用户名: 密码: 验证码:
棒状ZnO基稀磁半导体的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种具有3.37eV的禁带宽度、高达60meV的激子束缚能、高的化学稳定性以及优良的压电、热电和光电特性的新型宽禁带Ⅱ-Ⅵ族化合物半导体材料。尤为重要的是,ZnO基稀磁性半导体材料由于可能具有高于室温的居里温度,大的磁性离子固溶度以及对可见光透明等特点,因此有希望成为集优异的磁、光、电等特性为一体的新型多功能半导体材料,在未来的自旋电子学器件中具有广阔的应用前景。然而由于目前获得的ZnO基稀磁半导体材料存在着实验的重复性差、铁磁性不稳定以及铁磁性来源没有统一的理论解释等问题,因此,开展ZnO基稀磁半导体的实验和理论研究具有重要的现实意义。
     本文首先采用水热法,以醋酸锌和氢氧化钠为原料,制备了棒状ZnO,并分析了棒状ZnO的形成机理。同时研究了表面活性剂PAM对棒状ZnO结构和性能的影响。结果表明,PAM对ZnO的形貌没有明显的影响,但可以改变样品的化学计量比,起到调节主导缺陷类型和数目的作用。棒状ZnO晶体的紫色和蓝色发射随着PAM浓度的增加先增加后减小,而绿色发射随着随着PAM浓度的增加而增加。在PAM浓度分别为0、0.00005%、0.0003%时的棒状ZnO样品均呈现出顺磁性的特点。而在PAM浓度为0.0001%时的棒状ZnO样品呈现出室温铁磁性,其中的Zn空位缺陷占主导地位,被认为是产生铁磁性的主要原因,磁矩的主要贡献来自于紧邻Zn空位的O原子的2p未成对电子。
     其次,分别以乙酸铬、乙酸钴和乙酸镍为掺杂剂,对棒状ZnO进行了掺杂,并对其磁光性能进行了研究。掺杂剂的引入对样品的生长特性产生一定影响,虽然ZnO晶体仍然沿着[001]方向择优生长,但是样品变得粗大,而且均匀性变差,同时棒状ZnO晶体的本征缺陷增加,结晶质量下降。Cr掺杂棒状ZnO晶体的所有可见光发射及Co掺杂棒状ZnO晶体的紫色和蓝色发射随着掺杂浓度的增加先增加后减小;Ni掺杂棒状ZnO晶体的可见光发射随着掺杂浓度的增加而增加;Co掺杂棒状ZnO晶体的绿光发射随着掺杂浓度的增加而减小。掺杂浓度为0.5%Cr、Co、Ni掺杂棒状ZnO样品,由于掺杂浓度过小,均呈现出顺磁性的特征。1%Cr、Co、Ni掺杂棒状ZnO样品均呈现出室温铁磁性。3%Cr掺杂棒状ZnO样品,由于掺杂浓度增加,近距离Cr离子间的反铁磁作用使得样品呈现顺磁性。3%Co掺杂棒状ZnO样品由于反铁磁性第二相C0304的产生,使得样品的铁磁性相比于1%Co棒状ZnO样品有所减弱。3%Ni掺杂棒状ZnO样品由于反铁磁第二相Ni(OH)2的产生,使得样品呈现反铁磁性的特征。
     最后采用基于密度泛函理论框架下的第一性原理计算方法,系统研究了ZnO体材料和纳米线以及Cr、Co、Ni分别掺杂的ZnO体材料和纳米线的电子结构和磁学属性,并对ZnO体相材料和纳米线材料以及Co掺杂ZnO体相材料和纳米线材料的光学性质进行了研究。结果表明,ZnO体相材料和纳米线材料均不具有磁性,由于量子限制效应,使得ZnO纳米线材料的禁带宽度相比体相材料有所展宽。Co掺杂ZnO体相材料和Co替代ZnO纳米线体内Zn原子的纳米线材料均呈现出了铁磁性,而且纳米线的磁性相比于体材料有一定程度的放大,其磁性来源于Co3d和02p的交换作用使得能级发生劈裂,产生自旋极化。而Co替代ZnO纳米线表面的Zn原子的体系均不具有磁性。另外,Cr、Ni掺杂ZnO体相材料及纳米线材料也均不呈现磁性。从而说明缺陷对样品呈现的宏观铁磁性起着至关重要的作用。
ZnO is an attractive semiconductor with a direct wide-band gap (3.37eV) and large exciton binding energy (60meV) at room temperature and high chemical stability, excellent piezoelectric, pyroelectric and optoelectronic properties. More importantly, diluted magnetic semiconductors (DMSs) based on ZnO become a good candidate for potential spintronics integrating the excellent optical, electronic and magnetic properties because of their ferromagnetic properties at or above room temperature predicted by theoretical studies, large solubility of magnetic ions and being transparent to visible light. However, up to now, the ferromagnetism of the obtained DMSs based on ZnO is not stable. Experimental reproducibility is poor and the origin of ferromagnetism has no unified theory of interpretation. So it is of great practical significance to study DMSs based on ZnO through experiment and theory.
