用户名: 密码: 验证码:
新型太阳能电池光阴极及纳米吸收层的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能电池由于具有清洁、廉价、高效等特点,作为一种可持续发展的能源替代方式,于近年来得到快速的发展。但目前还存在成本高,转换效率不高等缺点而没有被广泛应用。因此,降低太阳能电池的制备成本和提高太阳能电池的转换效率成为太阳能电池研究的关键,高效新型低成本太阳能电池包括染料敏化太阳能电池和纳米晶太阳能电池成为人们的研究热点。
     在染料敏化太阳能电池中,多用贵金属铂作为光阴极,但其昂贵的价格限制了它的商业化应用。在薄膜太阳能电池中,CuInS2具有吸收系数大,禁带宽度与太阳光谱匹配,直接带隙半导体等优点,但使用高真空镀膜设备以及CuInS2材料的成分和光电特性对工艺过程的敏感限制了其产业化应用。
     本论文在总结太阳能电池研究进展的基础上,开展了染料敏化太阳能电池中光阴极的基础研究,并采用一步化学法可控制备了不同大小的CuInS2纳米晶,通过简单的化学液滴涂布法制备了薄膜太阳能电池,并测试了其光学及电化学性能,主要内容如下:
     (1)研究了NiPt薄膜作为染料敏化太阳能电池光阴极的行为。采用化学镀法在导电FTO玻璃基底上首先沉积一层Ni膜,后通过氧化还原法制备NiPt薄膜,改变不同的反应时间制备得到不同载铂量的Ni1-xPtx(x=0,0.02,0.04,0.06,0.08)膜。研究显示Ni0.94Pt0.06膜的载铂量为5.13 gg/cm2,作为光阴极表现出对I3-的高催化性能,高光反射和高的电荷传输性能,提高了电池的光电转换效率。使用Ni0.94Pt0.06膜作光阴极制备的染料敏化太阳能电池获得了8.21%的光电转化效率,高于传统的使用热分解得到的Pt光阴极的电池效率(7.73%),并且此类电池的稳定性较好。结果表明NiPt膜对于低价高效大面积制备染料敏化太阳能电池的光阴极探索具有一定的意义。
     (2)研究了高比表面积微孔碳作为染料敏化太阳能电池光阴极的行为。使用玉米杆制备了廉价的高比表面积微孔碳,将其取代铂光阴极,测试了其电化学性能。结果表明以微孔碳为活性材料,Vulcan XC-72做导电剂,TiO2为粘结剂的光阴极具有高的催化性能。以微孔碳为活性材料的光阴极的染料敏化太阳能电池在AM1.5(100 mW cm-2)的光照下具有7.36%的转换效率,与使用铂作光阴极的太阳能电池的转换效率相当。其开路电压达到了798 mV,比使用铂作光阴极的太阳能电池的电压高约60 mV。使用高比表面积碳作为光阴极,避免了贵金属Pt的使用,对于降低染料敏化太阳能电池的制作成本有着重要的实际意义。
     (3)研究了CuInS2纳米晶的制备及其光电应用。使用油酸铜,油酸铟和硫粉作为反应物在油酸和油胺的混合溶剂中采用一步反应化学法可控制备了单分散的2-10nm CuInS2纳米晶,讨论了油胺作为还原剂和包覆剂对于产物大小的影响。产物的紫外可见吸收和荧光光谱表明所制备的产物具有量子尺寸效应。同时,还采用相同的方法合成了CuIn(S,Se1-x)2 (x=0,0.3,0.5,0.7)和AgInS2纳米晶,测试表明所得化合物都是纯相,颗粒大小约为10 nm。利用化学液滴涂布法制备了新型纳米晶太阳能电池(Au/CuInS2纳米晶/TiO2纳米棒阵列/FTO),通过优化条件,所制备的薄膜太阳能电池在AM 1.5(100 mW cm-2)光强下达到了0.21%的光电转换效率,表明这类纳米晶材料具有低价薄膜太阳能电池的潜在优势。
     (4)探索了新型结构的太阳能电池。采用简单的溶剂热法直接在导电FTO玻璃和丝网印刷的Ti02膜上沉积一层CuInS2膜(CuInS2/FTO和CuInS2/TiO2/FTO),研究结果表明FTO玻璃上的CuInS2由微米球和纳米片组成,膜的厚度可以通过反应物的浓度控制在1-8μm之间,并且膜在400-850 nm间有很强的吸收,带隙随着Cu/In的比(1.2-0.9)调节为1.45-1.61 eV。TiO2基底上的CuInS2膜是由纳米片组成。此外,还评价了这两种膜的光电性能,经过热处理后,所组装的电池Ag/CdS/CuInS2/FTO, Au/CuInS2/TiO2/FTO在AM1.5(100 mWcm-2)的光强下分别达到了0.33%和0.29%的光电转换效率。
Solar cells, as a way to replace energy for sustainable development, are developing rapidly in recent years, due to their cleaning, cheapness, and high efficiency. However, solar cells have not been widely used in the long run because of their shortcomings of high fabrication cost and low conversion efficiency. Therefore, reducing the preparation cost and improving the conversion efficiency of solar cells are the key points in the future study. The development of novel low-cost solar cells, which include dye-sensitized solar cells (DSCs) and nanocrystal solar cells, has become a research hotspot.
     The photocathode of DSCs is usually platinum-based films. However, its high price limits its commercial application. While, in thin film solar cells, CuInS2, as a direct band-gap semiconductor, possesses the advantages of a large absorption coefficient and appropriate band gap to match the solar spectrum. However, the film preparation, which needs high vacuum sophisticated equipment, and the composition and optical properties of CuInS2 are sensitive to the preparation process, both limiting their industrial application.
