用户名: 密码: 验证码:
定量分析诱导山羊体细胞重编程过程中端粒酶的表达变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物体细胞重编程为诱导多能干细胞(iPS)是目前干细胞生物学研究的热点。在人、猴、大鼠、猪上都得到了iPS细胞,说明iPS技术可以广泛应用于建立动物iPS细胞系。本文从关中奶山羊胎儿皮肤分离得到的胎儿成纤维细胞(GEF),通过4个转录因子在体外诱导得到山羊重编程细胞。并对诱导的山羊重编程细胞进行了一系列的鉴定和检测。利用Real-time RT-PCR方法首先对关中奶山羊胎儿各种组织的TERT表达进行了检测,然后重点是对山羊体细胞重编程过程中端粒酶(TERT)基因的相对表达量进行了检测,探讨了山羊重编程细胞的形成与端粒酶基因表达的关系。得出的结论主要有以下几点:
     1.采取关中奶山羊胎儿皮肤,利用组织块法和胰酶消化法分离培养得到了胎儿成纤维细胞(GEF)。其增殖能力较强,生长旺盛,核型正常(60条XY)。GEF作为诱导山羊iPS的受体细胞,由生长曲线可以看出传代次数越少越好。所以实验中选用前3代的GEF细胞。
     2.利用Real-time RT-PCR方法测定关中奶山羊胎儿八种组织端粒酶(TERT)基因的相对表达量,组织中TERT基因也有不同程度的表达。结果表明睾丸组织中TERT的表达显著高于其他组织(P<0.01)。
     3.诱导山羊体细胞重编程是个缓慢的过程,一般需要15-20 d以上的培养时间。诱导的细胞在第10-12 d开始出现克隆集落,周围的细胞逐渐开始聚团,从成纤维细胞时的长梭样形态变为圆形并聚集成集落。初始的克隆集落较小,挑单克隆之后可以继续传代培养,且保持基本的细胞形态。持续培养15d后,克隆集落长大,成圆形或者椭圆形,边缘整齐,核质比较高,挑克隆,进行传代培养。
     4.诱导山羊重编程细胞AP染色阳性克隆很少。AP阳性的克隆Oct4、Nanog、Tert免疫荧光阳性,Tert免疫组化阳性。说明重编程细胞表达内源性基因,表达端粒酶。
     5.利用Real-time RT-PCR方法对原代重编程细胞和4株不完全重编程细胞株的TERT表达检测结果发现,碱性磷酸酶(AP)阳性的重编程细胞端粒酶表达量要显著高于AP阴性的重编程细胞(P<0.01)。这一结果揭示,激活端粒酶活性并使其保持较高的表达水平对体细胞的重编程至关重要。
Animal somatic cells can be reprogrammed to induced pluripotent stem cells (iPS) that has recently become a hot research area. iPS cells have been generated from human, monkey, rat and pig, indicating that this technology could be widely used in establishing animal iPS cell lines. In this study, the goat embryonic fibroblasts (GEF) that was isolated from Guanzhong milk goat fetus were induced to reprogrammed cells (iPS) by four transcription factors in vitro. Based on Real-time RT-PCR method, we determined the expression of TERT in different tissues of Guanzhong milk goat fetus, gost fibroblasts and pips. We also conferred the relationship between goat reprogrammed cell formation and telomerase gene expression level. The main conclusions are as follows:
     1. The goat embryonic fibroblasts (GEF) from skin of Guanzhong milk goat fetus were isolated by using both the tissue culture and enzyme digestion methods. The isolated GEF had the good proliferation capability and the normal karyotype (60 XY). We chose the early passage (2-5) GEF as the recipient cells for the iPS induction.
     2. The relative expression level of eight organizations’telomerase (TERT) gene in Guanzhong dairy goat embryo was determined by using Real-time RT-PCR; and there had also varying degrees of TERT gene expression in other organizations. The results showed that the expression of TERT in testis was significantly higher than that of the epithelial tissue (p <0.01).
     3. Goat somatic cell reprogramming is a slow process, it normally takes more than 15-20d. Induced cells began to become a clone in 10-12d,and the cells around gradually began to gather,and finally formed a round colony which followed with a fibroblast-like shape to a round shape.The initial colony was small,and it can be continuously cultured after picking up the monoclonal, and it also can maintain the basic morphology.After 15d continuous culturation, the clone grew bigger, into a round or oval shape,and the edge of which is neat, the karyoplasmic ratio is relatively high, and then pick clones again and culture them continuously.
     4. AP stain positive clones in goat induced reprogramming cells were rarely. AP-positive clones were also positive in Oct4/Nanog/Tert immunofluorescence and Tert immunohistochemical staining, indicating that the reprogramming cells expressed endogenous gene and high telomerase activity.