     Firstly, Rod-like ZnO crystals were synthesized by hydrothermal method employing zinc acetate dihydrate [Zn(CHsCOO)2·2H2O] and sodium hydroxide (NaOH) as the starting reactants and their growth mechanisms were tentatively elucidated. Moreover the effect of surfactant PAM on the structures and properties of rod-like ZnO crystals were also investigated. The results show that the PAM can hardly influence the morphologies of Rod-like ZnO crystals, but it can alter the stoichiometric ratio and adjust the type and number of the dominant intrinsic defects. The intensities of the violet and blue emissions of the samples increase at first, and then decrease, and the green emission increase with the increase of PAM concentration. All the samples synthesized with the PAM concentration of0%,0.00005%and0.0003%show paramagnetism. When the PAM concentration is0.0001%, the rod-like ZnO crystals exhibit ferromagnetism at room temperature, in which zinc vacancies are the main defects and considered to be the origin of ferromagnetism.
     Secondly, the structural, magnetic and optical properties of rod-like ZnO doped with Cr, Co and Ni were studied using chromium acetate [Cr(CH3COO)3], cobalt acetate tetrahydrate [Co(CH3COO)2·4H2O] and nickel acetate tetrahydrate [Ni(CH3COO)2·4H2O] as dopants, respectively. Althougt all the rods grow along the preferred direction of [001], they grow larger, the nonuniformity become more obvious and the instrinc defects increase with the increase of doping concentration. The intensities of the visible emission of Cr-doped ZnO and the violet and blue emissions of Co-doped ZnO increase at first, and then decrease with the increase of doping concentration. The intensities of the visible emission of Ni-doped ZnO increase and the green emission of Co-doped ZnO decrease with the increase of doping concentration. All the samples of ZnO doped with0.5%Cr, Co or Ni show paramagnetism. The samples of ZnO doped with1%Cr, Co or Ni exhibit ferromagnetism at room temperature.3%Cr-doped ZnO exhibits paramagnetism because of the antiferromagnetic interaction between Cr ions. The ferromagnetism of3%Co-doped ZnO become weaker comparing with1%Co-doped ZnO due to the antiferromagnetic secondary phase of CO3O4.3%Ni-doped ZnO exhibits antiferromagnetism because antiferromagnetic secondary phase of Ni(OH)2come into being during hydrothermal process.
     Lastly, the electronic structures, magnetic and optical properties of bulk ZnO and ZnO nanowires undoped or doped with Cr, Co or Ni were investigated by the first-principles calculation based on the density functional theory. The results show that the undoped bulk ZnO and ZnO nanowires exhibit no magnetism and the band gap of ZnO nanowires is wider than that of bulk ZnO because of quantum confinement effect. The Co-doped bulk ZnO exhibits ferromagnetism. The Co-doped ZnO nanowires also show ferromagnetism when the Co atoms substitute for Zn sites in the body of nanowires and its magnetization become larger than that of Co-doped bulk ZnO. Their ferromagnetism originates from the coupling interaction of the electronics between Co3d and O2p. However, the nanowires show no magnetism when the Co atoms substitute for Zn sites on the surface of nanowires. The bulk ZnO and ZnO nanowires doped with Cr or Ni all exhibit no magnetism whenever the Cr or Ni substitutes for Zn in the body or on the surface of nanowires. The defects play an important role in the ferromagnetism of Cr and Ni doped ZnO samples.
