用户名: 密码: 验证码:
六自由度运动模拟平台的分析及结构参数的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于串联机器人而言,Gough-Stewart平台具有精度高和承载能力强等优点,被广泛用作各种六自由度运动模拟平台。由于虎克铰比球铰的转角范围大、且比球铰能承受更大的拉力,从而六自由度运动模拟平台一般用虎克铰作为被动副,把液压缸或电动缸连接于动平台和静平台上。由于液压缸和电动缸中的活塞以及活塞杆不仅沿轴线方向作直线主动运动,还能绕轴线方向被动地转动,即为圆柱副,而不是移动副,从而实际上六自由度运动模拟平台是6-UCU(虎克铰-圆柱副-虎克铰)并联机器人,而不是通常所说的6-UPS(虎克铰-移动副-球铰)并联机器人。
     为了得到性能优良的六自由度运动模拟平台,首先需要对其运动学和动力学特性进行分析,然后需要通过优化设计得到性能优良的结构参数。
     六自由度运动模拟平台的运动学反解分析和动力学反解分析是其机械结构进行设计的基础。基于上、下铰采用虎克铰、中间采用圆柱副的实际结构形式,在建立完整运动学反解的基础上,本文利用牛顿——欧拉方程方法与达朗贝尔原理,建立了六自由度运动模拟平台的完整动力学反解模型。完整运动学反解分析和完整动力学反解分析分别得到了六自由度运动模拟平台各组成部分的运动状况和受力状况。在分析过程中得到了两种导致分母为零的特殊的虎克铰轴线方向布置形式。最后通过仿真实例验证了本文所建立的完整运动学反解模型和完整动力学反解模型的正确性。
     当六自由度运动模拟平台在工作空间内存在奇异时,其动静态特性将发生变化。为了得到性能优良的六自由度运动模拟平台,需要在设计过程中进行奇异性分析和奇异性检测,使设计得到的机械结构参数在所需要的工作空间内不存在奇异位姿。由于虎克铰轴线布置方向会影响六自由度运动模拟平台的奇异性,从而本文考虑主动移动副和被动副虎克铰的影响对其奇异性进行分析。首先根据造成六自由度运动模拟平台奇异的不同原因,把奇异性分为两类:支路奇异与驱动奇异,然后应用螺旋理论分析得到了产生两种奇异类型的条件。通过分析得到了两种导致六自由度运动模拟平台处于支路奇异位姿的情况,即当虎克铰固定于动平台或固定于静平台上转轴的轴线与主动副的轴线共线时,六自由度运动模拟平台处于支路奇异位姿。为了对六自由度运动模拟平台的全部类型的奇异都能检测,本文相应地提出了可直接检测得到六自由度运动模拟平台在整个六维给定工作空间或六维可达工作空间内是否存在奇异位姿结论的奇异性检测算法。通过实例分析验证了本文所提出的奇异性检测算法的有效性。
     本文对六自由度运动模拟平台的两个常用性能指标函数——基于运动学雅克比矩阵的条件数和可操作度进行了介绍。由于基于运动学传统雅克比矩阵的可操作度和条件数数值随着传统雅克比矩阵中元素表示单位的不同而发生变化,从而也对两种常用构造量纲统一的新雅克矩阵的方法——特征长度法和三点坐标法的具体推导过程进行了叙述。为了度量各个作动器动态特性的一致性,本章在铰点工作空间内定义了一个新的性能指标函数——基于广义惯量矩阵的条件数,并且通过仿真实例验证了新性能指标函数不随广义惯量矩阵中元素表示单位的不同而发生变化。
     为了得到性能优良的六自由度运动模拟平台,需要对其结构参数进行优化。实际上机器人的设计通常不是一步到位的,而是多步迭代的过程,从而需要在设计的初始阶段后能为设计者提供多个备选方案。六自由度运动模拟平台的设计可以分为两步,其中第一步设计过程中需依据运动学的要求进行结构参数的设计以满足用户对工作空间的需求。本文首先根据应用需求的不同,把六自由度运动模拟平台设计问题分为3类,然后提出了相应的结构参数优化设计算法。由于基于传统运动学雅克比矩阵的条件数与可操作度能很好地表征六自由度运动模拟平台的性能特性,它们被选作目标函数,然后应用多目标进化算法NSGA-II同时对这两个目标函数进行寻优。寻优结果能得到多组优化解,从而能为设计者在第二步设计过程中提供多个备选方案。本文通过3个设计实例,验证了本文所提出的结构参数优化算法的有效性。
Compared with serial robot, Gough-Stewart platform has been widely used as motion simulators for its higher accuracy and higher load capability, etc. Compared with spherical joint, universal joint can bear more tension and rotate in larger angular range, and then universal joint has been extensively used as the passive joints of6-DOF (degree of freedom) motion simulation platforms to connect hydraulic cylinder or electric cylinder to the moving platform and fixed base. The piston and piston rod of the hydraulic cylinder and electric cylinder not only retract (or extend) along the axis of the cylinder actively, but also can rotate along the axis passively, so it is a cylinder joint, and then these6-DOF motion simulation platforms are6-UCU parallel manipulator, not the6-UPS parallel manipulator, where U stands for the universal joint, C for the cylinder joint, P for the prismatic joint, and S for the spherical joint.