     Therefore, based on the summarization of the progress of solar cells, this thesis carried out the basic research on the photocathode in DSCs, and shape-controlled CuInS2 nanocrystals with different sizes by a one-step chemical method and their application in a new type of thin film solar cells fabricated by a simple chemical drop-casting method. In addition, the optical properties of the as-prepared CuInS2 nanocrystals and the photovoltaic properties of the solar cells were investigated. The main content of this thesis is as follows:
     (1) NiPt films as the photocathode in DSCs were investigated. Films of Ni1-xPtx (x=0,0.02,0.04,0.06,0.08) were deposited on FTO glass substrates by a chemical plating and oxidation-reducation method. The Pt loading in NiPt films could be controlled by the reaction time. The results showed that the Ni0.94Pt0.06 film with a Pt loading of 5.13μm/cm2 exhibited high catalytic performance toward triiodide reduction, high light reflectance, and low charge-transfer resistance, thereby enhanced the conversion efficiency of DSC. The DSC based on the Ni0.94Pt0.06 photocathode showed an overall conversion efficiency of 8.21%, which was higher than that of the DSC with a pure Pt photocathode obtained by conventional thermal decomposition (7.33%). Furthermore, the DSC based on the Ni0.94Pt0.06 photocathode showed good stability. The results showed that the Nio.94Pt0.06 photocathode is potential in the fabrication of DSCs with large scale and low cost.
     (2) High surface area microporous carbon as the photocathode in DSCs was investigated. High-surface-area microporous carbon, replacing conventional Pt photocathode, was fabricated by cornstalks, and the photovoltaic characterization in DSCs was measured. The photocathode, which contained microporous carbon active material, Vulcan XC-72 carbon black conductive agent, and TiO2 binder photocathode, showed a low charge-transfer resistance of 1.32Ωcm2. The DSCs assembled with the MC film photocathode presented an overall conversion efficiency of 7.36% under AM1.5 (100 mW cm-2), which was comparable to that of the DSCs with Pt photocathode prepared by conventional thermal decomposition. Especially, the open-circuit voltage reached 798 mV, which was increased by 60 mV compared to that of pure Pt photocathode. The use of high surface area carbon as a photocathode played an important role in the reduction of the fabrication cost of DSCs due to the avoiding use of precious metal Pt.
     (3) CuInS2 nanocrystals with different sizes and their photovoltaic application were investigated. Well-defined and monodisperse CuInS2 with sizes ranging from 2-10 nm were synthesized via a facile one-pot chemical approach using Cu-oleate, In-oleate, sulfur as the reactants in oleic acid and oleylamine media. The effects of oleylamine, which acted as a reductant and the capping agent, on the size and purity of the products were thoroughly investigated. UV-vis absorption and fluorescence spectra measurements showed that the products had the property of quantum confined effect. In addition, other types of pure ternary chalcogenide cmopounds CuIn(SxSe1-x)2(x=0,0.3,0.5,0.7), and AgInS2 nanocrystals with size of about 10 nm were synthesized by using the same method. Moreover, the as-prepared CuInS2 nanocrystals were assembled as a simple prototype thin-film solar cell (Au/CuInS2 nanocrystals/TiO2 nanorod arrays/FTO) by a facile drop-casting method. The obtained thin-film solar cells reached an overall conversion efficiency of 0.21% under AM1.5 (100 mW cm-2) illumination by optimizing the experimental conditions, indicating that the nanocrystals had potential application in thin film solar cells with low cost.
     (4) A novel solar cell was explored. Two thin films (CuInS2/FTO and CuInS2/TiO2/FTO) were deposited by a facile solvothermal method. The results showed that the CuInS2 films deposited on the FTO conductive glass substrates were composed of nanoplates and microspheres. The thickness of the CuInS2/FTO films can be adjusted from 1-8μm by controlling the solution concentration of the reactants. While, the prepared 10μm thick CuInS2 film on the TiO2 film substrate consisted of nanoplates. The UV-vis absorption spectra revealed that the CuInS2 thin films had a strong absorption around 400-850 nm and the band-gap energy was tunable in the range of 1.45-1.61 eV with the variation of Cu/In ratio from 1.20 to 0.90. Furthermore, two types of thin film solar cells, which possessed separately the top-down composition of Ag/CdS/CuInS2/FTO and Au/CuInS2/TiO2/FTO were fabricated after heat-treatment. Under AM 1.5 irradiation (100mW cm-2), the conversion efficiencies of the as-prepared Ag/CdS/CuInS2/FTO and Au/CuInS2/TiO2/FTO were 0.33% and 0.29%, respectively.