引文
[1]徐明.半导体自旋电子学的研究与应用进展[J].材料导报,2006,20:12-14
    [2]Jih-Jen Wu, Sai-Chang Liu, and Ming-Hsun Yang. Room-temperature ferromagnetism in well-aligned Zn1-xCoxO nanorods [J]. Appl. Phys. Lett.2004,85: 1027
    [3]滕晓云.ZnO和ZnO基稀磁半导体薄膜的PLD法制备及其特性研究[D].天津:河北工业大学,2007
    [4]J. K. Furdyna. Diluted magnetic semiconductors [J]. Appl. Phys.,1988,64(4): R29-R64
    [5]刘伟景.ZnO稀磁半导体低维结构的制备和性能研究[D].上海:华东师范大学,2010
    [6]刘宜华,张连生.稀释磁性半导体[J].物理学进展,1994,14(1):82-119
    [7]张富春.3d过渡金属掺杂一维ZnO纳米材料磁光机理研究[D].西安:中国科学院西安光学精密机械研究所,2009
    [8]纪红芬.溶胶—凝胶法制备Co掺杂ZnO基稀磁半导体的研究[D].西北大学,2007
    [9]王丽伟.过渡族金属掺杂ZnO薄膜的制备与铁磁性能的研究[D].北京:北京交通大学,2010
    [10]史同飞.ZnO基稀磁半导体的结构与性能研究[D].合肥:中国科学技术大学,2007
    [11]http://spintronics.korea.ac.kr/research_mapl.htm
    [12]赵建华,邓加军,郑厚植.稀磁半导体的研究进展[J].物理学进展,2007,27(2):109-150
    [13]蔡淑珍,秦向东,段平光,李霞,张玉梅.ZnO基稀磁半导体的研究进展[J].河北大学学报(自然科学版),2007,27(3):332-336
    [14]张晓.ZnO基宽禁带稀磁半导体材料的制备及性能研究[D].天津:南开大学,2010
    [15]刘学超,陈之战,施尔畏,宋力昕.ZnO基稀磁半导体磁性机理研究进展[J].无机材料学报,2009,24(1):1-7
    [16]王栋.ZnO基稀磁半导体材料的微结构及性能研究[J].武汉:武汉大学,2010
    [17]F. Pan, C. Song, X. J. Liu, Y. C. Yang, F. Zeng. Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films [J]. Mater. Sci. Eng. R, 2008,62,1-35
    [18]T. Dietl, H. Ohno, F. Matsukura, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semicondutors [J]. Science,2000,287: 1019-1022
    [19]C. Zener. Interaction between the d-Shells in the Transition Metals [J]. Phys. Rev., 1951,81(4):440-444
    [20]J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald. Donor impurity band exchange in dilute ferromagnetic oxides [J].Nature Materials,2005,4:173-179
    [21]张富春,邓周虎,闫军锋,王雪文,张志勇.Ga掺杂ZnO电子结构的密度泛函计算[J].功能材料,2005,36(8):1268-1272
    [22]M. Miyazaki, K. Sato, A. Mitsui, H. Nishimura. Properties of Ga-doped ZnO films [J]. J. Non-Crystalline Solids,1997,218:323-328
    [23]J. Hu, R.G Gordon. Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium [J]. J. Appl. Phys.,1992,72:5381-5392
    [24]张富春,张志勇,张威虎,闫军锋,负江妮.AZO(ZnO:A1)电子结构与光学性质的第一性原理计算[J].光学学报,2009,29(4):1025-1031
    [25]彭丽萍,孟桂菊,徐凌.A1掺杂ZnO光学性能的第一性原理研究[J].高等函授学报(自然科学版),2007,21(4):39-42
    [26]M. M. Yoshida, R. P. Delgado, W. Lopez, et al. Structure and morphology of high quality indium-doped ZnO films obtained by spray pyrolysis [J]. Thin Solid Films, 2000,376:99-109
    [27]冯现徉,王培吉,张昌文,逯瑶,蒋雷,张国莲.In掺杂ZnO光学性质的第一性原理研究[J].人工晶体学报,2011,40(2):517-521
    [28]C. M. Lieber. One-dimensional nanostructures-chemistry, physics & applications [J]. Solid State Commun.,1998,107:607-616
    [29]Y. H. Leung, Z. B. He, L. B. Luo, C. H. A. Tsang, N. B. Wong, W. J. Zhang, and S. T. Lee. ZnO nanowires array p-n homojunction and its application as a visible-blind ultraviolet photodetector [J]. Appl. Phys. Lett.,2010,96:053102
    [30]Haruyuki Endo, Mayo Sugibuchi, Kousuke Takahashi, Shunsuke Goto, et al. Schottky ultraviolet photodiode using a ZnO hydro thermally grown single crystal substrate [J]. Appl. Phys. Lett.,2007,90:121906
    [31]P. Yu, Z. K. Tang, G. K. L. Wong. Room Temperature stimulated emission from ZnO quantum dot films. In 23nd Int. Conf. on the Physics of Semiconductor. World Scientific Singapore,1996,2:1453-1456
    [32]K. Sato, H. K-Yoshida. Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors [J]. Jpn. J. Appl. Phys.2000,39, Part 2, No.6B, L555-L558
    [33]Z. W. Jin, T. Fukumura, M. Kawasaki K. Ando, H. Saito, T. Sekiguchi, Y Z. Yoo, M. Murakami, Y Matsumoto, T. Hasegaw, and H. Koinuma. High throughput fabrication of transition-metal-doped epitaxial ZnO thin films:A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett.2001,78:3824-3826
