用户名: 密码: 验证码:
Cu_2ZnSnS_4薄膜及其太阳电池的溅射法制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能来源丰富,可以满足全世界的能源需求,被认为是最具有前景的可再生能源。目前,a-Si, CdTe和CuIn_xGa_(1-x)Se_2(CIGS)薄膜太阳电池已经商品化。其中CIGS电池效率最高,CIGS电池效率已经接近多晶硅电池效率并对其市场构成了一定的竞争。然而,不得不承认的是CIGS薄膜太阳电池将面临很多困难,其中之一就是其组成元素In是一种稀有元素且将在未来10~20年内逐渐减少,同时In的价格则早已显著提升。
     Cu_2ZnSnS_4(CZTS)和高度成熟的CIGS和CuInS3材料类似,是薄膜光伏器件领域极富前景的竞争者。CZTS电池因为其组成元素储量丰富价格低廉,具有降低未来电池商业成本的潜在能力。
     在制备和研究CZTS薄膜及其电池之前,本文首先研究了SnS薄膜的硫化法制备工艺。硫化法制备SnS薄膜的过程通过二步过程完成,这个过程包括:首先用溅射法制备金属Sn预制层,然后将金属预制层在硫气氛中进行加热硫化。实验中得到的高质量的制备态的SnS薄膜表明本论文实验中选择的硫化法工艺非常适合制备硫化物光伏薄膜。SnS薄膜的硫化法制备工艺和研究方法为后续硫化法制备CZTS薄膜提供了极为实用的研究基础和借鉴。
     在二步法制备SnS薄膜及其研究基础之上,本文运用了二步法同样成功制备了CZTS薄膜。二步法制备CZTS薄膜的过程为:首先溅射法制备了Cu, Zn和Sn金属预制层,然后在充有硫气氛的加热炉中通过加热方式进行硫化。
     CZTS薄膜的硫化反应、形貌、元素比例、光学、电学以及光响应电流性能与CZTS薄膜的硫化温度、硫化时间和金属预制层中各单层的排列顺序之间的关系通过XRD、Raman光谱、SEM、EDS、UV-VIS-IR分光光度计和Keithely2400数字源表等手段和仪器进行了一系列的研究。研究发现最佳硫化温度为500℃,最佳硫化时间为2h,而最佳金属预制层中各单层的排列顺序为glass/Zn/Sn/Cu。制备的CZTS薄膜表面致密均匀,元素比例非常接近标准化学计量比。
     CZTS薄膜具有明显的光响应电流和持续光电导现象。本文首次研究了外加电压对CZTS薄膜光电流衰减时间以及光电流的瞬态跃迁和陡然下降过程持续时间的影响。结果发现CZTS薄膜光生电流的衰减时间随着外加电压从1V下降到1×10~(-4)V的过程中由378s下降到0.341s。在较低的外加电压下即较低的电场强度下,光照时光生电流的瞬态跃迁和在关闭光照时电流的陡然下降过程明显。同时,外加电压和CZTS薄膜光电流的衰减时间之间的关系可以通过e指数函数来表示。
     本文运用化学浴的方法成功制备了用于CZTS太阳电池发射极的CdS和ZnS薄膜。CdS和ZnS薄膜的性能通过XRD、SEM、紫外-可见-近红外分光光度计等手段进行了一系列的研究。.测试发现制备态的CdS和ZnS薄膜表面致密,且薄膜中元素比例都接近标准化学计量比。CdS和ZnS的光学带隙值为2.5和3.9eV。制备态的CZTS/CdS和CZTS/ZnS异质结薄膜太阳电池都具有明显的光伏性能。
     本文首次制备了无Cd的完全无毒的新型环保型SnS/a-Si和CZTS/a-Si异质结薄膜太阳电池。SnS/a-Si和CZTS/a-Si异质结薄膜太阳电池都具有明显的光伏性能。SnS/a-Si异质结薄膜太阳电池的开路电压,短路电流密度,填充因子和光电转换效率分别为289mV,1.55mA/cm2,38%和0.17%。同时研究了本征非晶硅薄膜即i-a-Si对CZTS/a-Si薄膜太阳电池的影响。结果发现本征非晶硅薄膜即i-a-Si能够明显提升CZTS/a-Si薄膜太阳电池的光伏性能。引入本征非晶硅薄膜即i-a-Si后CZTS/a-Si电池的开路电压,短路电流密度,填充因子和光电转换效率都明显提升,其中光电转换效率更是提升了将近139%。引入本征非晶硅薄膜即i-a-Si后制备的CZTS/i-a-Si/n-a-Si薄膜太阳电池的开路电压,短路电流密度,填充因子和光电转换效率分别为562mV,12.3mA/cm2,43.8%和3.03%。
The most promising renewable energy is solar energy, as it can potentially cover the world’s energyconsumption So far, three thin film materials have been used for industrial production of solar cells:a-Si, CdTe and Cu(In,Ga)(S,Se)2(CIGS), in which CIGS solar cell reached the highest efficienciy andcan compete with polycrystalline silicon. Admittedly CIGS will also have to face some difficulties.One problem is that indium is a rare element and could run low within the next10~20years, whilethe price of indium is already now increasing rapidly.