     In order to derive good performance of the6-DOF motion simulation platform, its kinematic characteristics and dynamic characteristics are needed to be analyzed firstly, and then the good performance structural parameters are needed to be derived through optimal design.
     The inverse kinematic and dynamic analyses are the mechanical structure design bases for the6-DOF motion simulation platforms. In practice, the real structure of the6-DOF motion simulation platforms is using universal joints as the lower and upper passive joints of each leg, and using cylinder joint in the middle of each leg. Based on the real structure, the complete inverse kinematic modeling of the6-DOF motion simulation platforms is obtained firstly, and then the complete inverse dynamics of the6-DOF motion simulation platforms is analyzed by using the Newton-Euler method and D'Alembert principle. The movements and forces of various components of6-DOF motion simulation platforms can be derived through the complete inverse kinematics analysis and the complete inverse dynamics analysis respectively. Two special universal joint axis arrangements, which cause denominator to be zero, are derived through the kinematic analysis process and dynamic analysis process. The correctness of the complete inverse kinematic model and complete inverse dynamic model of the6-DOF motion simulation platforms is confirmed through a case study.
     If the6-DOF motion simulation platforms are in a singular pose in the required workspace, their kinestatic characteristics would be changed. In order to derive good performance of the6-DOF motion simulation platform, the required workspaces for the optimized mechanical structure parameters are needed with no singular posture, and then singularity analysis and singularity detection are needed in the design process. The singularities considering the impacts of the active prismatic joint and the passive universal joint are analyzed in this thesis as the universal joint axis arrangement would affect the singularities of the6-DOF motion simulation platforms. Two singular types are defined as leg singularity and actuator singularity according to the different causing reasons. The conditions caused these singularities are derived by using screw theory. Two cases of leg singularities of the6-DOF motion simulation platforms are found in this thesis, namely, when the rotational joint axis fixed on the base or fixed on the moving platform of the universal joints and the axial direction of the actuator joint of the same leg are collinear, the6-DOF motion simulation platform is in the leg singularity posture. In order to detect all the singularities of the6-DOF motion simulation platforms, singularity detection procedures are proposed correspondingly, which can directly determine whether there are singularities within a6-DOF given workspace or6-DOF reachable workspace or not. The effectiveness of the proposed singularity detection procedures are confirmed through case studies.
     Two commonly used performance index functions of the6-DOF motion simulation platform, condition number and manipulability index based on the kinematic traditional Jacobian matrix, are introduced in this thesis. Because the values of condition number and manipulability index based on the kinematic traditional Jacobian matrix are changed as the matrix elements in different units, then the concrete derivations of the two common homogeneous matrix formulation methods, characteristic length method and three end-effector point method, are presented. In order to measure the consistency of each actuator dynamics, a new condition number performance index function based on the generalized inertia matrix in the joint workspace is proposed. The invariant of the new condition number as the elements of the generalized inertia matrix in different units is confirmed through a case study.
     In order to get good performance of the6-DOF motion simulation platforms, it is needed to optimize in the design procedure. In practice, there is a multi step process to derive the final parameters of the robot not with only one step, and then multiple alternatives are needed to provide for designers after the primary design stage. The6-DOF motion simulation platform design procedure can be divided into two stages. In the first design stage, structural parameter design is needed to meet the workspace requirements of users. The6-DOF motion simulation platform design issues are divided into three categories according to different application requirements, and then the corresponding structural parameter optimization design algorithms are put forward. Because condition number and manipulability index based on the kinematic traditional Jacobian matrix are consistent with the performances of the6-DOF motion simulation platform, they are chosen as optimization objective functions. Multi-objective evolutionary algorithm NSGA-II is applied to optimize the two objective functions simultaneously to get multiple optimal solutions, and then multiple alternatives can be provided for designers in the secondary design stage. The effectiveness of the proposed structural parameter optimization design procedures is confirmed through three design case studies.