    [34]T. Fukumura, Z, Jin, M. Kawasaki, et al. Magnetic properties of Mn-doped ZnO [J]. Appl. Phys. Lett.,2001,78:958-960
    [35]H. L. Yan, J. B. Wang, X. L. Zhong, Y. C. Zhou. Spatial distribution of manganese and room temperature ferromagnetism in manganese-doped ZnO nanorods [J]. Appl. Phys. Lett.,2008,93:142502
    [36]M. X. Yuan, W. Y. Fu, H. B. Yang, et al. Structural and magnetic properties of Mn-doped ZnO nanorod arrays grown via a simple hydrothermal reaction [J]. Mater. Lett,2009,63:1574-1576
    [37]He Qing-Bo, Xu Jia-Yue, Li Xin-Hua, et al. Raman Spectroscopy and Magnetic Properties of Mn-Doped ZnO Bulk Single Crystal [J]. Chin. Phys. Lett.,2007, 24(12):3499-3501
    [38]Y. Q. Chang, P. W. Wang, R. H. Tang, Q. L. Sun and Y Long. Synthesis and Room Temperature Ferromagnetism of Flower-shaped Mn Doped ZnO Nanostructures [J]. J. Magn. Magn. Mater.,2011,27(6):513-517
    [39]Sasanka Deka, and P. A. Joy. Synthesis and magnetic properties of Mn doped ZnO nanowires [J]. Solid State Commun.,2007,142:190-194
    [40]T. Yang, Y. Li, M. Y. Zhu, et al. Room-temperature ferromagnetic Mn-doped ZnO nanocrystal synthesized by hydrothermal method under high magnetic field [J]. Mater. Sci. Eng. B,2010,170:129-132
    [41]K. Ueda, H. Tabata, T. Kawai. Magnetic and electric properties of transition-metal-doped ZnO films [J]. Appl. Phys. Lett.,2001,79:988
    [42]M. Bouloudenine, N. Viart, S. Colis, A. Dinia. Bulk Znl-xCoxO magnetic semiconductors prepared by hydro thermal technique [J]. Chem. Phys. Lett.,2004,397: 73-76
    [43]M. Bouloudenine, N. Viart, S. Colis, A. Dinia. Znl-xCoxO diluted magnetic semiconductors synthesized under hydrothermal conditions [J]. Catalysis Today,2006, 113:240-244
    [44]W. Li, Q. Q. Kang, L. Zhang, et al. Paramagnetic anisotropy of Co-doped ZnO single crystal [J]. Appl. Phys. Lett,2006,89:112507
    [45]X. C. Liu, E. W. Shi, Z. Z. Chen, et al. Structural, optical and magnetic properties of Co-doped ZnO films [J]. J. Cryst. Growth,2006,296:135-140
    [46]Zhou Shao-Min, Wang Peng, Li sheng, et al. Ferromagnetism from Co-Doped ZnO Nanocantilevers above Room Temperature. Chin. Phys. Lett.,2008, 25(12):4446-4448
    [47]B. Q. Wang, C. H. Xia, J. Iqbal, et al. Influences of Co doping on the structural, optical and magnetic properties of ZnO nanorods synthesized by hydrothermal route [J]. Solid State Sciences,2009,11:1419-1422
    [48]D. L. Hou, R. B. Zhao, Y. Y. Wei, C. M. Zhen, et al, Room temperature ferromagnetism in Ni-doped ZnO films [J]. Current Applied Physics,2010,10: 124-128
    [49]Y. Zhang, E. W. Shi, Z. Z. Chen. Magnetic properties of different temperature treated Co-and Ni-doped ZnO hollow nanospheres [J]. Materials Science in Semiconductor Processing,2010,13:132-136
    [50]C. H. Xia, C. G. Hua, Y. S. Tian, B. Y. Wan, et al. Room-temperature ferromagnetic properties of Ni-doped ZnO rod arrays [J]. Physica E,2010,42: 2086-2090
    [51]Z. H. Yu, S. H. Ge, Y. L. Zuo, G. W. Wang, F. Zhang. Vacancy-induced room-temperature ferromagnetism in ZnO rods synthesized by Ni-doped solution and hydrothermal method [J]. Applied Surface Science,2010,256:5813-5817
    [52]陈霞.Cr掺杂ZnO基稀磁半导体薄膜结构和磁性研究[D].天津:天津理工大学,2008
    [53]刘惠莲,张永军,王雅新,魏茂斌,杨景海.Fe掺杂ZnO稀磁半导体的结构与磁性[J].吉林大学学报,2009,47(6):1282-1286
    [54]C. K. Xu, K. K. Yang, L. Whang, Y. Y. Liu and H. Wang. Ferromagnetism of aligned Zn1-xVxO nanorods grown by a vapour transport route [J]. J. Phys. D:Appl. Phys.,2008,41:195005