     Cu_2ZnSnS_4(CZTS), similar to the highly successful Cu(In,Ga)(S,Se)2and CuInS2materials, is apromising candidate for thin film photovoltaic devices. It has advantages such as containing no rare orexpensive elements, and cost-reduction potential for commercial systems.
     Before the preparation and research of CZTS thin film, SnS film’s preparation by sulfurization wasfirstly carried out in this thesis. A two-stage process for fabrication of SnS films is presented, whichincludes sputtering of Sn layers and a succeeded heat treatment in the presence of S vapour(‘sulfurisation’). The high property of prepared SnS film shows that the sulfurization method issuitable for the preparation of chalcogenide photovoltaic thin films. The research method and thesulfurization process of SnS are useful for the preparation and research of the CZTS thin film.
     Based on the successful two-stage process preparation and research on the SnS film, CZTS filmswere successful prepared by a two-stage process which consists of sequential sputtering of Cu, Sn andZn layers followed by a heat treatment in the presence of S vapour (‘sulfurisation’) too.
     The sulfurisation reaction and morphology, element ratio, optical, electrical and photoresponsecurrent of CZTS were studied by XRD, Raman spectroscopy, SEM, EDS, UV-VIS-IRspectrophotometer and Keithely2400source meter as a function of temperature, sulfurization timeand the sort order of precursors. It is shown that the best sulfurisation temperature, the bestsulfurization time and the best precursor are500℃,2h, and glass/Zn/Sn/Cu respectively. The surfaceof the prepared CZTS film is compact and the element ratio is close to the stoichiometric.
     The CZTS film shows obvious photo response current and persistent photoconductivityphenomenon. The effect of applied voltage on the current decay time and the time of current jump anddrop region last are firstly studied. It is found that the decay time of photo excited current of CZTSdecreased from378s to0.341s with the electrical field reducing from1V to1×10~(-4)V, respectively.Under lower electrical fields, the "instantaneous" jump and drop of current appeared respectively when the light was turned on and off and their mechanism was investigated. The relationship betweenapplied voltage and decay time could be given by exponential function.
     The CdS and ZnS emitter layers for the CZTS based solar cells were successfully prepared bychemical bath deposition. The properties of CdS and ZnS films were systematically researched byXRD, SEM, UV-Vis-IR. It is found that the prepared CdS and ZnS films are compact and the elementratios of these films are all close to the stiochiometric. The band gap energy of CdS and ZnS are about2.5and3.9eV, respectively. The unoptimized prepared CZTS/CdS and CZTS/ZnS heterojunction thinfilm solar cells all showed obvious PV performance.
     Cd free completely nontoxic novel SnS/a-Si and CZTS/a-Si thin film heterojunction solar cellswere firstly fabricated and reported in this thesis. All the PV performances of SnS/a-Si and CZTS/a-Sisolar cells are very obviously. The open circuit voltage, the short circuit current density, the filledfactor and the conversion efficiency of SnS/a-Si solar cell are289m,1.55mA/cm2,38%and0.17%,respectively. The effect of i-a-Si layer on the CZTS/a-Si thin film solar cells was researched. It isfound that i-a-Si layer can obviously improve the PV performance of CZTS/a-Si solar cells. The opencircuit voltage, short circuit current density and fill factor of this solar cell all increased obviously byinserting intrinsic a-Si film (i-a-Si), and the conversion efficiency increased about139%by insertingi-a-Si film. The open circuit voltage, short circuit current density, fill factor and conversion efficiencyof CZTS/i-a-Si/n-a-Si solar cell reached562mV,12.3mA/cm2,43.8%and3.03%, respectively.
