner J., Estelle M.. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes and Development, 1998, 12:198~207.
    104. Sadis S., Atienza C., Finley D.. Synthetic signals for ubiquitin-dependent proteolysis. Molecular and Cellular Biology, 1995, 15:1265~1273.
    105. Samach A., Klenz J.E., Kohalmi S.E., Risseeuw E., Haughn G.W. and Crosby W.L. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant Journal, 1999, 20: 433~445.
    106. Sawadogo M., Sentenac A.. RNA polymerase B (II) and general transcription factors. Annual Review of Biochemistry, 1990, 59:711~754.
    107. Scheffner M., Nuber U., Huibregtse J.M.. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature, 1995, 373:81~83.
    108. Schulman B.A., Carrano A.C., Jeffrey P.D., Bowen Z., Kinnucan E.R.E., Finnin M.S., Elledge S.J., Wade Harper J., Pagano M. and Pavletich N.P. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature, 2000, 408: 381~386.
    109. Schwarz S.E., Rosa J.L. and Scheffner M.. Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7. Journal of Biological Chemistry, 1998, 273: 12148~12154.
    110. Seki M., Kamei A., Yamaguchi-Shinozaki K., Shinozaki K.. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 2003, 14: 194~199.
    111. Sheoran I.S., Sproule K.A., Olson D.J.H., Ross A.R.S, Sawhney V.K.. Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sexual Plant Reproduction, 2006, 19: 185~196.
    112. Shinozaki K., Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 2003, 6: 410~417.
    113. Shinozaki K., Yamaguchi-Shinozaki K., Seki M.. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 2003, 6: 410~417.
    114. Smalle J., Vierstra R.D.. The ubiquitin 26S proteasome proteolytic pathway. Annual Review of Plant Biology, 2004, 55: 555~590.
    115. Somers D.E., Schultz T.F., Milnamow M., Kay S.A.. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell, 2000, 101: 319~329.
    116. Sullivan J.A.,Shirasu K., Deng X.W.. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nature Reviews Genetics, 2003, 4: 948~958.
    117. Theiβen G.. Development of floral organ identity: Stories from the MADS house. Current Opinion in Plant Biology, 2001, 4: 75~85.
    118. Trotman L.C., Wang X., Alimonti A., Chen Z., Teruya-Feldstein J., Yang H., Pavletich N.P., Carver B.S., Cordon-Cardo C., Erdjument-Bromage H., et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell, 2007, 128:141~156.
    119. Tyers M., Jorgensen P.. Proteolysis and the cell cycle: with this RING I do thee destroy. Current Opinion in Genetics & Development, 2000, 10:54~64.
    120. Ulrich H.D., Jentsch S.. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. Embo Journal, 2000, 19: 3388~3397.
    121. Vandepoele K., Raes J., De Veylder L., RouzéP., Rombauts S., InzéD.. Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell, 2002, 14: 903~916.
    122. Wang X. Taplick J. Geva N., Oren M.. Inhibition of p53 degradation by Mdm2 acetylation. FebsLetters, 2004, 561:195~201.
    123. Wang X.. Phospholipase D in hormonal and stress signaling. Current Opinion in Plant Biology, 2002, 5: 408~414.
    124. Waterman H., Levkowitz G., Alroy I.Yarden Y.. The RING Finger of c-Cbl Mediates Desensitization of the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 1999, 273: 22151~22154.
    125. Watkins J.F., Sung P., Prakash S., Prakash L.. The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation. Genes and Development, 1993, 7: 250~261.
    126. Wegierski T., Hill K., Schaefer M., and Walz G.. The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. Embo Journal, 2006, 25: 5659~5669.
    127. Verdecia M.A., Joazeiro C.A., Wells N.J., Ferrer J.L., Bowman M.E., Hunter T., and Noel J.P. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Molecules and Cells, 2003, 11: 249~259.
    128. Wiedmann B., Sakai H., Davis T.A., Wiedmann M.. A protein complex required for signal sequence specific sorting and translocation. Nature, 1994, 370: 434~440.
    129. Wiesner S., Ogunjimi A.A., Wang H.R., Rotin D., Sicheri F., Wrana J.L. and Forman-Kay J.D.. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell, 2007, 130: 651~662.
    130. Xie Y., Kerscher O., Kroetz M.B., McConchie H.F., Sung P., Hochstrasser M.. The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. Journal of Biological Chemistry, 2007, 282: 34176~34184.
    131. Xu L., Liu F., Lechner E., Genschik P., Crosby W.L., Ma H., Peng W., Huang D., Xie D.. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell, 2002, 14: 1919~1935.
    132. Yan S., Tang Z., Su W., Sun W.. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5: 235~244.
    133. Yang K.S., Kim H.S, Jin U.H., Lee S.S., Park J.A., Lim Y.P., Pai H.S.. Silencing of NbBTF3 results in developmental defects and disturbed gene expression in chloroplasts and mitochondria of higher plants. Planta, 2007, 225(6): 1459~1469.
    134. Yen H.C., Elledge S.J.. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science, 2008, 322: 923~929.
    135. Yokouchi M., Kondo T., Houghton A., Bartkiewicz M., Horne W.C., et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. Journal of Biological Chemistry, 1999, 274: 31707~31712.
    136. Zeng L.R., Park C.H., Venu R.C., Gough J., Wang G.L.. Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Molecular Plant, 2008, 1: 800~815.
    137. Zhang Y., Xu W., Li Z., Deng X.W., W. Wu, and Xue Y.. F-Box protein DOR functions as a novelinhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiology, 2008, 148: 2121~2133.
    138. Zheng J., Zhao J.F., Tao Y.Z., Wang J.H., Liu Y.J., Fu J.J., Jin Y., Gao P., Zhang J.P, Bai Y.F, Wang G.Y.. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Molecular Biology, 2004, 55:807~823.
    139. Zhou P., Howley P.M.. Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Molecules and Cells, 1998, 2: 571~580.
    140. Zonia L., Munnik T.. Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiology, 2004, 134: 813~823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700