引文
[1] Merlet J P. Parallel Robots[M].(Second Edition). Netherlands: Springer.2006:179-181,70-93,206-208,166-170
    [2]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:33-34,307
    [3] Ma Ou. Mechanical Analysis of Parallel Manipulators with Simulation,Design and Control Applications[D]. McGill University, Montreal, Canada,PhD. dissertation,1991:122,151-162
    [4] Conconi M, Carricato M. A New Assessment of Singularities of ParallelKinematic Chains[J]. IEEE Transactions on Robotics,2009,25(4):757-770
    [5]赵景山,冯之敬,褚福磊.机器人机构自由度分析理论[M].北京:科学出版社,2009:21-111,191-195
    [6] Zhao J S, Zhou K, Feng Z J. A Theory of Degrees of Freedom forMechanisms[J]. Mechanism and Machine Theory,2004,39(6):621-643
    [7] Huang Z, Li Q C. Construction and Kinematic Properties of3-UPU ParallelMechanisms[C]. Proceedings of ASME2002International DesignEngineering Technical Conferences and Computers and Information inEngineering Conference, Montreal, Canada, September29-October2,2002:1027-1033
    [8] Zlatanov D, Bonev I A, Gosselin C M. Constraint Singularities of ParallelMechanisms[C]. Proceedings of the2002IEEE International Conference onRobotics and Automation, Washington, DC., USA: May2002:496-502
    [9] Merlet J P. Optimal Design of Robots[C]. Proceedings of Robotics: Scienceand Systems, Cambridge, USA, June,2005
    [10] Hao F, Merlet J P. Multi-criteria Optimal Design of Parallel ManipulatorsBased on Interval Analysis[J]. Mechanism and Machine Theory,2005,40(2):157-171
    [11] Angeles J, Park C F. Performance Evaluation and DesignCriteria[C]//Handbook of Robotics. Berlin-Heidelberg: Springer,2008:229-244
    [12] Brog rdh T. Robot Control Overview: An Industrial Perspective[J]. Modeling,Identification and Control.2009,30(3):167-180
    [13] Briot S, Pashkevich A, Chablat D. Technology-Oriented Optimization of theSecondary Design Parameters of Robots for High-Speed MachiningApplications[C]. ASME2010International Design Engineering TechnicalConferences&Computers and Information in Engineering ConferenceIDETC/CIE2010, August15-18,2010, Montreal, Quebec, Canada,2010:753-762
    [14] Dasgupta B, Mruthyunjaya T S. The Stewart Platform Manipulator: AReview[J]. Mechanism and Machine Theory,2000,35(1):15-40
    [15] Merlet J P, Daney D. Appropriate Design of Parallel Manipulators[C]//SmartDevices and Machines for Advanced Manufacturing. London: Springer,2008:1-25
    [16] Yurt S N, Kaya M O, Haciyev C. Optimization of the PD Coefficient in aFlight Simulator Control Via Genetic Algorithms[J]. Aircraft Engineeringand Aerospace Technology,2002,74(2):147-153
    [17] Wikipedia. Stewart platform[EB/OL].(2013-06-11)[2013-06-30].http://en.wikipedia.org/wiki/Stewart_platform
    [18] Fichter E F, Kerr D R, Rees-Jones J. The Gough—Stewart Platform ParallelManipulator: A Retrospective Appreciation[J]. Proceedings of the Institutionof Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2009,223(1):243-281
    [19] Bonev I. The True Origins of Parallel Robots[EB/OL].(2003-01-24)[2013-06-30]. http://www.parallemic.org/Reviews/Review007.html
    [20] Gough V E, Whitehall S G. Universal Tyre Testing Machine[C]. Proceedingsof the9th International Automobile Technical Congress, London, UK,1962:117-137
    [21] Stewart D. A Platform with Six Degrees of Freedom[J]. Proceedings of theInstitution of Mechanical Engineers,1965,180(1):371-386
    [22] Cappel K L. Motion Simulator[P]. US Patent No.3295224, January3,1967
    [23] Tsai L W. Mechanism Design: Enumeration of Kinematic StructuresAccording to Function[M] New York: CRC Press LLC,2001:216-240
    [24] CAE. CAE5000Series Full-flight Simulator[EB/OL].[2013-06-30].http://www.cae.com/uploadedFiles/Content/BusinessUnit/Civil_Aviation/Media_Centre/Document/datasheet.cae.5000.series.pdf
    [25] CAE. CAE7000Series Level D Full-flight Simulator[EB/OL].[2013-06-30].http://www.cae.com/uploadedFiles/Content/BusinessUnit/Civil_Aviation/Media_Centre/Document/datasheet.cae.7000.series.pdf
    [26] Blaise J, Bonev I, Monsarrat B, et al. Kinematic Characterisation of Hexapodsfor Industry[J]. Industrial Robot: An International Journal,2010,37(1):79-88
    [27] Cruden. Cruden’s Hexatech Simulator[EB/OL].[2013-06-30].http://www.cruden.com/training/the-simulator1/
    [28] Dasgupta B, Mruthyunjaya T S. Closed-form Dynamic Equations of theGeneral Stewart Platform Through the Newton–Euler Approach[J].Mechanism and Machine Theory,1998,33(7):993-1012
    [29] Dasgupta B, Mruthyunjaya T S. A Newton-Euler Formulation for the InverseDynamics of the Stewart Platform Manipulator[J]. Mechanism and MachineTheory,1998,33(8):1135-1152
    [30] Fu S, Yao Y, Wu Y. Comments on “A Newton–Euler Formulation for theInverse Dynamics of the Stewart Platform Manipulator” by B. Dasgupta andTS Mruthyunjaya [Mech. Mach. Theory33(1998)1135–1152][J].Mechanism and Machine Theory,2007,42(12):1668-1671.