引文
[1] ECF. Roadmap2050: A practical guide to a prosperous low-carbon Europe[R]. Berlin:European Climate Foundation,2010:80-90.
    [2] EPIA. Photovoltaic energy electricity from the sun[R]. Belgium: European PhotovoltaicIndustry Association,2009:3-16.
    [3] EPIA. Global market outlook for photovoltaics until2014[R]. Belgium: European PhotovoltaicIndustry Association,2010:5-6.
    [4] IEA. Energy Technology Perspectives2010: Scenarios&Strategies to2050[R]. France:International Energy Agency,2010:23-25.
    [5] Green MA, Emery K, Hishikawa Y, et al. Solar cell efficiency tables(version35)[J]. Progress inphotovoltaics: Research and applications2010,18:144-150
    [6] Barkhouse DAR, Gunawan O, Gokmen T, et al. Device characteristics of10.1%hydrazineprocessed Cu2ZnSn(Se,S)4solar cell[J]. Progress in Photovoltaic: Research and Application,2012,20:6-11.
    [7] Pachauri RK and Reisinger A. Climate Change2007, the Fourth Assessment Report of theUnited Nations Intergovernmental Panel on Climate Change[R]. Swissland: IntergovernmentalPanel on Climate Change,2007:1-13.
    [8] Green MA, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version40)[J]. Progressin Photovoltaics: Research and Applications,2012,20:606-614.
    [9] Luque A and Hegedus S. Handbook of Photovoltaic Science and Engineering[M]. John Wiley,2003:11-15.
    [10] Lewerenz HJ and Jungblut H. Photovoltaik Grundlagen und Anwendungen. Springer Verlag,1995
    [11] Bhattacharya RN and Ramanathan K. Cu(In,Ga)Se2thin film solar cells with buffer layeralternative to CdS[J]. Solar Energy,2004,77:679-683.
    [12] Seike S, Shiosaki K, Kuramoto M, et al. Development of high efficiency CIGS integratedsubmodules using in-line deposition technology[J]. Solar Energy Materials and Solar Cells,2011,95(1):254-256.
    [13] Umweltbundesamt: Seltene Metalle.http://www.umweltdaten.de/publikationen/fpdf-l/3182.pdf. Version:2007
    [14] Benedetto FD, Bernardini GP, and Borrini D,57Fe-and119Sn-M ssbauer study on stannite(Cu2FeSnS4)-kesterite (Cu2ZnSnS4) solid solution [J]. Physics and Chemistry of Minerals,2005,10:269-272.
    [15] Shin SW, Pawar SM, Park CY, et al. Studies on Cu2ZnSnS4absorber layer using differentstacking orders in precursor thin films[J]. Solar Energy Materials and Solar Cells,2011,95(12):3202-3206.
    [16] Yoo H, Kim JH, Zhang L, Sulfurization temperature effects on the growth of Cu2ZnSnS4thinfilm[J]. Current Applied Physics,2012,12(4):1052-1057.
    [17] Maeda T, Nakamura S, Wada T, Electronic Structure and Phase Stability of In-freePhotovoltaic Semiconductors, Cu2ZnSnSe4and Cu2ZnSnS4by First principles Calculation[C].Mater. Res. Soc. Symp. Proc.2009,1165:1165-M04-03.
    [18] Hall SR, Szymanski JT, Stewart JM, Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4,structurally similar but distinct minerals[J]. Canadian Mineralogist,1978,16:131-137.
    [19] Lide DR, Handbook of Chemistry and Physics[M].79th. CRC press,1998-1999
    [20] Yuan KD, Wu JJ, Liu ML, et al. Fabrication and microstructure of p-journal article transparentconducting CuS thin film and its application in dye-sensitized solar cell[J]. Applied PhysicsLetters,2008,93(13):132106.
