用户名: 密码: 验证码:
碳化硅纳米材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对碳化硅纳米材料的合成、应用等方面的发展现状进行了充分调研的基础上,本论文采用固相高温裂解过渡金属有机化合物及还原法制备出了带状β-SiC纳米材料;采用溶剂热方法以二氧化硅为硅源,镁粉为还原剂,无水乙醇为碳源在200℃制得了3C-SiC纳米线,在加入聚乙烯吡咯烷酮(PVP)后反应温度保持在180℃或者200℃均得到了立方相和六方相混合相碳化硅;以正硅酸乙酯(TEOS)为硅源,碱性条件下使正硅酸乙酯水解得到粒径比较均匀的二氧化硅实心球,再以此为原料,镁粉为还原剂,无水乙醇为碳源在200℃得到了3C-SiC。此外还测试了所得碳化硅材料的热稳定性和光致发光性质。主要内容归纳如下:
     1.550℃条件下利用固相高温裂解过渡金属有机化合物及镁还原硅酸制备了碳化硅纳米材料。粉末X-射线衍射(XRD)显示制得的样品为面心立方相的碳化硅(β-SiC),计算所得晶格常数a=4.351(?),与JCPDS卡片值(No.29-1129,α=4.359(?))接近;透射电子显微镜(TEM)照片显示所得β-SiC纳米材料为带状结构和无规则颗粒,其中带状结构的宽度在20-50 nm左右,长度达几百个纳米;高分辨透射电镜(HRTEM)显示相邻的晶格条纹间距约为0.25nm,与β-SiC的(111)面间距相一致。样品晶格条纹清晰可辨,表明其结晶程度高。热重测试分析(TGA)显示样品在700℃以上开始增重,说明样品在700℃以上开始被氧化;室温光致发光测试(PL)显示样品在400nm左右有一个强的发射峰。
     2.通过溶剂热方法以二氧化硅为硅源,乙醇为碳源,镁为还原剂在200℃条件下,成功制备出碳化硅纳米线。粉末X-射线衍射(XRD)显示制得的样品为面心立方相的碳化硅(3C-SiC),晶格常数a=4.357(?),与JCPDS卡片值(No.29-1129,α=4.359(?))基本吻合;透射电子显微镜(TEM)照片显示所制得的碳化硅由纳米线和无规则颗粒构成,线的直径集中在10-30nm,长度最高可达几十个微米;高分辨透射电镜(HRTEM)显示相邻的晶格条纹间距约为0.25nm,与3C-SiC的(111)面间距相一致,表示其生长方向为[111]。热重测试分析(TGA)显示样品在800℃以上增重明显,说明样品在800℃以上被氧化。光致发光测试(PL)显示样品在403nm左右有一个强的发射峰。此外,当聚乙烯吡咯烷酮(PVP)加入到上述反应体系中时,反应温度在180℃或者200℃均得到立方相(3C)和六方相(2H)混合相碳化硅。XRD数据计算3C-SiC的晶格常数a=4.357(?),与JCPDS卡片值(No.29-1129,α=4.359(?))基本吻合;2H-SiC的晶格常数a=3.079(?)和c=5.037(?),与JCPDS卡片值(No.29-1126,a=3.081(?),c=5.031(?))接近;透射电镜显示生成产物的形貌为无规则的片和少量的六角片,由高分辨透射电镜得出,此片状结构碳化硅为3C-SiC,六角片状结构为2H-SiC。
     3.首先在碱性条件下水解正硅酸乙酯,得到了粒径比较均匀的二氧化硅小球,以制得的二氧化硅为原料,无水乙醇为碳源,镁粉为还原剂在高压釜中200℃条件下10小时得到了碳化硅。粉末X-射线衍射(XRD)显示制得的样品为面心立方相的碳化硅(3C-SiC),晶格常数a=4.358(?),与JCPDS卡片值(No.29-1129,α=4.359(?))基本吻合;透射电子显微镜(TEM)照片显示所制得的碳化硅形貌主要是颗粒和空心球,空心球的直径大约为600-1000纳米。高分辨透射电镜(HRTEM)显示相邻的晶格条纹间距约为0.25nm,与3C-SiC的(111)面间距相一致。晶格条纹清晰可辨,说明样品结晶程度较高。
On the basis of comprehensive and thorough investigation of literature concerning the synthesis and application developments of silicon carbide (SiC) nanomaterials, in this dissertation, solid state high-temperature pyrolysis of transition metal organic compounds and reduction route was used to synthesize SiC nanomaterials. 3C-SiC nanowires was prepared starting from SiO_2, C_2H_5OH, and Mg was used as reductant through solvothermal route at 200℃. As polyvinylpyrrolidine (PVP) was added into the above reactant system, the final products obtained at 180℃were mixed 3C and 2H- SiC. Tetraethyl orthosilicate (TEOS) was used as silicon source and hydrolized under alkaline conditions. SiO_2 spheres were prepared by hydrolysis of TEOS. The as-produced SiO_2 spheres was used as reactant, and C_2H_5OH was used as carbon source, Mg as reductant in an autoclave at 200℃for 10 h, 3C-SiC was finally obtained. The thermal stabilities and optical properties were reported here. The main contents can be summarized as follows:
     1.β-SiC nanomaterials were successfully produced by the reduction of H_2SiO_3 and by the high-temperature pyrolysis of transition metal organic compounds (ferrocene) with metallic Mg powder at 550℃in an autoclave. X-ray diffraction patterns of the sample can be indexed as the cubic SiC with the lattice constant a = 4.351(?) which is close to that of the reported value (JCPDS card no. 29-1129, a = 4.359(?)). Transmission electron microscopy images show that the product mainly composed of belt-like nanostructures and irregular nanoparticles. The nanobelts with width ranging from 20-50 nm and lengths up to hundreds of nanometers. The HRTEM image of a part of SiC nanocrystals reveals that the inter-planar spacing of the two adjacent frings is about 0.25 nm, which is consistent with the reported value (JCPDS card, no. 29-1129) to the (111) lattice planes of the crystalline SiC. The regular arranged lattice fringes can be clearly seen from HRTEM images, indicating the well crystalline of the as-prepared samples. TGA curve reveals that the sample has thermal stability below 700℃, and room-temperature photoluminescence (PL) spectrum of the sample show a strong emission peak centered at 400 nm.
     2. 3C-SiC nanowires were prepared starting from SiO_2, C_2H_5OH, and Mg as reductant through a solvothermal route at 200℃. X-ray diffraction patterns of the sample can be indexed as the cubic cell of SiC with the lattice constant a = 4.357(?), in good agreement with a = 4.359(?) (JCPDS card no. 29-1129). Transmission electron microscopy images show that the product mainly composed of nanowires with diameters of 10-30 nm and lengths up to tens of micrometers; The High-resolution transmission electron microscopy image of a part of SiC nanowires reveals that the inter-planar spacing of the two adjacent frings is about 0.25 nm, which is consistent with the reported value (JCPDS card, No. 29-1129) to the (111) lattice planes of the crystalline SiC. In addition, the [111] direction is parallel to the axis of the nanowire, indicating that the nanowire grows along the [111] direction. Thermal gravimetric analysis curves reveal that the nanowires have thermal stability below 800℃, and room-temperature photoluminescence spectrum of the 3C-SiC sample show a strong emission peak centered at 403 nm. As polyvinylpyrrolidine was added into the above reactant system, the final products obtained at 180℃or 200℃all were mixed 3C and 2H-SiC flakes. The calculated lattice constants of a = 3.079(?) and c = 5.037(?) agree well with those of the 2H-SiC (JCPDS card no. 29-1126), while 3C-SiC with the calculated lattice constant a = 4.357(?) is close to the reported value ofβ-SiC (JCPDS card no. 29-1129). TEM image of the sample with mixed phases, displaying that the products are mainly composed of hexagonal flakes and irregular shaped nano-flakes. The corresponding HRTEM images reveal that the irregular flake was 3C-SiC and the hexagonal flake was 2H-SiC.
     3. SiO_2 spheres were prepared at first by hydrolysis of tetraethyl orthosilicate (TEOS) under alkaline conditions. These as-prepared SiO_2 spheres was used as silicon source, while C_2H_5OH was used as carbon source, Mg was used as reductant at 200℃for 10 h, nanoscale SiC powder was obtained. X-ray diffraction patterns of the sample can be indexed as the cubic cell of SiC with the lattice constant a = 4.357(?), in good agreement with a = 4.359(?) (JCPDS card no. 29-1129). Transmission electron microscopy images show that the product mainly composed of nanoparticles and hollow nanospheres (with diameters ranging from 600-1000 nm). The High-resolution transmission electron microscopy image of a part of the SiC nanospheres reveals that the inter-planar spacing of the two adjacent frings is about 0.25 nm, which is consistent with the reported value (JCPDS card, no. 29-1129) to the (111) lattice planes of the crystalline SiC. The regular arranged lattice fringes can be clearly seen from the HRTEM images, indicating the well crystalline of the as-prepared samples.
引文
[1] J.A. Powell, et al. in Wide Bandgap Semiconductors[M]. Pittsburgh: Materials Research Society, 1992,242:495.
    [2] J. S. Shor, et al. Laser-assisted photoelectrochemical etching of n-type beta-SiC[J].J. Electrochem. Soc, 1992,139(4): 1213-1216.
    [3] J. B. Casady, R. W. Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review[J]. Solid State Electronics, 1996,39(10): 1409-1422.
    [4] R. Hillenbrand, T. Taubner, F. Keilmann. Phonon-enhanced light-matter interaction at the nanometre scale[J]. Nature, 2002,418(6894): 159-162.
    [5] J. J. Greffet, R. Carminati, K. Joulain, et al. Coherent emission of light by thermal sources[J]. Nature, 2002,416(6876): 61-64.
    [6] 吕振林,高积强,金志浩.碳化硅陶瓷材料及其制备[J].机械工程材料,1999,23(3):1-4.
    [7] 郑水林.非余属矿物加工技术与设备[M].北京:中国建材工业出版社,1998:6-14.
    [8] 莱利·斯米尔滕斯.碳化硅高温半导体[M].上海:上海科学技术出版社,1962:7-8.
    [9] S. Amelinckx, G Strumane. Silicon Carbide[M]. Massachusetts: Proceedings of the Conference on Silicon Carbide held in Boston, 1959: 1-3.
    [10] A.R. Verma. Silicon Carbide[M]. Massachusetts: Proceedings of the Conference on Silicon Carbide held in Boston, 1969: 123-125.
    [11] T. Nakata, Y. Mizutani, M. Mikoda, M. Watanabe, T. Takagi, S. Nishino.Evaluation of Al ion implanted 6H-SiC single[J]. Nucl Instr and Meth B, 1993,74(1-2): 131-133.
    [12] C. J. Mehargue, J. M. Wiliams. Ion implantation effects in silicon carbide[J].Nucl Instr and Meth B, 1993, 80/81(2): 889-894.
    