引文
[1]Ekechukwu O V, Norton B. Review of solar-energy drying systems Ⅱ:an overview of solar drying technology. Energy Convers. Manage.,1999,40(6):615-655
    [2]沈辉,曾祖勤.太阳能光伏发电技术.北京:化学工业出版社,2005
    [3]Becquerel C C R. Acad. Sci. Paris.1839,9:14-20
    [4]霍兹.纳米材料电化学.北京:科学出版社,2006
    [5]胡晨明,White R M(著),李采华(译),太阳电池.北京:北京大学出版社,1990
    [6]Liska P, Vlachopoulos N, Nazeeruddin M K, et al. Cis-diaquabi(22'-bipyridyl-4,4'-dicarboxylate)-ruthenium sensitizes wide band gap oxide semiconductors very efficiently over a broad spectral range in the visible. J. Am. Chem. Soc.,1988,110(11):3686-3687
    [7]Wang Z S, Hara K, Dan-oh Y, et al. Photopyhsical and (photo)electrochenmical properties of a coumarin dye. J. Phys. Chem. B,2005,109(9):3907-3914
    [8]Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng., R,2003,40(1):1-46
    [9]Green M A, Emery K, Biicher K, et al. Solar cell efficiency tables (version 11). Prog. PV. Res. Appl.,1998,6(1):35-42
    [10]Zhao A, Wang M, Green, et al.19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett.,1998,73(14):1991-1993
    [11]Ralph E L. Solar cell development survey. Intersociety energy conversion engineering conference,1968,2:116-121
    [12]Szlufcik J, Nijs J, Mertens R, et al. High efficiency crystalline silicon solar cells for industrial application. Semiconductor Devices,1996,2733:556-562
    [13]Hill R. PV cells and modules. Renewable Energy World,1998,1(1):22-26
    [14]蒋荣华,肖顺珍.硅基太阳能电池与材料.新材料产业,2003,(7):8-13
    [15]张力,薛钰芝.非晶硅太阳能电池的研发进展.太阳能,2004,(2):24-26
    [16]Carlson D E, Wronski C R. Amorphous silicon solar cell. Appl. Phys. Lett.,1976,28(11): 671-673
    [17]Kazmerski L. Solar photovoltaics at the tipping point:a technology overview. J. Electron. Spectrosc. Relat. Phenom.,2006,150(2-3):105-135
    [18]Durose K, Asher S E, Jaegermann W, et al. Physical characterization of thin-film solar cells. Prog. PV:Res. Appl.,2004,12(2-3):177-217
    [19]Kurtz S R., McConnell R. Requirements for a 20%-efficient polycrystalline GaAs solar cell. AIR Conf. Proc,1997,404(1):191-205
    [20]宋慧瑾.CdTe太阳能电池的不同背电极及封装特性研究.[硕士学位论文].四川:四川大学,2006
    [21]Wu X Z. High-efficiency polycrystalline CdTe thin-film solar cells. Sol. Energy,2004,77(6): 803-814
    [22]夏庚培,郑家贵,冯良桓,等.CdTe太阳能电池的制备及电子辐照对电池影响的研究.四川大学学报,2004,41(1):118-121
    [23]Calixto M E, Dobson K D, McCandless B E, et al. Controlling growth chemistry and morphology of single-bath electrodeposited Cu(In,Ga)Se2 thin films for photovoltaic application. J. Electrochem. Soc,2006,153(6):521-528
    [24]Ward J S, Ramanathan K, Hasoon F S, et al. A 21.5% efficient Cu(In,Ga)Se2 thin-film concentrator solar cell. Prog. PV:Res. Appl.,2002,10(1):41-46
    [25]Romeo A., Terheggen M, Abou-Ras D, et al. Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Prog. PV:Res. Appl.,2004,12(2-3):93-111
    [26]Kazmerski L L, White F R, Morgan G K. Thin-film CuInSe2/CdS heterojunction solar cells. Appl. Phys. Lett.,1976,29(4):268-270
    [27]Shay J L, Wernick J H. Ternary chalcopyrite semiconductors:growth, electronic properties and applications. Pergamon Press, New York,1995
    [28]Yang, JX; Jin, ZG; Chai, YT, et al. Growth and characterization of CuInSe2 thin films prepared by successive ionic layer adsorption and reaction method with different deposition temperatures. Thin Solid Films,2009,517(24):6617-6622
    [29]Kondo, K; Sano, H; Sato, K Nozzle diameter effects on CuInSe2 films grown by ionized cluster beam deposition. Thin Solid Films,1998,326(1-2):83-87
    [30]Lewerenz H J. Development of copperindiumdisulfide into a solar material. Sol. Energy Mater. Sol. Cells,2004,83(4):395-407
    [31]褚家宝.铜铟镓硒(CIGS)薄膜太阳能电池的研究.[博士学位论文].上海:华东师范大学,2009
    [32]罗派峰.铜铟镓硒薄膜太阳能电池关键材料与原理型器件制备与研究.[博士学位论文].安徽:中国科学技术大学,2008
    [33]O'Regan B, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353(6346):737-940
    [34]Gratzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem.,2005, 44(20):6841-6851
    [35]Bai Y, Cao Y M, Zhang J. et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature Mater.,2008,7(8):626-630
    [36]Gao F F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc,2008,130(32):10720-10728
    [37]Wu J H, Hao S C, Lan Z, et al. An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%. J. Am. Chem. Soc,2008,130(35):11568-11569
    [38]Wang H X, Li H, Xue B F, et al. A new solid-state composite electrolyte Lil/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cell, J. Am. Chem. Soc,2005, 127(17):6394-6401
    [39]戴松元,王孔嘉,隋毅峰,等.大面积染料敏化纳米薄膜太阳电池的研制.太阳能学报,2004,25(6):807-810
    [40]V Merritt. Photovoltaic phenomena in organic solids. Chapter 4 in b electrical properties of polymers. Ed. by Seanor D A. New York:Academic Press.1982, Chapter 4:127-213
    [41]Tang C W. Albrecht A C. Photovoltaic effects of metal-chlorophyll-a-metal sandwich cells. J. Chem. Phys.,1975,62(6):2139-2149
    [42]Tang C W. Two-layer organic photovoltaic cell. Appl. Phys. Lett.,1986,48(2):183-185
    [43]Kim J Y, Lee K H, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science,2007,317(5835):222-225
    [44]Wang E G, Wang L, Lan L F, et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl. Phys. Lett.,2008,92:033307
    [45]Zhan X W, Tan Z A, Domercq B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells J. Am. Chem. Soc,2007,129(23):7246-7247
    [46]Hagfeldtt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev.,1995,95(1):49-68
    [47]Gratzel M. The artificial leaf, molecular photovoltaics achieve efficient generation of electricity from sunlight. Coord. Chem. Rev.,1991,12(2-3):167-174
    [48]Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. J. Am. Chem. Soc.,2004,126(45): 14943-14949
    [49]Gong D W, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater Res,2001,16(12):3331-3334
    [50]Shankar, K. Bandara, J. Paulose, M. et al.Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett.,2008,8(6):1654-1659
    [51]Varghese, O. K. Paulose, M. Grimes, C. A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotechnology,2009, 4(16):592-597