    [21] Martinson ABF, Elam JW, Pellin MJ. Atomic layer deposition of Cu2S for future application inphotovoltaics[J]. Applied Physics Letters,2009,94(12):123107.
    [22] Reddy KTR, Sreedevi G, Ramya K, et al. Physical properties of nano-crystalline SnS2layersgrown by chemical bath deposition[J]. Energy Procedia,2012,15:340-346.
    [23] Shin SW, Kang SR, Yun JH, et al. Effect of different annealing conditions on the properties ofchemically deposited ZnS thin films on ITO coated glass substrates[J]. Solar Energy Materialsand Solar Cells,2011,95(3):856-863.
    [24] Wu C, Hu Z, Wang C, et al. Hexagonal Cu2SnS3with metallic char-acter: Another category ofconducting sulfides[J]. Applied Physics Letters,2007,91:143104
    [25] Weber A. Wachstum von Dünnschichten des Materialsystems Cu-Zn-Sn-S[D]. Friedrich-Alexander-Universit Erlangen-Nürnberg, Diss.,2009
    [26] Schurr R, Hzing A, Jost S, et al. The crystallisation of Cu2ZnSnS4thin film solar cell absorbersfrom co-electroplated Cu–Zn–Sn precursors[J]. Thin Solid Films2009,517:2465-2468.
    [27] Yoo H and Kim J. Comparative study of Cu2ZnSnS4film growth[J]. Solar Energy Materialsand Solar Cells,2010,95:239-244.
    [28] Scragg JJ. Studies of Cu2ZnSnS4films prepared by sulphurisation of electrodepositedprecursors[D]. University of Bath, Diss.,2010
    [29] Fernandes PA, Salomé PM, Cunha PMP, et al. Precursors’order effect on the properties ofsulfurized Cu2ZnSnS4thin films[J]. Semiconductor Science and Technology,2009,24:105013
    [30] Katagiri H, Ishigaki N, Ishida T, Characterization of Cu2ZnSnS4thin films prepared by vaporphase sulfurization[C].2nd world conference on photovoltaic solar energy conversion,1998,1:640–643
    [31] Tuan TM, Kim KH, Synthesis of Cu2ZnSnS4thin film absorbers by sulfurizing dip-coatedprecursors[J]. Journal of Ceramic Processing Research,2012,13(3):301-304.
    [32] Chaudhuri, Tapas K, Tiwari D, Earth abundant non-toxic Cu2ZnSnS4thin film by direct liquidcoating from metal-thiourea precursor solution[J]. Solar Energy Materials and Solar Cells,2012,101:46-50.
    [33] Nakayama N and Ito K, Sprayed films of stannite Cu2ZnSnS4[J]. Applied Surface Science,1996,92:171-175.
    [34] Katagiri H, Ishigaka N, Ishida T, et al. Characterization of Cu2ZnSnS4thin films prepared byvapor phase sulfurization [J]. The Japan Society of Applied Physics,2001,40:500-504.
    [35] Katagiri H, Cu2ZnSnS4thin film solar cells [J]. Thin Solid Films,2005,480-481:426-432.
    [36] Tanaka T, Nagatomo T, Kawasaki D, et al. Preparation of Cu2ZnSnS4thin films by hybridsputtering [J]. Journal of Physics and Chemistry of Solids,2005,66:1978-1981.
    [37] Liu FY, Li Y, Zhang K, et al. In situ growth of Cu2ZnSnS4thin films by reactive magnetronco-sputtering [J]. Solar Energy Materials&Solar Cells,2010,94:2431-2434.
    [38] Schubert BA, Marsen B, Cinque S, et al. Cu2ZnSnS4thin film solar cells by fast coevaporation[J]. Prog. Photovolt: Res. Appl.,2011,19:93-96.
    [39] Tanaka K, Fukui Y, Moritake N, et al. Chemical composition dependence of morphological andoptical properties of Cu2ZnSnS4thin films deposited by sol–gel sulfurization and Cu2ZnSnS4thin film solar cell efficiency [J]. Solar Energy Materials&Solar Cells,2010,94:2431-2434.