    [13] C. J. Mchargue, M. B. Lewis, J. M. Wiliams, B. R. Appleton. Ion implantation effects in silicon carbide[J]. Mater Sci Eng, 1985, 69(2): 391-395.
    [14] W. F. Knippenberg. Philips research reports[M]. Eindhoven: Philips Research Laboratories, 1963, 18: 161.
    [15] R. I. Scace, G A. Sack. Solubility of Carbon in Silicon and Germanium[J]. J Chem Phys, 1959, 30(6): 1551-1555.
    [16] K. H. Hellwege, et al. Numerical Data and Functional Relationship in Science and Technology[M]. New York: Landoldt-Borastein, 1984: 17
    [17] N. Koichi, S. Yoshikazu. Strong monolithic and composite MoSi2 materials by nanostructure design[J]. Materials Science and Engineering A, 1996, 261(1-2):6-15.
    [18] Y. K. Jeong, K. Niihara. Nanostrucutred Materials[M]. London: INSPEC Publication, 1997, 9: 193
    [19] 刘玲,茂青,王心葵.碳化硅晶须表面化学与力学性能的研究[M].兵器材料科学与工程,2000,23(5):59.
    [20] 穆伯春,陶瓷材料的强韧化[M].冶金工业出版社,2002:7.
    [21] W. H. Backes, et al. Energy-band structure of SiC polytypes by interface matching of electronic wave functions[J]. Phys Rev B, 1994,49: 7564-7568.
    [22] D. Nakamura, I. Gunjishima, S. Yamaguchi, et al. Ultrahigh-quality silicon carbide single crystals[J]. Nature, 2004,430 (7003): 1009-1012.
    [23] 张荣,施洪涛.蓝光半导体碳化硅-材料,器件和工艺[J].固体电子学研究与进展,1996,16:94.
    [24] L. S. Liao, et al. Intense blue emission from porous |3-SiC formed on C +-implanted silicon[J]. Appl Phys Lett, 1995, 66(18): 2382-2384.
    [25] 廖良生,鲍希茂.硅基多孔β-SiC蓝光发射的稳定性[J].半导体学报,1996,17(1):76-80.
    [26] R. Liu, B. Yang, Z. Fu, P. He, Y. Ruan. Stable blue-green and ul traviolet photoluminescence from silicon carbide on porous silicon[J]. Solid State Commun, 1998, 106(4): 211-214.
    [27] 杨修春,韩高荣,张孝彬,丁子上.SiC纳米粉的光致发光研究[J].半导体学,1998,19(6):423-426.
    [28] 刘渝珍,陆忠乾.纳米SiC蓝光发射的研究[J].发光学报,1999,20(1):50-54.
    [29] X. L. Wu, G G Siu, M. J. Stokes, et al. Blue-emitting p-SiC fabricated by annealing C60 coupled on porous silicon[J]. Appl Phys Lett, 2000, 77(9):1292-1294.
    [30] Y. P. Guo, J. C. Zheng, et al. Photoluminescence studies of SiC nanocrystals embedded in a SiO2 matrix[J]. Chem Phys Lett., 2001, 339(5-6): 319-322.
    [31] Z. An, R. K. Fu, P. Chen, et al. Silicon carbide formation by methane plasma immersion ion implantation into silicon[J]. J Vac Sci Technol B, 2003, 21(4):1375-1379.
    [32] D. Chen, Z. M. Liao, L. Wang, et al. Photoluminescence from P-SiC nanocrystals embedded in SiO2 films prepared by ion implantation[J]. Opt Mater, 2003,23(1-2): 65-69.
    [33] J. Y. Fan, X. L. Wu, et al. Luminescent silicon carbide nanocrystallites in 3C-SiC/polystyrene films[J]. Appl Phys Lett, 2005, 86(17): 171903-171905.
    [34] W. Q. Han, S. S. Fan, Q. Q. Li, et al. Continuous synthesis and characterization of silicon carbide nanorods[J]. Chem Phys Letts, 1997,265(3-5): 374-378.
    [35] J. Q. Hu, Q. Y. Lu, K. B. Tang, et al. Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route[J]. J Phys Chem B, 2000,104(22): 5251-5254.
    [36] Y. C. Ying, Y. L.Gu, et al. A simple route to nanocrystalline silicon carbide[J].Journal of Solid State Chemistry, 2004, 177(11): 4163-4166.
    [37] G Z. Shen, D. Chen, K. B. Tang, Y. T. Qian. Silicon carbide hollow nanospheres,nanowires and coaxial nanowires[J]. Chem Phys Lett, 2003,375(1-2): 177-184.
    [38] G C. Xi, Y. Y. Peng, et al. Lithium-Assisted Synthesis and Characterization of Crystalline 3C-SiC Nanobelts[J]. J Phys Chem B, 2004, 108(52): 20102-20104.
    [39] G C. Xi, Y. K. Liu, et al. Mg-Catalyzed Autoclave Synthesis of Aligned Silicon Carbide Nanostructures[J]. J Phys Chem B, 2006, 110(29): 14172-14178.
    [40] D. H. Feng, Z. Z. Xu, T. Q. Jia, et al. Quantum size effects on exciton states in indirect-gap quantum dots[J]. Phys Rev B, 2003, 68(3): 035334-035340.
    [41] F. A. Reboredo, L. Pizzagalli, G Galli. Computational Engineering of the Stability and Optical Gaps of SiC Quantum Dots[J]. Nano Lett, 2004, 4(5):801-804.
    [42] R. Rurali. Electronic and structural properties of silicon carbide nanowires[J].Phys Rev B, 2005,71(): 205405-205411.
    [43] 张宁,龙海波,刘昊,才庆魁.碳化硅纳米粉体研究进展[J].无机盐工业,2007,3:1-4.
    [44] I. J. Macolm, Forming, shaping and working of high-performance ceramics[M].New York: Chapmn and Hall, 1988: 76-78.
    [45] Ohsakis. Synthesis of β-SiC by the reaction of gaseous of SiO with advanced carbon [J]. Ken. Eng. Mater., 1999, 159: 89-94.
    [46] C. R. Rambo. Synthesis of SiC and cristobalite from rice husk by microwave heating[J]. Mater. Sci. Forum., 1999,299: 63-69.