    [55]R. Elilarassi, G. Chandrasekaran. Structural, optical and magnetic properties of nanoparticles of ZnO:Ni-DMS prepared by sol-gel method [J]. Mater. Chem. Phys., 2010,123:450-455
    [56]C. Cheng, G. Y. Xu, H. Q. Zhang, et al. Solution synthesis, optical and magnetic properties of Zn1-xCoxO nanowires [J]. Materials Letters,2008,62:3733-3755
    [57]N. R. S. Farley, C. R. Staddon, L. X. Zhao, et al. Sol-gel formation of ordered nanostructured doped ZnO films [J]. J. Mater. Chem.,2004,14:1087
    [58]马勇,王万录,廖克俊等.ZnO薄膜的光致发光[J].功能材料,2004,35(2):139-141
    [59]肖宗湖,张萌.ZnO薄膜结构缺陷与发光性能研究(一)[J].人工晶体学报,2006,35(6):1322-1327
    [60]Lin Bixia, Fu Zhuxi, Jia Yunbo, et al. The ultraviolet and green luminescence centers in un-doped zinc oxide films [J]. Acta Physica Sinica,2001,50:2208-2211 (in Chinese)
    [1]X. H. Zhang, S. J. Chua, A. M. Yong, et al. Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method [J]. Appl. Phys. Lett.,2007,90: 013107
    [2]Y. Su, L. Li, Y. Q. Chen, et al. The synthesis of Sn-doped ZnO nanowires on ITO substrate and their optical properties [J]. J. Crystal Growth,2009,311:2466-2469
    [3]Lisheng Wang, Xiaozhong Zhang, Songqing Zhao, et al. Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives [J]. Appl. Phys. Lett.,2005,86:024108
    [4]J.Q. Hu, Q. Li, X.M. Meng, C.S. Lee, S.T. Lee. Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes [J]. Chem. Mater.,2003, 15:305-308
    [5]Z. Zhong, J. Sun, X. Q. Chen, et al. Effect of Zn Interstitials on Enhancing Ultraviolet Emission of ZnO Films Deposited by MOCVD [J]. Chin. Phys. Lett.,2010, 27(9):096101
    [6]G. W. Cong,a_ H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao,W. G. Hu, Q. S. Zhu, and Z. G. Wang. One-step growth of ZnO from film to vertically well-aligned nanorods and the morphology-dependent Raman scattering [J]. Appl. Phys. Lett.,2005,87:231903
    [7]张宁,李清山,赵波等.退火对溶胶-凝胶法制备的ZnO薄膜结构和光致发光的影响[J].发光学报,2006,27(5):782-786
    [8]纪红芬.溶胶-凝胶法制备Co掺杂ZnO基稀磁半导体的研究[D].西安:西北大学,2007
    [9]H. Benelmadjat, B. Boudine, O. Halimi, M. Sebais. Fabrication and characterization of pure and Sn/Sb-doped ZnO thin films deposited by sol-gel method [J]. Optics & Laser Technology,2009,41:630-633
    [10]H. Y. Wei, Y. S. Wu, N. Lun, C. X. Hu. Hydrothermal synthesis and characterization of ZnO nanorods [J]. Mater. Sci. Eng. A,2005,393:80-82
    [11]D. Ehrentraut, H. Sato, Y. Kagamitani, et al. Solvothermal growth of ZnO [J]. Progress in Crystal Growth and Characterization of Materials,2006,52:280-335
    [12]Y. B. Zhang, S. Li, K. L. Goh and S. Tripathy. Hydrothermal epitaxy of ZnO:Co diluted magnetic semiconducting single crystalline films [J]. Appl. Phys. Lett.,2008, 93:102510
    [13]Y. D. Wang, K. Y. Zang, S. J. Chua and C. G. Fonstad. Catalyst-free growth of uniform ZnO nanowire arrays on prepatterned substrate [J]. Appl. Phys. Lett.,2006,89: 263116
    [14]L. Chow, O. Lupan, H. Heinrich and G. Chai. Self-assembly of densely packed and aligned bilayer ZnO nanorod arrays[J]. Appl. Phys. Lett.,2009,94:163105
    [15]Momoko Tanaka, Masaharu Nishikino, Hiroshi Yamatani, et al. Hydrothermal method grown large-sized zinc oxide single crystal as fast scintillator for future extreme ultraviolet lithography [J]. Appl. Phys. Lett.,2007,91:231117
    [16]H. M. Hu, C. H. Deng, X. H. Huang. Hydrothermal growth of center-hollow multigonal star-shaped ZnO architectures assembled by hexagonal conic nanotubes [J]. Mater. Chem. Phys.,2010,121:364-369.