    [40] Pawar SM, Moholkar AV, Kim IK, et al. Effect of laser incident energy on the structural,morphological and optical properties of Cu2ZnSnS4(CZTS) thin films [J]. Current AppliedPhysics,2010,10:565-569
    [41] Weber A, Krauth H, Perlt S, et al. Multi-stage evaporation of Cu2ZnSnS4thin films [J]. ThinSolid Films,2009,517:2524-2526.
    [42] Scragg JJ, Dale PJ, and Peter LM, Synthesis and characterization of Cu2ZnSnS4absorber layersby an electrodeposition-annealing route [J]. Thin Solid Films,2009,517:2481-2484.
    [43] Katagiri H, Jimbo K, Maw WS, et al. Development of CZTS-based thin film solar cells[J]. ThinSolid Films2009,517:2455-2460.
    [44] Katagiri H, Saitoh K, Washio T, et al. Development of thin film solar cell based on Cu2ZnSnS4thin films [J],Solar Energy Materials and Solar Cells,2001,65(1-4):141-148.
    [45] Katagiri H, Jimbo K, Moriya K, et al. Solar cell without environmental pollution by usingCZTS thin film [C], Proceedings of3rd World Conference on Photovoltaic Energy Conversion(IEEE Cat. No.03CH37497),2003,3:2874-2879
    [46] Katagiri H, Jimbo K, Kimura R, et al. Cu2ZnSnS4-type thin film solar cells using abundantmaterials[J]. Thin Solid Films,2007,515:5997–5999
    [47] Katagiri H, Jimbo K, Yamada S, et al. Enhanced conversion efficiencies of Cu2ZnSnS4-basedthin film solar cells by using preferential etching technique [J]. Applied Physics Express,2008,1(4):041201
    [48] Wang K, Gunawan O, Todorov T, et al. Thermally evaporated Cu2ZnSnS4solar cells [J].Applied Physics Letters,2010,97:143508
    [49] Wang K, Shin B, Reuter KB, et al. Structural and elemental characterization of high efficiencyCu2ZnSnS4solar cells [J]. Applied Physics Letters,2011,98(5):051912
    [50] Zhang J, Shao LX, Fu YJ, et al. Cu2ZnSnS4thin films prepared by sulfurization of ion beamsputtered precursor and their electrical and optical properties [J]. Rare Metals,2006,25:315-319
    [51]黄景兴,邵乐喜,付玉军, Cu2ZnSnS4薄膜的制备及其光电性质研究[J].湛江师范学院学报,2007,28(3):59-62
    [52] Zhang J and Shao LX, Cu2ZnSnS4thin films prepared by sulfurizing different multilayer metalprecursors [J]. Science in China Series E: Technological Sciences,2009,52(1):269-272
    [53] Zhang X, Shi XZ, Ye WC, et al. Electrochemical deposition of quaternary Cu2ZnSnS4thin filmsas potential solar cell material [J]. Appl. Phys. A,2009,94:381-386
    [54] Zhang K, Liu FY, Lai YQ, et al.. In situ growth and characterization of Cu2ZnSnS4thin films byreactive magnetron co-sputtering [J]. Acta Physica Sinca,2011,60(2):028802
    [55] Benedetto FD, Bernardini GP, and Borrini D, Fe-and Sn-M ssbauer study on stannite(Cu2FeSnS4)-kesterite (Cu2ZnSnS4) solid solution [J], Physics and Chemistry of Minerals,2005,10:269-272.
    [56] Nakayama N, and Ito K, Sprayed films of stannite Cu2ZnSnS4[J]. Applied Surface Science,1996,92:171-175.
    [57] Sugiyama M, Reddy RKT, Revathi N, et al. Band offset of SnS solar cell structure measured byX-ray photoelectron spectroscopy[J]. Thin Solid Films,2011,519:7429–7431
    [58] Avellaneda D, Nair MTS, Nair PK. Photovoltaic structures using chemically deposited tinsulfide thin films[J]. Thin Solid Films,2009,517(7):2500-2502.
    [59] Gunasekaran M, Ichimura M. Photovoltaic cells based on pulsed electrochemically depositedSnS and photochemically deposited US and Cd1-xZnxS[J]. Solar Energy Materials and SolarCells,2007,91(9):774-778.