    [31] Vakil M, Pendar H, Zohoor H. Comments to the:“Closed-form DynamicEquations of the General Stewart Platform Through the Newton–EulerApproach” and “A Newton–Euler Formulation for the Inverse Dynamicsof the Stewart Platform Manipulator”[J]. Mechanism and Machine Theory,2008,43(10):1349-1351
    [32] Abdellatif H, Heimann B. Computational Efficient Inverse Dynamics of6-DOF Fully Parallel Manipulators by Using the Lagrangian Formalism[J].Mechanism and Machine Theory,2009,44(1):192-207
    [33] Lin J, Chen C-W. Computer-Aided-Symbolic Dynamic Modeling forStewart-Platform Manipulator[J]. Robotica,2009,273:331-341
    [34] Guo H B, Li H R. Dynamic Analysis and Simulation of a Six Degree ofFreedom Stewart Platform Manipulator[J]. Proceedings of the Institution ofMechanical Engineers, Part C: Journal of Mechanical Engineering Science,2006,220(1):61-72
    [35] Koekerakker S H. Model Based Control of A Flight Simulator MotionSystem[D]. Netherlands: Delft University of Technology, PhD Dissertation,2001:22-25,31-73
    [36]何景峰.液压驱动六自由度并联机器人特性及其控制策略研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:21-81,82-114,131-132
    [37]代小林,何景峰,韩俊伟,李洪人.对接机构综合试验台运动模拟器的固有频率[J].吉林大学学报(工学版),2009,39(1):308-313
    [38] Yang Chifu, Han Junwei, Zheng Shutao, et al. Dynamic Modeling andComputational Efficiency Analysis for a Spatial6-DOF Parallel MotionSystem[J]. Nonlinear Dynamics,2012,67(2):1007-1022
    [39] Meng Qiang, Zhang Tao, He Jing-feng, et al. Dynamic Modeling of a6-Degree-of-Freedom Stewart Platform Driven by a Permanent MagnetSynchronous Motor[J]. Journal of Zhejiang University-Science C(Computers&Electronics),2010,11(10):751-761
    [40] Li D, Salcudean S E. Modeling, Simulation, and Control of a HydraulicStewart Platform[C]. Proceedings of the1997IEEE International Conferenceon Robotics and Automation, Albuquerque, New Mexico,1997,4:3360-3366
    [41] Geike T, McPhee J. Inverse Dynamic Analysis of Parallel Manipulators withFull Mobility[J]. Mechanism and Machine Theory,2003,38(6):549-562
    [42] Wang J, Gosselin C M. A New Approach for the Dynamic Analysis of ParallelManipulators[J]. Multibody System Dynamics,1998,2(3):317-334
    [43] Tsai L W. Solving the Inverse Dynamic of A Stewart-Gough PlatformManipulator by the Principle of Virtual Work[J]. Journal of MechanicalDesign,2000,122(1):3-9
    [44] Staicu S. Dynamics of the6-6Stewart Parallel Manipulator[J]. Robotics andComputer-Integrated Manufacturing,2011,27(1):212-220
    [45] Freeman R A, Tesar D. Dynamic Modeling of Serial and ParallelMechanisms/Robotic Systems: Part I-Methodology, Part II-Application[C].Proceedings of the20th ASME Biennial Mechanisms Conference, Trends andDevelopments in Mechanisms, Machines and Robotics, Orlando, FL,1988,Vol.15-3(3):7-18,19-27
    [46] Lopes A M. Dynamic Modeling of a Stewart Platform Using the GeneralizedMomentum Approach[J]. Communications in Nonlinear Science andNumerical Simulation,2009,14(8):3389-3401
    [47] Afroun M, Dequidt A, Vermeiren L. Revisiting the Inverse Dynamics of theGough–Stewart Platform Manipulator with Special Emphasis onUniversal–Prismatic–Spherical Leg and Internal Singularity[J]. Proceedingsof the Institution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science,2012,226(10):2422-2439
    [48] Martínez J M R, Duffy J. Forward and Inverse Acceleration Analyses ofin-Parallel Manipulators[J]. Journal of Mechanical Design,2000,122:299-303
    [49] Gallardo J, Rico J M, Frisoli A, et al. Dynamics of Parallel Manipulators byMeans of Screw Theory[J]. Mechanism and Machine Theory,2003,38(11):1113-1131