    [47] 戴长虹.微波法合成SiC纳米微粉[J].青岛化工学院学报,1999,20(1):25-28.
    [48] Raymond A. Cutler, Kevin M. Rigtrup, Anil V. Virkar. Synthesis, sintering,microstructure and mechanical properties of ceramics made by exothermic reaction[J]. J. Am. Ceram. Soc, 1992, 75(1): 36-43.
    [49] 王铁军,王生宏.预热自蔓延合成纳米SiC粉末机理的研究[J].硅酸盐学报,1998,26(2):237-242.
    [50] 杨晓云,黄震威.球磨Si,C混合粉末合成纳米SiC的高分辨电镜观察[J]。金属学报,2000,36(7):684-688.
    [51] 揭晓华,程秀,蔡莲淑,等.稀土对SiC纳米粉体机械合金化形成的影响[J].材料科学与工程学报,2004,22(1):55-58.
    [52] Raman V. Synthesis of silicon carbide through the sol-gel process from different precursors[J]. J. Mater. Sci., 1995,30:2686-2690.
    [53] Narisawa M. Synthesis of nanosize dispersed SiC particles by firing inorganic-organic hybrid precursors [J]. Ken. Eng. Mater., 1999,159: 101-105.
    [54] 张洪涛,徐重阳.S0l-Gel法制备纳米碳化硅粉体的研究[J].功能材料,2000,31(4):366-368.
    [55] Brian S. Mitchell, Haoyue Zhang, Nikica Maljkovic, Martin Ade, Dirk Kurtenbach, Eberhard Muller. Formation of nanocrystalline silicon powder from chlorine - containing polycarbo silane precursors[J]. J. Am. Ceram. Soc, 1999,82(8): 2249-2254.
    [56] 谢凯,张长瑞.低分子聚合物气相热裂解制备碳化硅超微粉的研究[J].硅酸盐学报,1996,24:262-268.
    [57] 杨修春,韩高荣.化学气相反应法制备纳米碳化硅粉的研究[J].功能材料,1998,29:523-526.
    [58] Garcia caurel, Viera. G Characterization of silicon and silicon carbide nanometric powder using infrared phase - modulated ellip sometry[ J ]. Adv. Sci.Technol., 1999, 14:317-321.
    [59] 站可涛,线全刚,郑风,等.激光法制备高纯纳米SiC粉体及其产率[J].北京化工大学学报,2002,29:75-78.
    [60] 张爱霞,蔡克峰.一维碳化硅纳米材料的研究进展[J].材料导报,2006,20:106-108.
    [61] D. Zhou, S. Seraphin. Electronic energy transfer and trapping in quinizarin-doped aluminosilicate sol-gel glasses[J]. Chem Phys Lett, 1994,222(3): 217-223.
    [62] C. C. Tang, S. S. Fan, et al. Growth of SiC nanorods prepared by carbon nanotubes-confined reaction[J]. J Cryst Growth, 2000,210(4): 595-599.
    [63] H. Dai, E. W. Wong, Y. Z. Lu, et al. Synthesis and characterization of carbide nanorods[J]. Nature, 1995,3750: 769-772.
    [64] Z. W. Pan, H. L. Lai, et al. Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties[J].Adv Mater, 2000, 12(16): 1186-1190.
    [65] Z. W. Pan, S. S. Xie, et al. Very long carbon nanotubes[J]. Nature, 1998, 394():631-632.
    [66] N. Klinger, et al. Reactions Between Silica and Graphite[J]. J Am Ceram Soc,1966,49(7): 369-375.
    [67] T. Seeger, P. Redlich, M. Riihle. Synthesis of Nanometer-Sized SiC Whiskers in the Arc-Discharge[J]. Adv Mater, 2000,12(4): 279-282.
    [68] Y. B. Li, S. S. Xie, X. P. Zou, et al. Large-scale synthesis of p-SiC nanorods in the arc-discharge[J]. J Crystal Growth, 2001,223(1-2): 125-128.
    [69] W. S. Shi, Y. F. Zhang, H.Y. Peng, et al. Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires [J]. J. Am. Ceram. Soc, 2000,83(12): 3228-3230.
    [70] A. M. Morales, C. M. Lieber. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires[J]. Science, 1998,279:208-211.
    [71] H. Mukaida, H. Okumura, J. H. Lee, et al. Raman scattering of SiC: Estimation of the internal stress in 3C-SiC on Si [J]. J. Appl. Phys., 1987,62: 254-257.
    [72] G W. Meng, L. D. Zhang, C. M. Mo, et al. Preparation of β-SiC nanorods with and without amorphous SiO2 wrapping layers[J]. J. Mater. Res, 1998, 13:2533-2538.
    [73] Y. J. Zhang, N. L. Wang, R. R. He, et al. Synthesis of SiC nanorods using floating catalyst[J]. Solid State Commun., 2001,118: 595-598.
    [74] 徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001:129.
    [75] Q. Y. Lu, J. Q. Hu, K. B. Tang, et al. Growth of SiC nanorods at low temperature[J]. Appl Phys Lett, 1999, 75(4): 507-509.
    [76] J. Q. Hu, Q. Y. Lu, K. B. Tang, Y. T. Qian, W. C. Yu, G E. Zhou, X. M. Liu, J. X.Wu. Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route[J]. J Phys Chem B, 2000, 104(22): 5251-5254.
    [77] Z.C. Ju, Z. Xing, C.L. Guo, L.S. Yang, L.Q. Xu, Y.T. Qian. Sulfur-assisted approach for the low temperature synthesis of 3C-SiC nanowires[J]. Eur. J. Inorg.Chem., 2008,2008: 3883-3888.
    [78] E. W. Wong, P. E. Sheehan, C. M. Lieber. Nanobeam Mechanics: Elasticity,Strength, and Toughness of Nanorods and Nanotubes[J]. Science, 1997, 277:1971-1975.
    [79] G Gundiah, G V. Madhav, Govindaraj, et al. Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires[J].J. Mater.Chem., 2002, 12:1606-1611.
    [80] Y. F. Zhang, M. Nishitani-Gamo, C. Y. Xiao, T. Ando. Synthesis of 3C-SiC nanowhiskers and emission of visible photoluminescence[J]. J. Appl. Phys., 2002, 91:6066-6070.
    