    [60] Ogah OE, Zoppi G, Forbes I, et al. Thin films of tin sulphide for use in thin film solar celldevices[J]. Thin Solid Films,2009,517(7):2485-2488.
    [61] Kumar GG, Reddy K, Kee SN, Synthesis and electrochemical properties of SnS as possibleanode materials for lithium batteries[J]. Journal of Physics and Chemistry of Solids,2012,73(9):1187-1190.
    [62] Sugiyama M, Miyauchi K, Minemura T, et al. Sulfurization Growth of SnS Films andFabrication of CdS/SnS Heterojunction for Solar Cells[J]. Japanese Journal of Applied Physics,2008,47(12):8723-8725.
    [63] Tanusevski A. Optical and photoelectric properties of SnS thin films prepared by chemical bathdeposition[J]. Semiconductor Science and Technology,2003,18(6):501-505.
    [64] Yue GH, Wang W, Wang LS, et al. The effect of anneal temperature on physical properties ofSnS films[J]. Journal of Alloys and Compounds2009,474:445-449
    [65] Ghosh B, Das M, Banerjee P, et al. Characteristics of metal/p-SnS Schottky barrier with andwithout post-deposition annealing[J]. Solid State Sciences,2009,11:461-466
    [66] Reddy KTR, Reddy NK, Miles RW, et al. Photovoltaic properties of SnS based solar cells[J].Solar Energy Materials&Solar Cells,2006,90:3041-3046
    [67] Vidal J, Lany S, Avezac M, et al. Band-structure, optical properties, and defects physics of thephotovoltaic semiconductor SnS[J]. Applied Physics Letters,2012,100:032104.
    [68] Cheng SY, He YJ, Chen GN. Structure and properties of SnS films prepared byelectro-deposition in presence of EDTA[J]. Materials Chemistry and Physics,2008,110(2-3):449-453.
    [69] Devika M, Reddy NK, Reddy DS, et al. Synthesis and characterization of nanocrystalline SnSfilms grown by thermal evaporation technique[J]. Journal of the Electrochemical Society,2008,155(2): H130-H135.
    [70] Ghosh B, Das M, Banerjee P, et al. Fabrication of SnS thin films by the successive ionic layeradsorption and reaction (SILAR) method[J]. Semiconductor Science and Technology,2008,23(12):125013.
    [71] Reddy NK, Reddy KTR. Preparation and characterisation of sprayed tin sulphide films grownat different precursor concentrations[J]. Materials Chemistry and Physics,2007,102(1):13-18.
    [72] Miles RW, Ogah OE, Zoppi G, et al. Thermally evaporated thin films of SnS for application insolar cell devices[J]. Thin Solid Films,2009,517(17):4702-4705.
    [73] Nair MTS, Nair PK. Simplified chemical deposition technique for good quality SnS thinfilms[J]. Semiconductor Science and Technology,1991,6(2):132-134.
    [74] Reddy KTR, Reddy PP. Structural studies on SnS films grown by a two-stage process[J].Materials Letters,2002,56(1-2):108-111.
    [75] Wang Y, Reddy YBK, Gong H. Large-Surface-Area Nanowall SnS Films Prepared byChemical Bath Deposition[J]. Journal of the Electrochemical Society,2009,156(3):H157-H160.
    [76] Yanuar, Guastavino F, Llinares C, et al. SnS thin films grown by close-spaced vaportransport[J]. Journal of Materials Science Letters,2000,19(23):2135-2137.
    [77] Teodor KT, Kathleen BR and David BM. High-Efficiency Solar Cell with Earth-AbundantLiquid-Processed Absorber[J]. Advanced Materials,2010,22:1-4.
    [78] Tan XH, Ye SL and Liu X. Increasing surface band gap of Cu(In,Ga)Se2thin films by postdeposting an In-Ga-Se thin layer[J]. Optics Express,2011,32:6600-6615.
    [79] Tan XH, Ye SL, Fan B, et al. Effect of Na incorporated at different periods of deposition onCu(In,Ga)Se2films[J]. Applied Optics,2010,49(16):3071-3074.