    [50] Harib K, Srinivasan K. Kinematic and Dynamic Analysis of StewartPlatform-Based Machine Tool Structures[J]. Robotica,2003,21:541-554
    [51]吕帮俊,朱石坚,邢继峰,彭利坤.基于虚功原理的Stewart机构逆动力学模型修正[J].机械设计与研究,2010,26(04):42-44+53
    [52]吕帮俊,彭利坤,邢继峰,朱石坚. Gough-Stewart并联机器人刚体动力学模型[J].华中科技大学学报(自然科学版),2011,39(10):14-18
    [53] Pedrammehr S, Mahboubkhah M, Khani N. Improved Dynamic Equations forthe Generally Configured Stewart Platform Manipulator[J].Journal ofMechanical Science and Technology,2012,26(3):711-721
    [54] Gosselin C M, Angeles J. Singularity Analysis of Closed-Loop KinematicChains[J]. IEEE Transactions on Robotics and Automation,1990,6(3):281-290
    [55] Merlet J P. Jacobian, Manipulability, Condition Number, and Accuracy ofParallel Robots[J]. Journal of Mechanical Design.2006,128:199-206
    [56] Zlatanov D, Fenton R G, Benhabib B. Singularity Analysis of Mechanismsand Robots via a Velocity-equation Model of the InstantaneousKinematics[C]. Proceedings of the1994IEEE International Conference onRobotics and Automation, San Diego, California, USA, May1994:986-991
    [57] Zlatanov D, Fenton R G, Benhabib B. Classification and Interpretation of theSingularities of Redundant Mechanisms[C]. Proceedings of the1998ASMEDesign Engineering Technical Conferences, Atlanta, Georgia, USA,September1998:1-11
    [58] Zlatanov D. Generalized Singularity Analysis of Mechanisms[D]. Toronto,Canada: Department of mechanical and industrial engineering, University ofToronto: PhD. dissertation,1998:4-5
    [59] Merlet J P, Gosselin C M. Parallel Mechanisms and Robots[C]//Handbook ofRobotics. Berlin-Heidelberg: Springer,2008:269-285
    [60] Zlatanov D, Fenton R G, Benhabib B. Identification and Classification of theSingular Configurations of Mechanisms[J]. Mechanism and Machine Theory,1998,33(6):743-76
    [61] Zhao J S, Zhou K. A Novel Methodology to Study the Singularity of SpatialParallel Mechanisms[J]. The International Journal of AdvancedManufacturing Technology,2004,23(9-10):750-754
    [62] Zhao J S, Feng Z J, Zhou K, Dong J X. Analysis of the Singularity of SpatialParallel Manipulator with Terminal Constraints[J]. Mechanism and MachineTheory,2005,40(3):275-284
    [63] Merlet J P. Singular Configurations of Parallel Manipulators and GrassmannGeometry[J]. The International Journal of Robotics Research,1989,8(5):45-56
    [64] Ma O, Angeles J. Architecture Singularities of Platform Manipulators[C].Proceedings of the1991IEEE International Conference on Robotics andAutomation, Sacramento, California, USA, April1991:1542-1547
    [65] St-Onge B M, Gosselin C M. Singularity Analysis and Representation of theGeneral Gough-Stewart Platform[J]. The International Journal of RoboticsResearch,2000,19(3):271-288
    [66]何景峰,李保平,杨宏斌,韩俊伟. Gough-Stewart机构Hunt奇异位形的判定[J].哈尔滨工业大学学报,2011,43(01):79-82
    [67]刘芳华,李滨城,周波,吴洪涛.6自由度船舶摇摆平台无奇异工作空间的分析[J].江苏大学学报(自然科学版),2012,33(06):.649-653
    [68] Cao Y, Zhou H, Shen L, Li B. Singularity Kinematics Principle andPosition-Singularity Analyses of the6-3Stewart-Gough ParallelManipulators[J]. Journal of Mechanical Science and Technology,2011,25(2):513-522
    [69] Huang Z, Li Q, Ding H. Theory of Parallel Mechanisms[M]. Springer,2012:217-288
    [70] Nawratil G. Types of Self-Motions of Planar Stewart Gough Platforms[J].Meccanica,2013,48(5):1177–1190
    [71] Nawratil G. Planar Stewart Gough Platforms with a Type II DMSelf-Motion[J]. Journal of Geometry,2011,102:149–169
    [72]李保坤,曹毅,张秋菊,黄真. Stewart并联机构位置奇异研究[J].机械工程学报,2012,48(09):33-42