    [52]Matt L, Lorie G, Justin C J, et al. Nanowire dye-sensitized solar cells. Nat. Mater.,2005,4(6): 455-459
    [53]Wang P, Klein C, Humphry-Baker R, et al. a high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J. Am. Chem. Soc.,2005,127(3):808-809
    [54]Nazeeruddin M K, Wang Q, Cevey L, et al. DFT-INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications. Inorg. Chem., 2006,45(2):787-797
    [55]Wang P, Zakeeruddin S M, Moser J E, et al. Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv. Mater.,2004,16(20): 1806-1811
    [56]Liang M, Xu W, Cai F S, et al. New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C,2007,111 (11):4465-4472
    [57]Xu W, Peng B, Chen J, et al. New triphenylamine-based dyes for dye-sensitized solar cells. J. Phys. Chem. C,2008,112(3):874-880
    [58]Pei J, Peng S J, Shi J F, et al. Triphenylamine-based organic dye containing the diphenylvinyl and rhodanine-3-acetic acid moieties for efficient dye-sensitized solar cells. J. Power Sources. 2009,187 (2):620-626
    [59]Xu W, Pei J, Shi J F, et al. Influence of acceptor moiety in triphenylamine-based dyes on the properties of dye-sensitized solar cells. J. Power Sources,2008,183 (2):792-798
    [60]Liang Y L, Peng B, Liang J, et al. Triphenylamine-based dyes bearing functionalized 3,4-propylenedioxythiophene linkers with enhanced performance for dye-sensitized solar cells. Org. Lett.,2010,12(6):1204-1207
    [61]Jiang K J, Masaki N, Xia J B, et al. A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells. Chem. Commun.,2006, (23):2460-2462
    [62]Li B, Wang L D, Kang B, et al. Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells,2006,90(5):549-573
    [63 Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord. Chem. Rev.,2004,248(13-14):1421-1446
    [64]Papageorgiou N, Maier W F, Gratzel M. An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J. Electrochem. Soc.,1997,144(3):876-884
    [65]Yan S L. M oriyama T. Uchida H, et al. In situ STM observation with atomic resolution on platinum film electrodes formed by a sputtering method. Chem. Commun.,2000,22: 2279-2280
    [66]Fang X M, Ma T L, Guan G Q, et al. Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. J. Electroanal. Chem.,2004,570 (1-2):257-263
    [67]Kim S S, Nah Y C, Noh Y Y, et al. Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochim. Acta,2006,51(18):3814-3819
    [68]Li P J, Wu J H, Lin J M, et al. Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode. Electrochim. Acta.,2008,53(12): 4161-4166
    [69]Wei T C, Wan C C, Wang Y Y, et al. Immobilization of poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium tin oxide glass and its application in dye-sensitized solar cells. J. Phys. Chem. C,2007,111(12):4847-4853
    [70]Ma T L, Fang X M, Akiyama M, et al. Properties of several types of novel counter electrodes for dye-sensitized solar cells. J. Electroanal. Chem.,2004,574(1):77-83
    [71]Kay A, Gr-itzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells,1996,44(1):99-117
    [72]Suzuki K, Yamaguchi M, Kumagai M, et al. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett.,2003,32(1):28-29
    [73]Murakami T N, Ito S, Wang Q, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc.,2006,153(12):A2255-A2261
    [74]Cai F S, Liang J, Tao Z L, et al. Low-Pt-loading acetylene-black cathode for high-efficient dye-sensitized solar cells. J. Power. Sources,2008,177(2):631-636
    [75]Cai F S, Chen J, Xu R S. Porous acetylene-black spheres as the cathode aterials of dye-sensitized solar cells. Chem. Lett.,2006,35(11):1266-1267
    [76]Hino T, Ogawa Y, Kuramoto N. Preparation of functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cell. Carbon,2006,44(5):880-887
    [77]Xia J B, Masaki N, Jiang K J, et al. The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell. J. Mater. Chem.,2007,17(27):2845-2850
    [78]Nagai H, Segawa H. Energy-storable dye-sensitized solar cell with a polypyrrole electrode. Chem. Commun.,2004,8:974-975
    [79]Sun B Q, Marx E, Greenham N C. Photovoltaic devices using blends of branched cdse nanoparticles and conjugated polymers. Nano Lett.,2003,3(7):961-963
    [80]Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science,2002, 295(5564):2425-2427
    [81]Nanu M, Schoonman J, Goossens A. Inorganic nanocomposites of n-and p-type semiconductors:a new type of three-dimensional solar cell. Adv. Mater.,2004,16(5): 453-456
    [82]Nanu M, Schoonman J, Goossens A. Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. Nano Lett.,2005,5(9):1716-1719
    [83]Gur I, Fromer N A., Geier M L, et al. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science,2005,310(5747):462-465
    [84]Guo Q J, Kim S J, Kar M, et al. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett.,2008,8(9):2982-2987
    [85]Guo Q J, Ford G M, Hillhouse H W, et al. Sulfide nanocrystal inks for dense Cu(ln1-xGax)(S1-ySey)2 absorber films and their photovoltaic performance. Nano Lett.,2009, 9(8):3060-3065
    [86]Guo Q J, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. Am. Chem. Soc.,2009,131(33):11672-11673
    [87]Li L, Coates N, Moses D. Solution-processed inorganic solar cell based on in situ synthesis and film deposition of CulnS2 nanocrystals. J. Am. Soc. Chem.,2010,132(1):22-23
    [88]Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature,2005, 437(7055):121-124
    [89]Gou X L, Cheng F Y, Shi Y H, et al. Shape-controlled synthesis of ternary chalcogenide Znln2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. J. Am. Cem. Soc., 2006,128(22):7222-7229
    [90]Peng S J, Liang J, Zhang L, et al. Shape-controlled synthesis and optical characterization of chalcopyrite CuInS2 microstructures. J.Cryst. Growth,2007,305 (1):99-103
    [91]Peng S J, Cheng F Y, Liang J, et al. Facile solution-controlled growth of CuInS2 thin films on FTO and TiO2/FTO glass substrates for photovoltaic application. J. Alloys Compd.,2009, 481(1-2):786-791