    [81] J. Q. Hu, Y. Bando, J. H. Zhan, D. Golberg. Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes)[J]. Appl. Phys. Lett., 2004, 85(14): 2932-2934.
    [1] J. S. Lee,Y. K. Byeun, S. H. Lee, S. C. Choi. In situ growth of SiC nanowires by carbothermal reduction using a mixture of low-purity SiO_2 and carbon[J]. J. Alloys. Compd. 2008,456(1-2): 257-263
    
    [2] W.S. Seo, K. Koumoto. Stacking Faults in β-SiC Formed during Carbothermal Reduction of SiO_2 [J]. J. Am. Ceram. Soc. 1996,79(7): 1777-1782.
    [3] J. Narayan, R. Raghunathan, R. Chowdhury, K. Jagannadham. Mechanism of combustion synthesis of silicon carbide[J]. J. Appl. Phys., 1994, 75: 7252-7257.
    [4] J. Q. Hu, Q. Y. Lu, K. B. Tang, et al. Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route[J]. J Phys Chem B, 2000, 104(22): 5251-5254.
    [5] G. Z. Shen, D. Chen, K. B. Tang, Y. T. Qian, S. Y. Zhang. Silicon carbide hollow nanospheres, nanowires and coaxial nanowires[J]. Chem. Phys. Lett., 2003, 375(1-2): 177-184.
    [6] Q. Y. Lu, J. Q. Hu, K. B. Tang, et al. Growth of SiC nanorods at low temperature[J]. Appl Phys Lett, 1999, 75(4): 507-509.
    [7] P. Li, L. Q. Xu, Y. T. Qian. Selective Synthesis of 3C-SiC Hollow Nanospheres and Nanowires[J]. Crystal Growth & Design., 2008,8(7): 2431-2437.
    [8] Z. C. Ju, Z. Xing, C. L. Guo, L. S. Yang, L. Q. Xu, Y. T. Qian. Sulfur-assisted approach for the low temperature synthesis of 3C-SiC nanowires[J]. Eur. J. Inorg. Chem., 2008,2008(24): 3883-3888.
    