    [17]D. Li, Z. T. Liu, Y. H. Leung, et al. Transition metal-doped ZnO nanorods synthesized by chemical methods [J]. J. Phys. Chem. Solids,2008,69:616-619
    [18]M. L. Wang, C. G. Huang, Z. Huang, et al. Synthesis and photoluminescence of Eu-doped ZnO microrods prepared by hydrothermal method [J]. Optical Materials, 2009,31:1502-1505
    [19]L. Z. Pei, H. S. Zhao, W. Tan, H. Y. Yu, et al. Single crystalline ZnO nanorods grown by a simple hydrothermal process [J]. Materials Characterization,2009,60: 1063-1067
    [20]H. Y. Xu, H. Wang, Y. C. Zhang, W. L. He, et al. Hydrothermal synthesis of zinc oxide powders with controllable morphology [J]. Ceramics International,2004,30: 93-97
    [21]马正先,姜玉芝,韩跃新,张士成.纳米氧化锌制备原理与技术[M].北京:中国轻工业出版社,2009
    [22]周玉.材料分析方法(第2版)[M].北京:机械工业出版社,2007
    [23]李树棠.X射线衍射实验方法.北京:冶金工业出版社[M].1993
    [24]漆睿,戎泳华.X射线衍射与电子显微分析[M],上海:上海交通大学出版,1992
    [25]朱和国,王恒志.材料科学研究与测试方法[M].南京:东南大学出版社.2008
    [26]杭联茂.烧结碳化硅晶体的制备、结构及光致发光特性[D].西安:西安理工 大学,2001
    [27]昝祥.固相烧结多孔SiC的制备、结构、光致发光和电阻率[D].西安:西安理工大学,2003
    [28]黄贵军.ZnO稀磁半导体的制备和磁、光性能研究[D].湘潭:湘潭大学,2007
    [29]李金华.Mn掺杂ZnO纳米晶的光学和磁学性质研究[D].长春:长春光学精密机械与物理研究所,2006
    [1]D. Ehrentraut, H. Sato, Y. Kagamitani, et al. Solvothermal growth of ZnO [J]. Progress in Crystal Growth and Characterization of Materials,2006,52:280-335
    [2]Momoko Tanaka, Masaharu Nishikino, Hiroshi Yamatani, et al. Hydrothermal method grown large-sized zinc oxide single crystal as fast scintillator for future extreme ultraviolet lithography [J]. Appl. Phys. Lett.,2007,91:231117
    [3]J. F. Yan, L. L. Zhao, Z. Y. Zhang. Optimization of (002)-Oriented ZnO Film Synthesis in Sol-Gel Process and Film Photoluminescence Property [J]. Chin. Phys. Lett.,2008,25:2253-2256
    [4]R. Triboulet and Jacques Perriere. Epitaxial growth of ZnO films [J]. Progress in Crystal Growth and Characterization of Materials,2003,47:65-138
    [5]Z. K. Li, X. T. Huang, J. P. Liu, H. H. Ai, Single-crystalline ZnO nanowires on zinc substrate by a simple hydrothermal synthesis method [J]. Materials Letters,2008,62: 2507-2511
    [6]N. Wang, Y. Cai, R. Q. Zhang. Growth of nanowires [J]. Materials Science and Engineering R,2008,60:1-51
    [7]Ji-Seung Lee, Jong-Jin Lee, Heesun Yang. Modulated growth density of ZnO nanowires using seed-containing composite film [J]. Current Applied Physics,2009,9: e115-e118
    [8]J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S.T. Lee. Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes [J]. Chem. Mater.,2003, 15:305-308
    [9]A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu, W. Huang. Stable field emission from hydrothermally grown ZnO nanotubes [J]. Appl. Phys.Lett.,2006,88: 213102
    [10]H. M. Hu, X. H. Huang, C. H. Deng, X. Y. Chen, Y. T. Qian. Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale [J]. Mater. Chem. Phys., 2007,106:58-62
    [11]Y. D. Wang, K. Y. Zang, S. J. Chua, C. G. Fonstad. Catalyst-free growth of uniform ZnO nanowire arrays on prepatterned substrate [J]. Appl. Phys.Lett.,2006,89:263116
    [12]Y. Sun, N. George Ndifor-Angwafor, D. Jason Riley, Michael N.R. Ashfold. Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth [J]. Chem. Phys. Lett.,2006,431:352-357
    [13]P. G. Li, X. Wang, W. H. Tang. Facile route to well-aligned ZnO nanowire arrays [J]. Mater. Lett.,2009,63:718-720
    [14]L. Kumari, W. Z. Li, C. H. Vannoy, R. M. Leblanc, D. Z. Wang. Zinc oxide micro-and nanoparticles:Synthesis, structure and optical properties [J]. Mater. Res. Bull., 2010,45:190-196,.