    [92]Zhang L, Liang J, Peng S J, Solvothermal synthesis and optical characterization of chalcopyrite CuInSe2 microspheres. Mater. Chem. Phys.,2007,106 (2-3):296-300
    [93]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE(E=sulfur, selenium, tellurium) semieonduetor nanoerystallites. J. Am. Chem. Soc.,1993,115(19):8706-8715
    [94]Manna L, Scher E C, Alivisatos A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanorystals. J. Am. Chem. Soc.,2000,122(51): 12700-12706
    [95]Peng X, Manna L, Yang W, et al. Shape control of CdSe nanocrystals. Nature,2000, 404(6773):59-61
    [96]Hu J T, Li L S, Yang W, et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science,2001,292(5524):2060-2063
    [97]Peng Z A, Peng X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes:nucleation and growth. J. Am. Chem. Soc.,2002,124(13):3343-3353
    [98]Peng Z A. Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc.,2001,123(7):1389-1395
    [99]Ng M T, Boothroyd C B, Vittal J J. One-pot synthesis of new-phase AgInSe2 nanorods. J. Am. Chem. Soc.,2006,128(22):7118-7119
    [100]Castro S L, Bailey S G, Raffaelle R P, et al. Nanocrystalline chalcopyrite materials (CulnS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chem. Mater.,2003,15(16):3142-3147
    [101]Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem. Rev.,2005,105(4):1025-1102
    [102]Ingert D, Pileni M P. Limitations in producing nanocrystals using reverse micellesas nanoreactors. Adv. Fun. Mater.,2001,11(2):136-139
    [103]Pinna N, Weiss K, Sack-Kongehl H, et al. Triangular CdS nanocrystals:synthesis, characterization, and stability. Langmuir,2001,17(26):7982-7987
    [104]Ge J P, Xu S, Liu L P, et al. A positive-microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature. Chem. Eur. J.,2006,12(13):3672-3677
    [105]Simmons B A, Li S C, John V T, et al. Morphology of CdS nanocrystals synthesized in a mixed surfactant system. Nano Lett.,2002,2(4):263-268
    [1]Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord. Chem. Rev.,2004,248(13-14):1421-1446
    [2]Fang X M, Ma T L, Guan G Q, et al. Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness. J. Photochem. Photobiol. A: Chem.,2004,164(1-3):179-182
    [3]Kim S S, Nah Y C, Noh Y Y,et al. Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochim. Acta,2006,51(18):3814-3819
    [4]Wei T C, Wan C C, Wang Y Y, Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tinoxide glass as counterelectrode for dye-sensitized solar cells. Appl. Phys. Lett., 2006,88(10):103-122
    [5]Ikegami M, Miyoshi K, Miyasaka T, et al. Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells. Appl. Phys. Lett., 2007,90(15):153122
    [6]Zhou C H, Hu H, Yang Y, et al. Effect of thickness on structural, electrical, and electrochemical properties of platinum/titanium bilayer counterelectrode J. Appl. Phys.,2008, 104(2):034910
    [7]Kima S S, Park K W, Yuma J H, et al. Dyesensitized solar cells with Pt-NiO and Pt-TiO2 biphase counter electrodes. J. Photochem. Photobiol. A:Chem.,2007,189(2-3):301-306
    [8]Wang G Q, Lin R F, Lin Y, et al. A novel high-performance counter electrode for dye-sensitized solar cells. Electrochim. Acta,2005,50(28):5546-5552
    [9]Liu Z L, Lin X H, Lee J Y, et al. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir,2002,18(10):4054-4060
    [10]Shi J F, Liang J, Peng S J, et al. Synthesis, characterization and electrochemical properties of a compact titanium dioxide layer. Solid State Science,2009,11(2):433-438
    [11]Liang M, Xu W, Cai F S, et al. New triphenylamine-based crganic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C,2007,111(11):4465-4472
    [12]Xu W, Peng B, Chen J, et al. New triphenylamine-based dyes for dye-sensitized solar cells. J. Phys. Chem. C,2008,112(3):874-880
    [13]Nazeeruddin M K, Pechy P, Renouard T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc.,2001,123(8): 1613-1624
    [14]Sommeling P M, O'Regan B C, Haswell R R, et al. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J. Phys. Chem. B,2006,110(39): 19191-19197
    [15]Gratzel M. Photoelectrochemical cells. Nature,2001,414(6861):338-344
    [16]Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev.,1995,95(1):49-48
    [17]Nazeeruddin M K, Zakeeruddin S M, Humphry-Baker R, et al. Acid-base equilibria of (2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem.,1999,38(26): 6298-6305
    [18]Bonhote P, Dias A, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem.,1996,35(5):1168-1178
    [19]Xu W, Pei J, Shi J F, et al. Influence of acceptor moiety in triphenylamine-based dyes on the properties of dye-sensitized solar cells. J. Power Sources,2008,183(2):792-798
    [20]Zhu J, Cheng F Y, Tao Z L, et al. Electrocatalytic methanol oxidation of Pto.5Ruo.5-xSnx/C(x= 0-0.5). J. Phys. Chem. C,2008,112(16):6337-6345
    [21]Mallory G O, Hajdu J B. Electroless plating:fundamentals and applications; American Electroplaters and Surface Finishers Society:Orlando, Fl,1990, Chapter 1:1-55
    [22]Sun Y G, Qiao R. Facile tuning of superhydrophobic states with Ag nanoplates. Nano. Res., 2008,1(4):292-302
    [23]Sun Y G. Direct growth of dense, pristine metal nanoplates with well-controlled dimensions on semiconductor substrates. Chem. Mater.,2007,19(24):5845-5847
    [24]许并社.纳米材料及应用技术.北京:化学工业出版社.2004
    [25]Klabunde K J(美)主编,陈建峰,邵磊等译.纳米材料科学.北京:化学工业出版社.2004
    [26]南开大学中心实验室.现代仪器分析实验讲义.1999
    [27]吴刚.材料结构表征及应用.北京:化学工业出版社.2002
    [28]Vasquez Y, Sra A K, Schaak R E. One-pot synthesis of hollow superparamagnetic CoPt nanospheres. J. Am. Chem. Soc.,2005,127(36):12504-12505
    [29]Liang H P, Zhang H M, Hu J S, et al. Pt hollow nanospheres:facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed.,2004,43(12):1540-1543
    [30]Dong H, Yang H, Ai X, et al. Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst. Int. J. Hydrogen Energy,2003,28(10): 1095-1100
    [31]Cheng F Y, Ma H, Li Y M, et al. Ni1-xPtx (x=0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane. Inorg. Chem.,2007,46(3):788-794.