    [9] L. Q. Xu, W. Q. Zhang, Y. W. Ding, Y. T. Qian, et al. Formation, Characterization, and Magnetic Properties of Fe_3O_4 Nanowires Encapsulated in Carbon Microtubes[J]. J Phys Chem B, 2004, 108(30): 10859-10862.
    [10] L. Q. Xu, J. Du, P. Li, Y. T. Qian. In Situ Synthesis, Magnetic Property, and Formation Mechanism of Fe3O4 Particles Encapsulated in 1D Bamboo-Shaped Carbon Microtubes[J]. J Phys Chem B, 2006,110(9): 3871-3875.
    
    [11] L. Q. Xu, J. W. Liu, J. Du, Y. Y. Peng, Y. T. Qian. Controlled electrochemical oxidation for enhancing the capacitance of carbon nanotube composites [J]. Carbon, 2005,43(7): 1557-1560.
    [12] S. W. Liu, R. J. Wehmschulte. A novel hybrid of carbon nanotubes/iron nanoparticles: iron-filled nodule-containing carbon nanotubes[J]. Carbon, 2005, 43(7): 1550-1555.
    [13] F. Y. Cao, C. L. Chen, Q. Wang, Q. W. Chen. Synthesis of carbon-Fe_3O_4 coaxial nanofibres by pyrolysis of ferrocene in supercritical carbon dioxide[J]. Carbon, 2007,45(4): 727-731.
    
    [14] K. Keisuke, S. Koichi, I. Hiroshi. Growth of SiC nanodots on Si(111) by exposure to ferrocene and annealing studied by scanning tunneling microscopy[J]. Thin Solid Films, 2004,467(1-2): 50-53.
    
    [15] Z. C. Ju, X. C. Ma, N. Fan, P. Li, L. Q. Xu, Y. T. Qian. High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route[J]. Mater. Lett., 2007, 61(18): 3913-3915.
    [16] K. Koumoto, S. Takeda, C. Pai, T. Sata, H. Yanagida. High-Resolution Electron Microscopy Observations of Stacking Faults in β-SiC[J]. J Am Ceram Soc, 1989, 72(10):1985-1987.
    [17] L. S. Liao, X.M. Bao, Z.F.Yang, N.B. Min. Intense blue emission from porous β-SiC formed on Cl-implanted silicon[J]. Appl. Phys. Lett., 1995, 66(18): 2382-2384.
    [18] S. Hayashi, S. Tanimoto, K. Yamamoto. Analysis of surface oxides of gas-evaporated Si small particles with infrared spectroscopy, high-resolution electron microscopy, and x-ray photoemission spectroscopy [J]. J. Appl. Phys., 1990,68: 5300-5308.
    