    [73] Li B, Cao Y, Zhang Q, Huang Z. Position-Singularity Analysis of a SpecialClass of the Stewart Parallel Mechanisms with Two DissimilarSemi-Symmetrical Hexagons[J]. Robotica,2013,31(01):123-136
    [74] Cao Y, Gosselin C, Zhou H, et al. Orientation-Singularity Analysis andOrientationability Evaluation of a Special Class of the Stewart–GoughParallel Manipulators[J]. Robotica,2013,31(8):1361-1372
    [75] Li B, Cao Y, Zhang Q, Huang Z. Orientation-Singularity Representation andOrientation-Capability Computation of a Special Class of the Gough-StewartParallel Mechanisms Using Unit Quaternion[J]. Chinese Journal ofMechanical Engineering,2012,25(6):1096-1104
    [76] Merlet J P. A Formal-numerical Approach for Robust in-workspaceSingularity Detection[J]. IEEE Transactions on Robotics,2007,23(3):393-402
    [77]曹毅,黄真. Stewart机构姿态奇异及姿态工作空间的研究[J].中国机械工程,2005,16(12):1095-1099
    [78] Li H, Gosselin C M, Richard M J. Determination of the MaximalSingularity-Free Zones in the Six-dimensional Workspace of the GeneralGough–Stewart Platform[J]. Mechanism and Machine Theory,2007,42(4):497-511
    [79] Jiang Q, Gosselin C M. Singularity Equations of Gough-Stewart PlatformsUsing a Minimal Set of Geometric Parameters[J]. Journal of MechanicalDesign,2008,130:112303-1-112303-8
    [80] Jiang Q, Gosselin C M. Determination of the Maximal Singularity-freeOrientation Workspace for the Gough–Stewart Platform[J]. Mechanism andMachine Theory,2009,44(6):1281-1293
    [81] Ma Jianming, Huang Qitao, Xiong Haiguo, Han Junwei. Analysis andApplication of the Singularity Locus of the Stewart Platform[J]. ChineseJournal of Mechanical Engineering,2011,24(1):133-140
    [82]刘小初.六自由度运动模拟器结构参数分析设计[D].哈尔滨:哈尔滨工业大学硕士学位论文,2006:28-46
    [83]何景峰,李保平,杨宏斌,韩俊伟. Gough-Stewart机构的奇异性及其ADAMS仿真验证[J].机床与液压,2010,38(5):104-107
    [84]陈华. Stewart平台位置正解构型分岔及尺度综合问题的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:60-94
    [85] Su Y X, Duan B Y, Peng B, et al. Singularity Analysis of Fine-tuning StewartPlatform for Large Radio Telescope Using Genetic Algorithm[J].Mechatronics,2003,13(5):413-425
    [86] Angeles J. Fundamentals of Robotic Mechanical Systems: Theory, Methods,and Algorithms[M].(Second Edition). Springer-Verlag New York, Inc.,2003:171-176
    [87] Elkady A, Mohammed M, Sobh T. A New Algorithm for Measuring andOptimizing the Manipulability Index[J]. Journal of Intelligent and RoboticSystems,2010,59(1):75-86
    [88] Tsai K Y, Lee T K.6-DOF Parallel Manipulators with Better Dexterity,Rotatability, or Singularity-Free Workspace[J]. Robotica,2009,27(4):599-606
    [89] Enferadi J, Tootoonchi A A. A Novel Spherical Parallel Manipulator: ForwardPosition Problem, Singularity Analysis, and Isotropy Design[J]. Robotica,2009,27(5):663-676
    [90] Jiang H, He J, Tong Z, et al. Dynamic Isotropic Design for ModifiedGough–Stewart Platforms Lying on a Pair of Circular Hyperboloids[J].Mechanism and Machine Theory,2011,46(9):1301-1315
    [91] Pinto C, Corral J, Altuzarra O, et al. A Methodology for Static StiffnessMapping in Lower Mobility Parallel Manipulators with DecoupledMotions[J]. Robotica,2010,28(05):719-735
    [92] Ma O, Angeles J. Optimum Architecture Design of Platform Manipulators[C].Fifth International Conference on Advanced Robotics. Pisa, Italy: IEEE,1991:1130-1135
    [93] Zanganeh K E, Angeles J. Kinematic Isotropy and the Optimum Design ofParallel Manipulators[J]. International Journal of Robotics Research,1997,16(2):185-197
    [94] Fattah A, Ghasemi A M H. Isotropic Design of Spatial ParallelManipulators[J]. The International Journal of Robotics Research,2002,21(9):811-824