    [32]Chen J Y, Herricks T, Geissler M, et al. Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J. Am. Chem. Soc.,2004, 126(35):10854-10855
    [33]Wang G Q, Lin R F, Lin Y, et al. A novel high-performance counter electrode for dye-sensitized solar cells. Electrochimica Acta,2005,50(28):5546-5552
    [34]Redmond G, Fitzmaurice D. Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents. J. Phys. Chem.,1993,97(7): 1426-1430
    [35]Lee K M, Chen P Y, Hsu C Y, et al. A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells. J. Power Sources,2009, 188(1):313-318
    [36]Wu J H, Li Q H, Fan L Q, et al. High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. J. Power Sources,2008,181(1):172-176
    [37]Chen D H, Huang, F Z, Cheng, Y B, et al. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes:a superior candidate for high-performance dye-sensitized solar cells. Adv. Mater.,2009,21(1):1-5
    [38]Liu J F, Yao Q H, Li Y D. Effects of downconversion luminescent film in dye-sensitized solar cells. Appl. Phys. Lett.,2006,88(17):173119
    [39]Wang Q, Ito S, Gratzel M, et al. Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B,2006,110(50):25210-25221
    [40]Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett., 2007,7(1):69-74
    [41]Pei J, Peng S J, Shi J F, et al. Triphenylamine-based organic dye containing the diphenylvinyl and rhodanine-3-acetic acid moieties for efficient dye-sensitized solar cells. J. Power Sources, 2009,187(2):620-626
    [1]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353(6346):737-740
    [2]Gratzel M. Photoelectrochemical cells. Nature,2001,414(6854):338-344
    [3]Papageorgiou N, Maier W F, Gratzel M. An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J. Electrochem. Soc.,1997,144(3):876-884
    [4]Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord. Chem. Rev.,2004,248(13-14):1421-1466
    [5]Kay A, Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells,1996,44(1):99-117
    [6]lmoto K, Takatashi K, Yamaguchi T, et al. High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells,2003,79(4):459-469
    [7]Suzuki K, Yamaguchi M, Kumagai M, et al. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett.,2003,32(1):28-29
    [8]Murakami T N. Ito S. Wang Q, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc.,2006,153(12):A2255-A2261
    [9]Hino T, Ogawa Y, Kuramoto N. Preparation of functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cell. Carbon,2006,44(5):880-887
    [10]Krishankutty N, Park C, Rodriguez N M, et al. The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene. Catal. Today,1997,37(3):295-307
    [11]Iijima S, Yadasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett.,1999,309(3-4):165-170
    [12]Cai F S, Chen J, Xu R S, Porous acetylene-black spheres as the cathode materials of dye-sensitized solar cells. Chem. Lett.,2006,35(11):1266-1267
    [13]Azevedo D C S, Araujo J C S, Bastos-Neto M, et al. Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous Mesoporous Mater.,2007,100(1-3):361-364
    [14]Sakane H, Misui T, Tanida H, et al. XAFS analysis of triiodide ion in solutions. J. Synchrotron Radiat.,2001,8(2):674-676
    [15]Xia B Y, Wang J N, Wang X X, et al. Synthesis and application of graphitic carbon with high surface area. Adv. Funct. Mater.,2008,18(12):1790-1798
    [16]Dahn J R, Xing W, Gao Y, The "falling cards model" for the structure of microporous carbons. Carbon,1997,35(6):825-830
    [17]Muradov N., Smith F., T-Raissi A., Catalytic activity of carbons for methane decomposition reaction. Catal. Today,2005, (102-103):225-233
    [18]Hauch A, Georg A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta,2001,46(22):3457-3466
    [19]Ramasamy E, Lee W J, Lee D Y, et al. Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. Electrochem. Commun., 2008,10(7):1087-1089
    [20]Ramasamy E, Lee W J, Lee D Y, et al. Nanocarbon counterelectrode for dye sensitized solar cells. Appl. Phys. Lett.,2007,90(17):173-103
    [21]Kim J Y, Kim T H, Kim DY, et al. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells. J. Power Sources,2008, 175(1):692-697
    [1]崔方明.化学法制备太阳能电池用CIS及ZnS薄膜材料.[博士学位论文].浙江:浙江大学,2008
    [2]Contreras M A, Egaas B, Ramanathan K, et al. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Prog. Photovolt:Res Appl.,1999,7(4): 311-316
    [3]Das K, Datta A, Chaudhuri S. CIS flower vaselike nanostructure arrays on a Cu tape substrate by the copper indium sulfide on Cu-Tape (CISCuT) method:growth and characterization. Cryst. Growth Des.,2007,8(5):1547-1552
    [4]Mauricio O L, Arturo M A.. Characterization of CIS the films for solar cells prepared by spray pyrolysis. Thin Solid Films,1998,330:96-101
    [5]Martinez A M, Arriaga L G, Fernandez A M, et al. Band edges determination of CIS thin films prepared by electrodeposition. Mater. Chem. Phys.,2004,88(2):417-420
    [6]石勇,靳正国,李春艳等.SILAR法制备化学计量CIS薄膜.无机化学学报,2005,21(9):1286-1290
    [7]Camus C, Allsop N A, Gledhill S E, et al. Properties of Spray ILGAR CIS thin films. Thin Solid Films,2008,516(20):7026-7030