    [80] Bar M, Barreau N, Couzinié-Devy F, et al. Nondestructive depth-resolved spectroscopicinvestigation of the heavily intermixed In2S3/Cu(In,Ga)Se2interface[J]. Applied Physics Letters,2010,96:184101
    [81] Xue M, Wang X, Wang H, et al. Hydrogen bond breakage by Fluoride anion in a simple CdTequantum dot/Gold nanoparticle FRET system and its analytical application[J]. Chem. Commun.,2011,47:4986-4988
    [82] Xue M, Wang X, Wang H, et al. The preparation of glutathione-capped CdTe quantum dots andtheir use in imagingof cells[J]. Talanta,2011,83(5):1680-1686
    [83] Grossberg M, Krustok J, Raudoja J, et al. Photoluminescence and Raman study ofCu2ZnSn(SexS1x)4monograins for photovoltaic applications[J]. Thin Solid Films,2011,519:7403-7406.
    [84] Leit o JP, Santos NM, Fernandes PA, et al. Photoluminescence and electrical study offluctuating potentials in Cu2ZnSnS4-based thin films[J] Physical Review B,2011,84:024120.
    [85] Chang DC and Chang CY, The long-term relaxation and build-up transient ofphotoconductivity in Si1-xGex/Si quantum wells[J] Journal of Physics Condensed Matter,1995,7:4525-4532.
    [86] Laiho R, Polosjin DS, Stepanov YP, et al. Persistent photoconductivity and electro paramagnet-ic resonance in zinc oxide ceramics[J] J. Appl. Phys.2009,106:013712.
    [87] Dussel GA and Bube RH, Electric Field Effects in Trapping Processes[J] J. Appl. Phys.1966,37:2797
    [88] Milnes AG, Deep Impurities in Semiconductors, Wiley, New York, p.108.1973.
    [89] Sacks HK and Milnes AG, Photorefractive phase shift induced by nonlinear electronictransport[J] Int. J. Electron.1970,28:565-569.
    [90] Romeo A, Batzner DL, Zogg H, et al. Influence of CdS growth process on structural andphotovoltaic properties of CdTe/CdS solar cells[J]. Solar Energy Materials and Solar Cells,2001,67(1-4):311-321.
    [91]储祥蔷,谢大,孟铁军,等.对超声波作用下的化学浴沉积方法制备CdS薄膜的谱学分析[J].光谱学与光谱分析,2003,23(4):625-629.
    [92] Kariper A, Guneri E, Gode F, et al. The structural, electrical and optical properties of CdSthin films as a function of pH [J]. Materials Chemistry and Physics,2011,129(1-2):183-188.
    [93] Kokotov M, Feldman Y, Avishai A, et al. Chemical bath deposition of CdS highly-textured,columnar films[J]. Thin Solid Films,2011,519(19):6388-6393.
    [94] Liu QQ, Shi JH, Li ZQ, et al. Morphological and stoichiometric study of chemical bathdeposited CdS films by varying ammonia concentration[J]. Physica B-Condensed Matter,2010,405(20):4360-4365.
    [95] Tec-Yam S, Patino R, Oliva AI. Chemical bath deposition of CdS films on different substrateorientations[J]. Current Applied Physics,2011,11(3):914-920.
    [96] Martinez MA, Guillen C, Herrero J. Morphological and structural studies of CBD-CdS thinfilms by microscopy and diffraction techniques[J]. Applied Surface Science,1998,136(1-2):8-16.
    [97] Wang CF, Hu B, Yi HH, et al. Structure and photoluminescence properties of ZnS films grownon porous Si substrates[J]. Optics and Laser Technology,2011,43(8):1453-1457.
    [98] Aleman B, Ortega Y, Garcia JA, et al. Fe solubility, growth mechanism, and luminescence ofFe doped ZnO nanowires and nanorods grown by evaporation deposition[J]. Journal of AppliedPhysics,2011,110(1):014317.
    [99] Kozlovsky VI, Korostelin YV, Landman AI, et al. Pulsed Fe(2+): ZnS laser continuouslytunable in the wavelength range of3.49-4.65mu m[J]. Quantum Electronics,2011,41(1):1-3.