    [19] A. A. Kamnev, M. Ristic, V. Angelov. Transmission Mossbauer and FTIR spectroscopic studies of binary nickel(II)-iron(III) hydroxide systems[J]. J. Mol. Struct. 1995,349: 77-80.
    [20] Z. X. Yang, Y. D. Xia, M. Robert. High Surface Area Silicon Carbide Whiskers and Nanotubes Nanocast Using Mesoporous Silica[J]. Chem. Mater., 2004, 16(20): 3877-3884.
    [21] R. Moene, M. Makkee, J. A. Moulijn. High surface area silicon carbide as catalyst support characterization and stability[J]. Appl. Catal. A., 1998, 167: 321-330.
    [22] H.W. Shim, K.C. Kim, Y.H. Seo, K.S. Nahm, E.K. Suh, H.J. Lee, Y.G. Hwang. Anomalous photoluminescence from 3C-SiC grown on Si(111) by rapid thermal chemical vapor deposition[J]. Appl. Phys. Lett., 1997, 70(13): 1757-1759.
    [23] A. Kassiba, M. Makowska-Janusik, J. Boucle. Photoluminescence features on the Raman spectra of quasistoichiometric SiC nanoparticles: Experimental and numerical simulations[J]. Phys. Rev. B, 2002,66: 155317.
    [24] G.Zou, D. Yu, J. Lu, D. Wang, C. Jiang, Y. Qian. A self-generated template route to hollow carbon nanospheres in a short time[J]. Solid State Commun, 2004, 131(12): 749-752.
    [1] A. Fissel, B. Schroter, W. Richter. Low-temperature growth of SiC thin films on Si and 6H-SiC by solid-source molecular beam epitaxy[J]. Appl. Phys. Lett., 1995, 66(23): 3182-3184.
    [2] K. W. Wong, X. T. Zhou, F. C. K. Au, H. L. Lai, C. S. Lee, S. T. Lee. Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition[J]. Appl. Phys. Lett., 1999, 75(19): 2918-2920.
    [3] G.Pennington, N. Goldsman. Empirical pseudopotential band structure of 3C,4H, and 6H SiC using transferable semiempirical Si and C model potentials[J]. Phys. Rev. B,2001,64: 045104.
    [4] W. V.Muench, E. Pettenpaul. Saturated electron drift velocity in 6H silicon carbide[J]. J. Appl. Phys., 1997,48:4823-4825.
    [5] K. Sakai, A . Fukuyama, S. Shigetomi, T, Lkari. Impurity and defect centers of n-type 4H-SiC single crystals investigated by a photoluminescence and a piezoelectric photo thermal spectroscopies[J]. Solid State Electron, 2004, 48: 1873-1876.
    [6] V. D. Krstic. Production of Fine, High-Purity Beta Silicon Carbide Powders[J]. J. Am. Ceram. Soc., 1992, 75(1): 170-174.
    [7] Y. B. Li, S. S. Xie, W. Y. Zhou, L. J. Ci, Y. Bando. Cone-shaped hexagonal 6H-SiC nanorods[J]. Chem. Phys. Lett., 2002,356(3-4): 325-330.
    [8] J. S. Lee,Y. K. Byeun, S. H. Lee, S. C. Choi. In situ growth of SiC nanowires by carbothermal reduction using a mixture of low-purity SiO_2 and carbon[J]. J. Alloys. Compd. 2008,456(1-2): 257-263
    [9] W.S. Seo, K. Koumoto. Stacking Faults in β-SiC Formed during Carbothermal Reduction of SiO_2 [J]. J. Am. Ceram. Soc. 1996, 79(7): 1777-1782.
    [10] Z. J. Li, H. J. Li, X. L. Chen, A. L. Meng, K. Z. Li, Y. P. Xu, L. Dai. Large-scale synthesis of crystalline β-SiC nanowires[J]. Appl. Phys. A., 2003, 76: 637-640.
    [11] C. Vix-Guterl, P. Ehrburger. Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation[J]. Carbon, 1997, 35(10-11): 1587-1592.
    