    [8]Mobarak M, Shaban H T, Elhady A. F. Electrical and thermoelectric properties of CIS single crystals. Mater. Chem. Phys.,2008,109(2-3):287-290
    [9]He Y B, Polity A., Alves H R, et al. Structural and optical characterization of RF reactively sputtered CIS thin films. Thin Solid Films,2002,403(404):62-65
    [10]Castro S L, Bailey S G, Raffaelle R P, et al. Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chem. Mater.,2003,15(16):3142-3147
    [11]Nairn J J, Shapiro P J, Twamley B, et al. Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors. Nano Lett., 2006,6(6):1218-1223
    [12]Jiang Y, Wu Y, Mo X, et al. Elemental solvothermal reaction to produce ternary semiconductor CuInE2 (E=S, Se) nanorods. Inorg. Chem.,2000,39(14):2964-2965
    [13]Du W M, Qian X F, Yin J, et al. Shape-and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem. Eur. J.,2007,13(31):8840-8846
    [14]Xie R G, Rutherford M, Peng X G. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc.,2009, 131(15):5691-5697
    [15]Chen Y F, Johnson E, Peng X G Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis:self-focusing via ripening. J. Am. Chem. Soc.,2007, 129(35):10937-10947
    [16]Cao Y C, Wang J H. One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J. Am. Chem. Soc.,2004,126(44):14336-14337
    [17]Liu W, Mitzi D B, Yuan M, et al.12% Efficiency CuIn(Se,S)2 photovoltaic device prepared using a hydrazine solution process. Chem. Mater.,2010,22 (3):1010-1014
    [18]Panthani M G, Akhavan V, Goodfellow B, et al. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal "Inks" for printable photovoltaics. J. Am. Chem. Soc., 2008,130(49):16770-16777
    [19]Steinhagen C, Panthani M G, Akhavan V, et al. Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J. Am. Chem. Soc.,2009,131(35):12554-12555
    [20]Guo Q J, Ford G M, Hillhouse H W, et al. Sulfide nanocrystal inks for dense Cu(In1-xGax)(S1-ySey)2 absorber films and their photovoltaic performance. Nano. Lett.,2009, 9(8):3060-3065
    [21]Tian B, Zheng X, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature,2007,449(7164):885-889
    [22]Hochbaum A. I, Yang P D. Semiconductor nanowires for energy conversion. Chem. Rev., 2010,110(1):527-546
    [23]Yuhas B D, Yang P D. Nanowire-based all-oxide solar cells. J. Am. Chem. Soc.,2009, 131(10):3756-3761
    [24]Connor S T, Hsu C M, Weil B D, et al. Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods. J. Am. Chem. Soc.,2009,131(13),4962-4966
    [25]Park J, An K, Hwang Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater.,2004,3(12):891-895
    [26]Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc.,2009,131(11): 3985-3990
    [27]Feng X J, Shankar K, Varghese O K, et al. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass:synthesis details and applications. Nano Lett.,2008,8(11):3781-3786
    [28]张立德.牟季美.纳米材料和纳米结构.北京:科学出版社,2001,4-6
    [29]何宇亮,刘湘娜,王志超.纳米硅薄膜的研制.中国科学,1992,22(9):995-1001
    [30]Shevchenko E V, Talapin D V, Schnablegger H, et al. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals:the role of nucleation rate in size control of CoPt3 nanocrystals. J. Am. Chem. Soc.,2003,125(30):9090-9101
    [31]Li B, Xie Y, Huang J X, et al. Synthesis by a solvothermal route and characterization of CulnSe2 nanowhiskers and nanoparticles. Adv. Mater.,1999,11(17):1456-1459
    [32]Zhong H Z, Zhou Y, Ye M F, et al. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem. Mater.,2008,20(20):6434-6443
    [33]Tang J, Hinds S, Kelley S O, et al. Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 nanoparticles. Chem. Mater.,2008,20(22):6906-6910
    [34]Bao N Z, Shen L M, An W, et al. Formation mechanism and shape control of monodisperse magnetic CoFe2O4 nanocrystals. Chem. Mater.,2009,21(14):3458-3468
    [35]Steinhagen C, Panthani M G, Akhavan V, et al. Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J. Am. Chem. Soc.,2009,131(35):12554-12555
    [36]Song Q, Zhang Z J. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc.,2004,126(19):6164-6168
    [37]Nguyen T D, Do T O. General two-phase routes to synthesize colloidal metal oxide nanocrystals:simple synthesis and ordered self-assembly structures. J. Phys. Chem. C,2009. 113(26):11204-11214
    [38]Deivaraj T C, Park J H, Afzaal M, et al. Novel bimetallic thiocarboxylate compounds as single-source precursors to binary and ternary metal sulfide materials. Chem. Mater.,2003. 15(12):2383-2391
    [39]Brus L E. Electronic wave functions in semiconductor clusters:experiment and theory. J. Phys. Chem.,1986,90(12):2555-2560
    [40]Wang Y, Suna A, Mahler W, et al. PbS in polymers:from molecules to bulk solids. J. Chem. Phys.,1987,87(12):7315-7322
    [41]Wang Y, Herron N. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem.,1991,95(2):525-532
    [42]Nanu M, Schoonman J, Goossens A. Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. Nano Lett.,2005,5(9):1716-1719
    [43]Nanu M, Schoonman J, Goossens A. Inorganic nanocomposites of n-and p-Type semiconductors:a new type of three-dimensional solar cell. Adv. Mater.,2004,16(5): 453-456
    [44]Guo Q J, Kim S J, Kar M, et al. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett.,2008,8(9):2982-2987