     5. Using Real-time RT-PCR method to test the expression of TERT between reprogrammed primary cells and four incomplete reprogrammed cell lines, the results showed that the telomerase expression in alkaline phosphatase(AP)-positive reprogrammed cells was significantly higher than in AP-negative cells (p <0.01).
引文
Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G and others. 2008. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276-84.
    Anderson DG, Levenberg S, Langer R. 2004. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 22(7):863-6.
    Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. 2008. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699-702.
    Arias AM, Hayward P. 2006. Filtering transcriptional noise during development: concepts and mechanisms. Nat Rev Genet 7(1):34-44.
    Blelloch RH, Hochedlinger K, Yamada Y, Brennan C, Kim M, Mintz B, Chin L, Jaenisch R. 2004. Nuclear cloning of embryonal carcinoma cells. Proc Natl Acad Sci U S A 101(39):13985-90.
    Bradley A, Evans M, Kaufman MH, Robertson E. 1984. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309(5965):255-6.
    Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, Wolf DP, Mitalipov SM. 2007. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450(7169):497-502.
    Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643-55.
    Chiao E, Kmet M, Behr B, Baker J. 2008. Derivation of human embryonic stem cells in standard and chemically defined conditions. Methods Cell Biol 86:1-14.
    Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R. 2006. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439(7073):216-9.
    Cowan CA, Atienza J, Melton DA, Eggan K. 2005. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309(5739):1369-73.
    Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R and others. 2008. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218-21.
    Ding S, Schultz PG. 2004. A role for chemistry in stem cell biology. Nat Biotechnol 22(7):833-40. Ding S, Wu TY, Brinker A, Peters EC, Hur W, Gray NS, Schultz PG. 2003. Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci U S A 100(13):7632-7.
    Ebert AD, Yu J, Rose FJ, Mattis VB, Lorson CL, Thomson JA, Svendsen CN. 2009. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277-80.
    Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S and others. 2010. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6(1):71-9.
    Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M and others. 2009. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284(26):17634-40.
    Evans MJ, Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154-6.
    Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM. 2009. Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106(27):10993-8.
    Greenberg RA, Allsopp RC, Chin L, Morin GB, DePinho RA. 1998. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 16(13):1723-30.
    Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R and others. 2008. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133(2):250-64.
    Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM and others. 2007. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920-3.
    Horikawa I, Chiang YJ, Patterson T, Feigenbaum L, Leem SH, Michishita E, Larionov V, Hodes RJ, Barrett JC. 2005. Differential cis-regulation of human versus mouse TERT gene expression in vivo: identification of a human-specific repressive element. Proc Natl Acad Sci U S A 102(51):18437-42.
    Hotta A, Ellis J. 2008. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J Cell Biochem 105(4):940-8.
    Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA. 2008. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269-75.
    Iannaccone PM, Taborn GU, Garton RL, Caplice MD, Brenin DR. 1994. Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev Biol 163(1):288-92.
    Kastenberg ZJ, Odorico JS. 2008. Alternative sources of pluripotency: science, ethics, and stem cells. Transplant Rev (Orlando) 22(3):215-22.
    Kawase E, Yamazaki Y, Yagi T, Yanagimachi R, Pedersen RA. 2000. Mouse embryonic stem (ES) cell lines established from neuronal cell-derived cloned blastocysts. Genesis 28(3-4):156-63.
    Kawazoe Y. 2007. [Synthetic small molecules that control stem cell fate]. Tanpakushitsu Kakusan Koso 52(13 Suppl):1800-1.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R and others. 2009. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472-6.
    Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D and others. 2009. Oct4-induced pluripotency in adult neural stem cells. Cell 136(3):411-9.
    Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M and others. 2008. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454(7204):646-50.
    Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, Li H, Jia N, Cheng L, Xiao H and others. 2009. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4(1):11-5.
    Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, Chen T, Rao L, Chen S, Jia N and others. 2008. Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells bya combination of six transcription factors. Cell Res 18(5):600-3.
    Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, Jiang W, Cai J, Liu M, Cui K and others. 2008. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3(6):587-90.
    Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-8.
    Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ. 2009. Generation of induced pluripotent stem cells from human blood. Blood 113(22):5476-9.
    Lu SJ, Feng Q, Park JS, Vida L, Lee BS, Strausbauch M, Wettstein PJ, Honig GR, Lanza R. 2008. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 112(12):4475-84.
    Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS and others. 2006. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2):185-7.
    MacArthur BD, Please CP, Oreffo RO. 2008. Stochasticity and the molecular mechanisms of induced pluripotency. PLoS One 3(8):e3086.
    Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R and others. 2007. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55-70.
    Mali P, Ye Z, Hommond HH, Yu X, Lin J, Chen G, Zou J, Cheng L. 2008. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26(8):1998-2005.
    Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA. 2009. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4(2):141-54.
    Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J and others. 2008. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134(3):521-33.
    Martin GR. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634-8.
    Martin GR, Evans MJ. 1975. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci U S A 72(4):1441-5.
    Matsui Y, Zsebo K, Hogan BL. 1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70(5):841-7.
    Meissner A, Jaenisch R. 2006. Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439(7073):212-5.
    Meissner A, Wernig M, Jaenisch R. 2007. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177-81.
    Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A. 2008. Dissecting direct reprogramming through integrative genomic analysis. Nature 454(7200):49-55.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M,Yamanaka S. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631-42.
    Mohamadnejad M, Swenson ES. 2008. Induced pluripotent cells mimicking human embryonic stem cells. Arch Iran Med 11(1):125-8.
    Munsie MJ, Michalska AE, O'Brien CM, Trounson AO, Pera MF, Mountford PS. 2000. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10(16):989-92.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. 2008. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101-6.
    Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, Yamashita JK. 2008. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498-506.
    Okita K, Ichisaka T, Yamanaka S. 2007. Generation of germLine-competent induced pluripotent stem cells. Nature 448(7151):313-7.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. 2008. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949-53.
    Pan GJ, Chang ZY, Scholer HR, Pei D. 2002. Stem cell pluripotency and transcription factor Oct4. Cell Res 12(5-6):321-9.
    Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ. 2008. Disease-specific induced pluripotent stem cells. Cell 134(5):877-86.
    Park IH, Lerou PH, Zhao R, Huo H, Daley GQ. 2008. Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180-6.
    Park TS, Galic Z, Conway AE, Lindgren A, van Handel BJ, Magnusson M, Richter L, Teitell MA, Mikkola HK, Lowry WE and others. 2009. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells 27(4):783-95.
    Rao BM, Zandstra PW. 2005. Culture development for human embryonic stem cell propagation: molecular aspects and challenges. Curr Opin Biotechnol 16(5):568-76.
    Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castella M, Rio P, Sleep E and others. 2009. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251):53-9.
    Resnick JL, Bixler LS, Cheng L, Donovan PJ. 1992. Long-term proliferation of mouse primordial germ cells in culture. Nature 359(6395):550-1.
    Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S. 2008. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5):568-74.
    Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S. 2008. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2(6):525-8.
    Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A. 2008. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6(10):e253.
    Simonsson S, Gurdon J. 2004. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 6(10):984-90.
    Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M and others. 2009. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964-77.
    Solter D. 2006. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet 7(4):319-27.
    Stadtfeld M, Brennand K, Hochedlinger K. 2008. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18(12):890-4.
    Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. 2008. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2(3):230-40.
    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. 2008. Induced pluripotent stem cells generated without viral integration. Science 322(5903):945-9.
    Stevens LC. 1973. A new inbred subline of mice (129-terSv) with a high incidence of spontaneous congenital testicular teratomas. J Natl Cancer Inst 50(1):235-42.
    Stevens LC, Little CC. 1954. Spontaneous Testicular Teratomas in an Inbred Strain of Mice. Proc Natl Acad Sci U S A 40(11):1080-7.
    Stevens LC, Varnum DS. 1974. The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev Biol 37(2):369-80.
    Stice SL, Strelchenko NS, Keefer CL, Matthews L. 1996. Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol Reprod 54(1):100-10.
    Sullivan EJ, Kasinathan S, Kasinathan P, Robl JM, Collas P. 2004. Cloned calves from chromatin remodeled in vitro. Biol Reprod 70(1):146-53.
    Szutorisz H, Georgiou A, Tora L, Dillon N. 2006. The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell 127(7):1375-88.
    Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. 2001. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11(19):1553-8.
    Takahashi K, Okita K, Nakagawa M, Yamanaka S. 2007. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081-9.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861-72.
    Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663-76.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145-7.
    Tian HB, Wang H, Sha HY, Xu XJ, Zhu M, Wu YB, Cheng SH, Chen JQ, Shi YX, Bai ZL and others. 2006. Factors derived from mouse embryonic stem cells promote self-renewal of goat embryonic stem-like cells. Cell Biol Int 30(5):452-8.
    Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. 2001. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292(5517):740-3.
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R. 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318-24.
    Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R. 2008. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A 105(15):5856-61.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810-3.
    Wobus AM, Holzhausen H, Jakel P, Schoneich J. 1984. Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp Cell Res 152(1):212-9.
    Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H and others. 2009. Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1(1):46-54.
    Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC, Ma Y. 2009. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci U S A 106(3):808-13.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R and others. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917-20.
    Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ. 2009. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104(4):e30-41.
    Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L and others. 2009. iPS cells produce viable mice through tetraploid complementation. Nature 461(7260):86-90.
    Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z and others. 2008. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3(5):475-9.
    Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y and others. 2009. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700