    [95] Bandyopadhyay S, Ghosal A. An Algebraic Formulation of KinematicIsotropy and Design of Isotropic6-6Stewart Platform Manipulators[J].Mechanism and Machine Theory,2008,43(5):591-616
    [96] Jiang H Z, He J F, Tong Z Z. Characteristics Analysis of Joint Space InverseMass Matrix for the Optimal Design of a6-DOF Parallel Manipulator[J].Mechanism and Machine Theory,2010,45(5):722-739
    [97]佟志忠,姜洪洲,何景峰,段广仁.基于广义Stewart平台的精密跟瞄机构动态各向同性优化设计[J].宇航学报,2011,32(05):1019-1025
    [98] Jiang H Z, Tong Z Z, He J F. Dynamic Isotropic Design of a Class ofGough–Stewart Parallel Manipulators Lying on a Circular Hyperboloid ofOne Sheet[J]. Mechanism and Machine Theory,2011,46(3):358-374
    [99] Advani S K. The Kinematic Design of Flight Simulator Motion Bases[D]. TUDelft, Netherlands: PhD. dissertation,1998:103-191
    [100]赵强.六自由度舰艇运动模拟器的优化设计及性能分析[D].哈尔滨:哈尔滨工业大学博士学位论文,2003:37-43
    [101] Farina M. Cost-effective Evolutionary Strategies for Pareto Optimal FrontApproximation in Multiobjective Shape Design Ooptimization ofElectromagnetic Devices[D]. PhD Thesis, University of Pavia,Lombardy,Italy,2002: vii
    [102] Wang W, Yang H Y, Zou J, et al. Optimal Design of Stewart Platforms Basedon Expanding the Control Bandwidth while Considering the HydraulicSystem Design[J]. Journal of Zhejiang University-SCIENCE A,2009,10(1):22-30
    [103] Carbone G, Ottaviano E, Ceccarelli M. An Optimum Design Procedure forBoth Serial and Parallel Manipulators[J]. Proceedings of the Institution ofMechanical Engineers, Part C: Journal of Mechanical Engineering Science,2007,221(7):829-843
    [104] Mastinu G, Gobbi M, Miano C. Optimal Design of Complex MechanicalSystems: With Applications to Vehicle Engineering[M]. Springer-VerlagBerlin Heidelberg,2006:121-343
    [105] Gao Z, Zhang D, Ge Y. Design Optimization of A Spatial SixDegree-of-Freedom Parallel Manipulator Based on Artificial IntelligenceApproaches[J]. Robotics and Computer-Integrated Manufacturing,2010,26(2):180-189
    [106] Altuzarra O, Pinto C, Sandru B, et al. Pareto-optimal Solutions UsingKinematic and Dynamic Functions for a Sch nflies Parallel Manipulator[C].Proceedings of the ASME2009International Design Engineering TechnicalConferences&Computers and Information in Engineering Conference,IDETC/CIE2009, August30-September2,2009, San Diego, California,USA:1-10
    [107] Altuzarra O, Pinto C, Sandru B, et al. Optimal Dimensioning for ParallelManipulators: Workspace, Dexterity, and Energy[J]. Journal of MechanicalDesign,2011,133(4):041007-1-041007-7
    [108] Kelaiaia R, Company O, Zaatri A. Multiobjective Optimization of a LinearDelta Parallel Robot[J]. Mechanism and Machine Theory,2012,50:159-178
    [109]郭洪波.液压驱动六自由度平台的动力学建模与控制[D].哈尔滨:哈尔滨工业大学博士学位论文,2006:21-52
    [110]代小林.三自由度并联机构分析与控制策略研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:22-24
    [111] Rico J M, Duffy J. An Application of Screw Algebra to the AccelerationAnalysis of Serial Chains[J]. Mechanism and Machine Theory,1996,31:445-457
    [112]马建明.飞行模拟器液压Stewart平台奇异位形分析及其解决方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:43-66,86-93
    [113] Tsai L W. Robot Analysis: the Mechanics of Serial and ParallelManipulators[M]. New York: JOHN WILEY&SONS,INC,1999:250,399
    [114] Zhu S J, Huang Z, Zhao M Y. Singularity Analysis for Six Practicable5-DoF Fully-Symmetrical Parallel Manipulators[J]. Mechanism and MachineTheory,2009,44(4):710-725
    [115] Masouleh M T, Gosselin C. Singularity Analysis of5-RPUR ParallelMechanisms (3T2R)[J]. The International Journal of AdvancedManufacturing Technology,2011,57(9-12):1107-1121