    [15]J. Wu, S. P. Chen, S. L. Gao. In situ calorimetric investigation of ZnO transformation from flower-like nanostructures to microrod [J]. Mater. Chem. Phys., 2010,122:301-304
    [16]F. Li, L. Hu, Z. Li, X. T. Huang. Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method [J]. J. Alloys and Compounds,2008,465:L14-L19
    [17]A. Escobedo-Morales, U. Pal. Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping [J]. Appl. Phys.Lett.,2008,93:193120
    [18]Y. H. Ni, X. W. Wei, X. Ma, J. M. Hong. CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals. J. Cryst. Growth,2005,283: 48-56
    [19]李平,鲁彬,魏雨.表面活性剂对氧化锌微晶形貌的影响[J].无机盐工业,2007,39(7):18-20
    [20]储德韦,曾宇平,江东亮.表面活性剂辅助水热合成氧化锌纳米棒[J].无机材料学报,2006,21(3):571-575
    [21]Y. X. Wang, J. Sun, X. Y. Fan, X. Yu. A CTAB-assisted hydrothermal and solvothermal synthesis of ZnO nanopowders [J]. Ceramics International,2011,37: 3431-3436
    [22]彭银,鲍玲.ZnO纳米环的可控合成[J].高等学校化学学报,2008,29(1):28-32
    [23]J. F. Yan, Z. Y. Zhang, T. G. You, W. Z, J. N. Yun, F. C. Zhang. Effect of polyacrylamide on morphology and electromagnetic properties of chrysanthemum-like ZnO particles [J]. Chinese Physics B,2009,18(10):4552-4557
    [24]L. L. Wu, Y. S. Wu, X. R. Pan, F. Y. Kong. Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property [J]. Optical Mater.,2006,28: 418-422
    [25]S. Y. Gao, H. D. Li, J. J. Yuan, Y. A. Li, X. X. Yang, J. W. Liu. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction [J]. Appl. Surf. Sci.,2010,256:2781-2785
    [26]孙玉明.ZnO及其缺陷电子结构的FP-LMTO研究[D].合肥:中国科学技术大学,2000
    [27]宋国利,孙凯霞,陈保久,杨幼桐,刘慧英.纳米ZnO在可见和紫外波段的激子发光[J].黑龙江大学自然科学学报,2002,19(3):63-66
    [28]Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena. Vacancy-induced magnetism in ZnO thin films and nanowires [J]. Phys. Rev. B,2008,77(20):205411
    [29]梁培.掺杂ZnO稀磁半导体磁性的第一性原理计算[D].武汉:华中科技大学,2009
    [30]邱娟Co、Cu掺杂ZnO纳米线磁性的第一性原理研究[D].西安:西北大学,2011
    [31]夏川茴.ZnO基稀磁半导体的制备与性质研究[D].重庆:重庆大学,2010
    [32]M. Bouloudenine, N. Viart, S. Colis, A. Dinia. Bulk Zn1-xCoxO magnetic semiconductors prepared by hydrothermal technique. Chem. Phys. Lett.,2004,397: 73-76
    [1]D. W. Chu, Y. P. Zeng, D. L. Jiang. Synthesis and growth mechanism of Cr-doped ZnO single-crystalline nanowires [J]. Solid State Commun.,2007,143:308-312
    [2]D. H. Fan, Z. Y. Ning, M. F. Jiang. Characteristics and luminescence of Ge doped ZnO films prepared by alternate radio frequency magnetron sputtering [J]. Appl. Surf. Sci.,2005,245:414-419
    [3]叶志镇.吕建国.张银珠等.氧化锌半导体材料掺杂技术与应用[M].浙江:浙江大学出版社,2009
    [4]M.A. Ruderman, C. Kittel. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons [J]. Phys. Rev.,1954,96:99-102
    [5]K. Yosida. Magnetic Properties of Cu-Mn Alloys [J]. Phys. Rev.,1957,106: 893-898.
    [6]刘宜华,张连生,稀释磁性半导体[J].物理学进展,1994,140:82-120
    [7]J. Spalek, A. Lewichi, Z. Tarnawski, J. K. Furdyna, R. R. Galazka and Z. Obuszko, Magnetic susceptibility of semimagnetic semiconductors:The high-temperature regime and the role of superexchange [J]. Phys. Rev. B,1986,33:3407
    [8]S. kolesnik, B. Dabrowski and J. Mais. Structural and magnetic properties of transition metal substituted ZnO [J]. J. Appl. Phys.,2004,95:2582-2586
    [9]J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou, E. H. Liu. Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles [J]. Appl. Phys. Lett.,2006,88(25):252502
    [10]S. Y. Gao, H. D. Li, J. J. Yuan, Y. A. Li, X. X. Yang, J. W. Liu. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction [J]. Appl. Surf. Sci.,2010,256:2781-2785
    [11]C. J. Cong, J. H. Hong, Q. Y. Liu, et al. Synthesis, structure and ferromagnetic properties of Ni-doped ZnO nanoparticles [J]. Solid State Commun.,2006,138: 511-515
    [12]J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald. Donor impurity band exchange in dilute ferromagnetic oxides [J]. Nature Materials,2005,4:173-179
    [1]李名復.半导体物理学[M].北京:科学出版社,1998