    [45]Xiao J P, Xie Y, Xiong Y J, et al. A mild solvothermal route to chalcopyrite quaternary semiconductor Culn(SexS1-x)2 nanocrystallites. J. Mater. Chem.,2001,11(5):1417-1420
    [46]Tian L, Elim H I, Ji W, et al. One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals. Chem. Commun.,2006, (41):4276-4278
    [47]Lin L H, Wu C C, Lai C H, et al. Controlled deposition of silver indium sulfide ternary semiconductor thin films by chemical bath deposition. Chem. Mater.,2008,20(13): 4475-4483
    [48]Tian L, Vittal J J. Synthesis and characterization of ternary AgInS2 nanocrystals by dual-and multiple-source methods. New J. Chem.,2007,31(12):2083-2087
    [1]Chaparro A M, Gutierrez M T, Herrero J, et al. Characterisation of CIS/Zn(Se,O)/ZnO solar cells as a function of Zn(Se,O) buffer deposition kinetics in a chemical bath. Prog. Photovolt: Res. Appl.,2002,10(7):465-480
    [2]Schorr S, Riede V, Spemann D, et al. Electronic band gap of Zn3x(CuIn)1-xX2 solid solution series (X=S, Se, Te). J. Alloys Compd.,2006,414(1-2):26-30
    [3]Lu Q Y, Hu J Q, Tang K B, et al. Synthesis of nanocrystalline CuMS2 (M=In or Ga) through a solvothermal process. Inorg. Chem.,2000,39(7):1606-1607
    [4]Mauricio O L, Arturo M A., Characterization of CIS the films for solar cells prepared by spray pyrolysis. Thin Solid Films,1998,330:96-101
    [5]Gosslaa M, Mahnkea H E, Metzner H. Investigation of thin films of the Cu-In and CIS system. Thin Solid Films,2000,361-362(1):56-60
    [6]He Y B, Kramer T, Polity A, et al. Preparation and characterization of highly (112)-oriented CIS films deposited by a one-stage RF reactive sputtering process. Thin Solid Films,2003, 431-432(1-2):231-236
    [7]Su D S, Neumann W, Hunger R, et al. CuAu-type ordering in epitaxial CIS films.Appl. Phys. Lett.,1998,73(6):785-787
    [8]Nanu M, Reijnen L, Meester B, et al. CIS Thin Films Deposited by ALD. Chem. Vap. Deposition,2004,10(1):45-49
    [9]Kajari D, Anuja D, Subhadra C. CIS flower vaselike nanostructure arrays on a Cu tape substrate by the copper indium sulfide on cu-tape (CISCuT) method:growth and characterization. Cryst. Growth Des.,2007,7(8):1547-1552
    [10]Pathan H M, Lokhande C D. Chemical deposition and characterization of copper indium disulphide thin films. Appl. Surf. Sci.,2004,239(1):11-18
    [11]Gou X L, Cheng F Y, Shi Y H, et al. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. J. Am. Chem. Soc., 2006,128(22):7222-7229
    [12]Peng S J, Liang J, Zhang L, et al. Shape-controlled synthesis and optical characterization of chalcopyrite CIS microstructures. J. Cryst. Growth,2007,305(1):99-103
    [13]Xiao J P, Xie Y, Tang R, et al. Synthesis and characterization of ternary CIS nanorods via a hydrothermal route. J. Solid State Chem.,2001,161(2):179-183
    [14]Jiang Y, Wu Y, Mo X, et al. Elemental solvothermal reaction to produce ternar semiconductor CuInE2 (E=S, Se) nanorods. Inorg. Chem.,2000,39(14):2964-2965
    [15]Liang M, Xu W, Cai F S, et al. New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C,2007,111(11):4465-4472
    [16]Mendoza-Perez R, Sastre-Hernandez J, Contreras-Puente G, et al. CdTe solar cell degradation studies with the use of CdS as the window material. Sol. Energy Mater. Sol. Cells,2009, 93(1):79-84
    [17]Shi Y H, Chen J, Shen P W. ZnS micro-spheres and flowers:chemically controlled synthesis and template use in fabricating MS(shell)/ZnS(core) and MS (M=Pb, Cu) hollow microspheres. J. Alloys Compd.,2007,441(1-2):337-343
    [18]Qi Y X, Tang K B, Zeng S Y, et al. Template-free one-step fabrication of porous CIS hollow microspheres. Microporous Mesoporous Mater.,2008,114(1-3):395-400
    [19]Wang D S, Zheng W, Hao C H, et al. General synthesis of Ⅰ-Ⅲ-Ⅵ2 ternary semiconductor nanocrystals. Chem. Comm.,2008,14(22):2556-2558
    [20]Reisfeld R. Nanosized semiconductor particles in glasses prepared by the sol-gel method: their optical properties and potential uses. J. Alloys Compd.,2002,341(1-2):56-61
    [21]Zhang A Y, Ma Q, Lu M K, et al. Copper-indium sulfide hollow nanospheres synthesized by a facile solution-chemical method. Cryst. Growth Des.,2008,8(7):2402-2405
    [22]Rao K P, Hussain O M, Reddy K T R, et al. Structural and optical properties of Cd1-xZnxTe thin films. J. Alloys Compd.,1995,218(1):86-89
    [23]Todorov T, Cordoncillo E, Sanchez-Royo J F, et al. CIS films for photovoltaic applications deposited by a low-cost method. Chem. Mater.,2006,18(13):3145-3150
    [24]Qiu J J, Jin Z G, Qian J W, et al. Influence of post-heat treatment on the properties of CIS thin films deposited by an ion layer gas reaction (ILGAR). J. Cryst. Growth,2005,282(3-4):421-428
    [25]Krunks M, Mere A, Katerski A, et al. Characterization of sprayed CIS films annealed in hydrogen sulfide atmosphere. Thin Solid Films,2006,511:434-438
    [26]Wagner S, Bridenbaugh P M. Multicomponent tetrahedral compounds for solar cells. J. Cryst. Growth,1977,39(1):151-159
    [27]Nanu M, Schoonman J, Goossens A. Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. Nano Lett.,2005,5(9):1716-1719

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700