    [100] Chen R, Li D, Liu B, et al. Optical and Excitonic Properties of Crystalline ZnS Nanowires:Toward Efficient Ultraviolet Emission at Room Temperature[J]. Nano Letters,2010,10(12):4956-4961.
    [101] Mukherjee P, Shade CM, Yingling AM, et al. Lanthanide Sensitization in II-VI SemiconductorMaterials: A Case Study with Terbium(III) and Europium(III) in Zinc Sulfide Nanoparticles[J].Journal of Physical Chemistry A,2011,115(16):4031-4041.
    [102] Schrage C, Althues H, Klausch A, et al. ZnS: Cu Polymer Nanocomposites for Thin FilmElectroluminescent Devices[J]. Journal of Nanoscience and Nanotechnology,2010,10(7):4335-4340.
    [103] Shin SW, Kang SR, Yun JH, et al. Effect of different annealing conditions on the properties ofchemically deposited ZnS thin films on ITO coated glass substrates[J]. Solar Energy Materialsand Solar Cells,2011,95(3):856-863.
    [104] Sandino J, Romero E, Oyola JS, et al. Study of the Mo/CuInS2/ZnS system by TEM[J]. SolarEnergy Materials and Solar Cells,2011,95(8):2006-2009.
    [105] Okamoto A, Minemoto T, Takakura H. Application of Sputtered ZnO1-xSxBuffer Layers forCu(In,Ga)Se2Solar Cells[J]. Japanese Journal of Applied Physics,2011,50(4):04DP10.
    [106] Naghavi N, Abou-Ras D, Allsop N, et al. Buffer layers and transparent conducting oxides forchalcopyrite Cu(In,Ga)(S,Se)2based thin film photovoltaics: present status and currentdevelopments[J]. Progress in Photovoltaics,2010,18(6):411-433.
    [107] Chelvanathan P, Hossain MI, Amin N. Performance analysis of copper indium galliumdiselenide (CIGS) solar cells with various buffer layers by SCAPS[J]. Current Applied Physics,2010,10(3): S387-S391.
    [108] Allouche NK, Ben Nasr T, Kamoun NT, et al. Synthesis and properties of chemical bathdeposited ZnS multilayer films[J]. Materials Chemistry and Physics,2010,123(2-3):620-624.
    [109] Yagioka T and Nakada T. Cd-Free Flexible Cu(In,Ga)Se2Thin Film Solar Cells withZnS(O,OH) Buffer Layers on Ti Foils[J]. Applied Physics Express,2009,2(7):072201.
    [110] Luo PF, Jiang GS, Zhu CF. Pulsed Laser Deposition ZnS Buffer Layers for CIGS Solar Cells[J].Chinese Journal of Chemical Physics,2009,22(1):97-101.
    [111] Islam MM, Ishizuka S, Yamada A, et al. CIGS solar cell with MBE-grown ZnS buffer layer[J].Solar Energy Materials and Solar Cells,2009,93(6-7):970-972.
    [112] Guo Q, Hillhouse HW, and Agrawal R. Synthesis of Cu2ZnSnS4Nanocrystal Ink and Its Usefor Solar Cells[J]. Journal of The American Chemical Society,2009,131:11672-11673.
    [113] Guo Q, Ford GM, Yang WC, et al. Fabrication of7.2%Efficient CZTSSe Solar Cells UsingCZTS Nanocrystals[J] Journal of The American Chemical Society,2010,132:17384-17386.
    [114] Barkhouse DAR, Gunawan O, Gokmen T, et al. Device characteristics of10.1%hydrazine-processed Cu2ZnSn(Se,S)4solar cell[J] Progress in Photovoltaic:Research andApplication,2012,20:6-11.
    [115] Shin B, Gunawan O, Zhu Y, et al. Thin film solar cell with8.4%power conversion efficiencyusing an earth-abundant Cu2ZnSnS4absorber[J]. Progress in Photovoltaic: Research andApplication,2011, DOI:10.1002/pip.1174
    [116] Tian QW, Xu XF, Han LB, et al. Hydrophilc Cu2ZnSnS4nanocrystals for printing flexible,low-cost and environmentally friendly solar cells[J]. CrystEngComm,2012,14:3847-3850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700