    [2]K. H. He, G Zheng, G. Chen, M. Wan, G F. Ji. The electronic structure and ferromagnetism of TM(TM=V, Cr, and Mn)-doped BN(5,5) nanotube:A first-principles study [J]. Physica B,2008,403:4213-4216
    [3]A. S. Risbud, N. A. Spaldin, Z. Q. Chen, S. Stemmer and Ram Seshadri. Magnetism in polycrystalline cobalt-substituted zinc oxide [J]. Phys. Rev. B,2003,68(20):205202
    [4]E.-C. Lee and K. J. Chang. Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO [J]. Phys. Rev. B,2004,69:085205
    [5]N. A. Spaldin. Search for ferromagnetism in transition-metal-doped piezoelectric ZnO [J]. Phys. Rev. B,2004,69:125201
    [6]负江妮.钙钛矿型氧化物半导化掺杂与表面吸附光电特性的理论研究[D].西安:西北大学,2010
    [7]武鹤楠.ZnO薄膜光学性质及其第一原理计算研究[D].沈阳:沈阳工业大学,2008
    [8]毕艳军,郭志友,孙慧卿,林竹,董玉成.Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究[J].物理学报,2008,57(12):7800-7805
    [9]张富春.ZnO电子结构与属性的第一性原理研究[D].西安:西北大学,2006
    [10]闰军锋.菊花状ZnO纳米线簇的制备及其吸波性能研究[D].西安:西北大学,2009
    [11]翁雪军.微气体传感器SnO2敏感膜表面电子结构及气体吸附的研究[D].大连:大连理工大学,2005
    [12]邱娟Co、Cu掺杂ZnO纳米线磁性的第一性原理研究[D].西安:西北大学,2011
    [13]赵武.掺氮SiC薄膜制备及其光学特性的研究[D].西安:西安光学精密机械研究所,2009
    [14]熊志华.ZnO掺杂改性的第一性原理研究[D].南昌:南昌大学,2008
    [15]H. Karzel, W. Potzel, M. K. Oerlein, et al. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures [J]. Phys. Rev. B,1996, 53(17):11425-11438
    [16]King S L, Gareniers J G E, Boyd I W. pulsed laser deposited ZnO for device application [J]. Appl. surf. Sci.,1996, (96-98):811-818
    [17]B. Delley. Analytic energy derivatives in the numerical local-density-functional approach [J]. J. Chemical Physics,1991,94:7245-7250
    [18]J. P. Perdew, Y. Wang. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation Phys. Rev. B,1991,33: 8800-8802
    [19]Zhiguo Wang, Chunlai Zhang, Jingbo Li, Fei Gao, William J. Weber. First principles study of electronic properties of gallium nitride nanowires grown along different crystal directions [J]. Computational Materials Science,2010,50:344-348
    [20]Y. Wang and J. P. Perdew. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling [J]. Phys. Rev. B,1991,44(24): 13298-13307
    [21]J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45:13244-13249
    [22]V. Milman, K. Refson, S. J. Clark, C. J. Pickard, et al. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials:CASTEP implementation. Journal of Molecular Structure:THEOCHEM,2010,954:22-35
    [23]应杏娟,张兴德,郝志武.第一性原理研究氧化锌晶体的电子结构和光学性质[J].人工晶体学报,2007,36(4):784-788
    [24]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998
    [25]沈学础.半导体光谱和光学性质(第二版)[M].北京:科学出版社,1992
    [26]V. A. Ermoshin, V. A. Veryazov. Electronic Structure Investigation of Bulk ZnO and Its (100) Surface [J]. Physca status solidi(b),1995,189(2):K49-K53
    [27]Shu-jun Hu, Shi-shen Yan, Ming-wen Zhao, and Liang-mo Mei. First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor[J]. Phys. Rev. B, 2006,73:245205
    [28]W. Y. Ching, Y. N. Xu, K. W. Wong. Ground-state and optical properties of Cu2O and CuO cryatals [J]. Phys. Rev. B,1998,40 (11):7684-7695
    [29]D. A. Schwartz and D. R. Gamelin. Reversible 300K Ferromagnetic Ordering in a Diluted Magnetic Semiconductor [J]. Advanced Materials,2004,16(23-24):2115-2119
    [30]刘学超,施尔畏,宋力昕,张华伟,陈之战.固相反应法制备Co掺杂ZnO的磁性和光学性能研究.物理学报,2006,55(5):2557-2561
    [31]沈益斌,周勋,徐明等.过渡金属掺杂ZnO的电子结构和光学性质[J].物理学报,2007,56(6):3440-3445
    [32]陈一民,向卫东,王中才,孙聆东等.玻璃中的ZnS:Mn2+超微粒发光的量子尺寸效应[J].发光学报,1995,16(4):362-364
    [33]Y. Wang and N. Herron. Nanometer-Sized Semiconductor Clusters:Materilas Synthesis, Quantum Size Effect, and Photophysical Properties [J]. J. Phys. Chem., 1991,95:525-532
    [34]Q. Wang, Q. Sun, P. Jena. Magnetic coupling between Cr atoms doped at bulk and surface sites of ZnO [J]. Appl. Phys. Lett.,2006,87(16):162509
    [35]Q. Wang, Q. Sun, P. Jena and Y. Kawazoe. Magnetic properties of transition-metal-doped Zn1-xTxO (T=Cr, Mn, Fe, Co, and Ni) thin films with and without intrinsic defects:A density functional study [J]. Phys. Rev. B,2009,79: 115407
    [36]高慧霞.ZnO基稀磁半导体磁特性研究的第一性原理计算[D].保定:河北大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700