    [12] G. W. Meng, Z. Cui, L. D. Zhang, F. Phillipp. Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO_2 xerogels containing carbon nanoparticles[J]. J. Cryst. Growth., 2000,209: 801-806.
    [13] J. Narayan, R. Raghunathan, R. Chowdhury, K. Jagannadham. Mechanism of combustion synthesis of silicon carbide[J]. J. Appl. Phys., 1994, 75: 7252-7257.
    [14] J. Q. Hu, Q. Y. Lu, K. B. Tang, Y. T. Qian, G. E. Zhou, X. M. Liu, J. X. Wu. A New Rapid Reduction-Carbonization Route to Nanocrystalline β-SiC[J]. Chem. Mater., 1999,11(9): 2369-2371.
    [15] G. Z. Shen, D. Chen, K. B. Tang, Y. T. Qian, S. Y. Zhang. Silicon carbide hollow nanospheres, nanowires and coaxial nanowires[J]. Chem. Phys. Lett., 2003, 375(1-2): 177-184.
    [16] Q. Y. Lu, J. Q. Hu, K. B. Tang, et al. Growth of SiC nanorods at low temperature[J]. Appl Phys Lett, 1999,75(4): 507-509.
    [17] P. Li, L. Q. Xu, Y. T. Qian. Selective Synthesis of 3C-SiC Hollow Nanospheres and Nanowires[J]. Crystal Growth & Design., 2008, 8(7): 2431-2437.
    [18] Z. C. Ju, Z. Xing, C. L. Guo, L. S. Yang, L. Q. Xu, Y. T. Qian. Sulfur-assistedapproach for the low temperature synthesis of 3C-SiC nanowires[J]. Eur. J. Inorg. Chem., 2008,2008(24): 3883-3888. [19] K. Koumoto, S. Takeda, C. Pai, T. Sata, H. Yanagida. High-Resolution Electron Microscopy Observations of Stacking Faults in |3-SiC[J]. J Am Ceram Soc, 1989, 72(10): 1985-1987.
    [20] L.S. Liao, X.M. Bao, Z.F.Yang, N.B. Min. Intense blue emission from porous β-SiC formed on Cl-implanted silicon[J]. Appl. Phys. Lett., 1995, 66(18): 2382-2384.
    [21] Z.X. Yang, Y. D. Xia, M. Robert. High Surface Area Silicon Carbide Whiskers and Nanotubes Nanocast Using Mesoporous Silica[J]. Chem. Mater., 2004, 16(20): 3877-3884.
    [22] R. Moene, M. Makkee, J. A. Moulijn. High surface area silicon carbide as catalyst support characterization and stability[J]. Appl. Catal. A., 1998, 167: 321-330.
    [23] J. Q. Hu, Q. Y. Lu, K. B. Tang, Y. T. Qian, W. C. Yu, G.E. Zhou, X. M. Liu, J. X. Wu. Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route[J]. J Phys Chem B, 2000, 104(22): 5251-5254.
    [24] H.W. Shim, K.C. Kim, Y.H. Seo, K.S. Nahm, E.K. Suh, H.J. Lee, Y.G. Hwang. Anomalous photoluminescence from 3C-SiC grown on Si(111) by rapid thermal chemical vapor deposition[J]. Appl. Phys. Lett., 1997, 70(13): 1757-1759.
    [25] G. Gundiah, G.V. Madhav, A. Govindaraj, M. Sheikh, C.N. R. Rao. Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires[J]. J. Mater. Chem. 2002, 12: 1606-1611.
    
    [26] X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, P. K. Chu. Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites[J]. Phys. Rev. Lett. 2005,94: 026102-4.
    [27] G.C. Xi, Y. K. Liu, et al. Mg-Catalyzed Autoclave Synthesis of Aligned Silicon Carbide Nanostructures[J]. J Phys Chem B, 2006, 110(29): 14172-14178.
    [28] S. Nie, S. R. Emory. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering[J]. Science. 1997,275: 1102-1106.
    [29] S. Link, M. A. El-Sayed. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods[J]. J. Phys. Chem. B. 1999, 103(40): 8410-8426.
    [30] A. Kassiba, M. Makowska-Janusik, J. Boucle. Photoluminescence features on the Raman spectra of quasistoichiometric SiC nanoparticles: Experimental and numerical simulations[J]. Phys. Rev. B, 2002, 66: 155317.
    [31] J. A. Dean. Lange's Handbook of Chemistry, 13th ed[M]. New York: McGraw-Hill, 1985:231.
    [32] J. W. Liu, M. W. Shao, X. Y. Chen, Y. T. Qian. Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process[J]. J. Am. Chem. Soc, 2003, 125(27): 8088-8089.
    [33] X. F. Duan, C. M. Lieber. General Synthesis of Compound Semiconductor Nanowires[J]. Adv Mater, 2000, 12(4): 298-302.
    [34] X. W. Du, X. Zhao, S. L. Jia, Y. W. Lu, J. J. Li, N. Q. Zhao. Direct synthesis of SiC nanowires by multiple reaction VS growth[J]. Mater. Sci. Eng. B., 2007, 136: 72-77.
    [35] S. Hayashi, S. Tanimoto, K. Yamamoto. Analysis of surface oxides of gas-evaporated Si small particles with infrared spectroscopy, high-resolution electron microscopy, and x-ray photoemission spectroscopy[J]. J. Appl. Phys., 1990,68:5300-5308.
    [36] A. A. Kamnev, M. Ristic, V. Angelov. Transmission Mossbauer and FTIR spectroscopic studies of binary nickel(II)-iron(III) hydroxide systems[J]. J. Mol. Struct. 1995,349: 77-80.
    [1] P. Jiang, J. F. Bertone, V. L. Colvin. A Lost-Wax Approach to Monodisperse Colloids and Their Crystals[J]. Science, 2001,291: 453-457
    