    [116] Kong Xianwen, Gosselin C M. Type Synthesis of Parallel Mechanisms[M].Berlin Heidelberg New York: Springer,2007:14,18-53
    [117] Zhao Jing-Shan, Feng Zhi-Jing, Dong Jing-Xin. Computation of theConfiguration Degree of Freedom of A Spatial Parallel Mechanism by UsingReciprocal Screw Theory[J]. Mechanism and Machine Theory,2006,41(12):1486-1504
    [118]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006:251-262
    [119] Yu Xinjie, Gen Mitsuo. Introduction to Evolutionary Algorithms[M]. VerlagLondon: Springer,2010:193-259
    [120] Deb K, Agrawal R B. Simulated Binary Crossover for Continuous SearchSpace[J]. Complex Systems,1995,9:115-148.
    [121] Deb K, Goyal M. A Combined Genetic Adaptive Search (GeneAS) forEngineering Design[J]. Computer Science and Informatics,1996,26(4):30-45.
    [122] Deb K. An Efficient Constraint Handling Method for Genetic Algorithms[J].Computer Methods in Applied Mechanics and Engineering,2000,186:311-338
    [123] Huang Z, Cao Y. Property Identification of the Singularity Loci of a Class ofGough-Stewart Manipulators[J]. The International Journal of RoboticsResearch,2005,24(8):675-685
    [124] Chen Wei-Shan, Chen Hua, Liu Jun-Kao. Extreme Configuration BifurcationAnalysis and Link Safety Length of Stewart Platform[J]. Mechanism andMachine Theory.2008,43(5):617~626
    [125]Yoshikawa T. Foundations of Robotics: Analysis and Control[M]. USA,Cambridge, MA: The MIT Press,1990:127-153
    [126] Angeles J. Is There a Characteristic Length of a Rigid-bodyDisplacement?[J]. Mechanism and Machine Theory,2006,41(8):884-896.
    [127] Yoshikawa T. Manipulability of Robotic Mechanisms[J]. The InternationalJournal of Robotics Research,1985,4(2):3-9
    [128] Salisbury J K, Craig J J. Articulated Hands: Force Control and KinematicIssues. The International Journal of Robotics Research[J].1982,1(1):4-17
    [129]Carrelli D J, Bryant R B. A Proposed Unit Independent Dexterity Calculationfor Use in Motion Base Design[C]. AIAA Modeling and SimulationTechnologies Conference and Exhibit. Providence, Rhode Island: AIAA,2004:1-10
    [130]Gosselin C M. Optimum Design of Robotic Manipulators Using DexterityIndices [J]. Robotics and Autonomous Systems,1992,9(4):213-226
    [131] Kim S G, Ryu J. New Dimensionally Homogeneous Jacobian MatrixFormulation by Three End-Effector Points for Optimal Design of ParallelManipulators [J]. IEEE Transactions on Robotics and Automation,2003,19(4):731-737
    [132]Altuzarra O, Salgado O, Petuya V, et al. Point-Based Jacobian Formulationfor Computational Kinematics of Manipulators[J]. Mechanism and MachineTheory.2006,41(12):1407-1423
    [133]Kong M, Zhang Y, Du Z, et al. A Novel Approach to Deriving theUnit-Homogeneous Jacobian Matrices of Mechanisms[C]. Proceedings of the2007IEEE International Conference on Mechatronics and Automation,Harbin, China, August5-8,2007:3051-3055
    [134]孟红云.多目标进化算法及其应用研究[D].西安:西安电子科技大学博士学位论文,2005:10-11
    [135]公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(20):271-289
    [136]Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective GeneticAlgorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197
    [137]Chen Hua, Chen Weishan, Liu Junkao. Optimal Design of Stewart PlatformSafety Mechanism[J]. Chinese Journal of Aeronautics,2007,20(4):370-377
    [138]Coello C A C, Lamont G B, Veldhuizen D A V. Evolutionary Algorithms forSolving Multi-Objective Problems[M].(Second Edition). New York, USA:Springer,2007:33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700