    [2] H. G.Yang, H. C. Zeng. Preparation of Hollow Anatase TiO_2 Nanospheres via Ostwald Ripening[J]. J. Phys. Chem. B, 2004,108(11): 34923495.
    [3] Y. D. Yin, R. M. Rioux,C. K. Erdonmez, S. Hughes, G.A. Somorjai, A. P. Alivisatos. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect[J]. Science, 2004, 304: 711-714.
    [4] M. Iida, T. Sasaki, M. Watanabe. Titanium Dioxide Hollow Microspheres with an Extremely Thin Shell[J]. Chem. Mater., 1998,10(12): 3780-3782.
    [5] T. Nakashima, N. Kimizuka. Interfacial Synthesis of Hollow TiO_2 Microspheres in Ionic Liquids[J]. J. Am. Chem. Soc, 2003,125(21): 6386-6387.
    [6] Q. Y. Zhou, S. X. Wang, X. W. Fan, R. Advincula. Living Anionic Surface-Initiated Polymerization (LASIP) of a Polymer on Silica Nanoparticles[J]. Langmuir, 2002,18(8): 3324-3331.
    [7] P. J. Bruinsma, A. Y. Kim, J. Liu, S. Baskaran. Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres[J]. Chem. Mater., 1997,9(11): 2507-2512.
    [8] M. Q. Zhao, L. Sun, R. M. Crooks. Preparation of Cu Nanoclusters within Dendrimer Templates[J]. J. Am. Chem. Soc, 1998, 120(19): 4877-4878.
    [9] C. E. Fowler, D. Khushalani, S. Mann. Interfacial synthesis of hollow microspheres of mesostructured silica[J]. Chem. Commun., 2001,19: 2028-2029.
    [10] R. K. Rana, Y. Mastai, A. Gedanken. Acoustic Cavitation Leading to the Morphosynthesis of Mesoporous Silica Vesicles[J]. Adv. Mater., 2002, 14(20): 1414-1418.
    
    [11] B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Battes, D. E. Discher, D. A. Hammer. Polymersomes: Tough Vesicles Made from Diblock Copolymers[J]. Science, 1999,284:1143-1146.
    
    [12] M. S. Wendland, S. C. Zimmerman. Synthesis of Cored Dendrimers[J]. J. Am. Chem. Soc, 1999,121(6): 1389-1390.
    
    [13] I. Tissot, J. P. Reymond, F. Lefebvre, E. Bourgeat-Lami. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles[J]. Chem. Mater, 2002, 14(3): 1325-1331.
    
    [14] A. Imhof. Preparation and Characterization. of Titania-Coated Polystyrene Spheres and Hollow Titania Shells[J]. Langmuir, 2001, 17(12): 3579-3585.
    
    [15] Y. Zhang, E. W. Shi, Z. Z. Chen, X. B. Li, B. Xiao. Large-scale fabrication of silicon carbide hollow spheres[J]. J. Mater. Chem, 2006, 16:4141-4145.
    
    [16] I. L. Radtchenko, G.B. Sukhorukov, N. Gaponik, A. Kornowski, A. L.Rogach, H. Mjhwald. Core-Shell Structures Formed by the Solvent-Controlled Precipitation of Luminescent CdTe Nanocrystals on Latex Spheres[J]. Adv. Mater, 2001,13(22): 1684-1687.
    [17] Z. Y. Zhong, Y. D. Yin, B. Gates, Y. N. Xia. Preparation of Mesoscale Hollow Spheres of TiO_2 and SnO9+O_2 by Templating Against Crystalline Arrays of Polystyrene Beads[J]. Adv. Mater, 2000, 12(3): 206-209.
    [18] Y. Lu, Y. D. Yin, Y. N. Xia. Preparation and Characterization of Micrometer-Sized "Egg Shells"[J]. Adv. Mater, 2001,13(4): 271-274.
    [19] A. J. Khopade, F. Caruso. Electrostatically Assembled Polyelectrolyte/Dendrimer Multilayer Films as Ultrathin Nanoreservoirs[J]. Nano Lett, 2002, 2(4): 415-418.
    
    
    [20] F. Caruso, M. Spasova, A. Susha, M. Giersig, R. A. Caruso. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Chem. Mater, 2001,13(1): 109-116.
    
    [21] I. L. Radtchenk, G.B. Sukhorukov, N. Gaponik, A. Kornowski, A. L. Rogach, H. Mohwald. Core-Shell Structures Formed by the Solvent-Controlled Precipitation of Luminescent CdTe Nanocrystals on Latex Spheres[J]. Adv. Mater, 2001, 13(22): 1684-1687.
    
    [22] W. Stober, A. Fink. Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid Interface Sci., 1968,26: 62-69.
    [23] S. Hayashi, S. Tanimoto, K. Yamamoto. Analysis of surface oxides of gas-evaporated Si small particles with infrared spectroscopy, high-resolution electron microscopy, and x-ray photoemission spectroscopy [J]. J. Appl. Phys., 1990, 68(10): 5300-5308.
    [24] A.A. Kamnev, M. Ristic, V. Angelov. Transmission Mossbauer and FTIR spectroscopic studies of binary nickel(II)-iron(III) hydroxide systems[J]. J. Mol. Struct. 1995, 349: 77-80.
    [25] K. Koumoto, S. Takeda, C. Pai, T. Sata, H. Yanagida. High-Resolution Electron Microscopy Observations of Stacking Faults in β-SiC[J]. J Am Ceram Soc, 1989, 72(10):1985-1987.
    [26] L.S. Liao, X.M. Bao, Z.F.Yang, N.B. Min. Intense blue emission from porous β-SiC formed on Cl-implanted silicon[J]. Appl. Phys. Lett., 1995, 66(18): 2382-2384.
    [27] J. Q. Hu, Q. Y. Lu, K. B. Tang, Y. T. Qian, W. C. Yu, G.E. Zhou, X. M. Liu, J. X. Wu. Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route[J]. J. Phys. Chem. B, 2000, 104(22): 5251-5254.
    [28] H.W. Shim, K.C. Kim, Y.H. Seo, K.S. Nahm, E.K. Suh, H.J. Lee, Y.G. Hwang. Anomalous photoluminescence from 3C-SiC grown on Si(111) by rapid thermal chemical vapor deposition[J]. Appl. Phys. Lett., 1997, 70(13): 1757-1759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700