用户名: 密码: 验证码:
准一维ZnO纳米材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用碳热还原和雾化辅助的热蒸发法制备了具有独特结构的准一维ZnO纳米材料,研究了碳热还原法制备条件对ZnO形貌的影响规律,阐明了其影响机理。采用雾化辅助的热蒸发法实现了准一维ZnO纳米材料的掺杂。采用X射线衍射仪、扫描电子显微镜、透射电子显微镜、X射线光电子能谱和激光拉曼谱等系统研究了准一维ZnO的形貌、物相和表面化学结构,揭示了纳米车轮等特殊准一维ZnO纳米材料的生长机制。系统研究了准一维ZnO纳米材料的光学、电输运以及气敏特性,阐明了Pb和Sn掺杂对气敏性能的影响规律和机制。
     采用碳热还原热蒸发法,通过控制温度、载气流量、压强、原料配比和总质量等参数,获得了多种ZnO纳米结构,其中包括纳米线、纳米带、纳米梳、纳米锥、纳米空心球、纳米塔、纳米旗、纳米花、纳米花环和鱼骨状纳米梳等。在不加催化剂的条件下,制备出自催化生长的ZnO纳米阵列。
     采用雾化辅助的热蒸发法获得了ZnO纳米车轮,其生长机制是VS机制结合极性面控制机制共同作用:氧化锌纳米带存在Zn~(2+)和O~(2-)终结的表面,梳齿易在Zn~(2+)终结面生长;随着梳脊长度的增加,一些梳脊横端面较小的纳米梳容易因为极性面产生的静电力而发生弯曲,最终形成纳米车轮。
     采用雾化辅助的热蒸发法,通过向雾化溶液中加入特定成分的掺杂溶质,分别实现了Sn、In和Pb等元素的掺杂,并获得一些特殊形貌的纳米结构,如Sn掺杂诱发生长出超长纳米梳;In掺杂诱发生长出纳米环;Pb掺杂则获得了纳米管。
     研究表明,纯ZnO纳米材料光致发光谱有很强的紫外发光和较弱的可见发光,Sn、In和Pb等掺杂后,紫外发光变弱而可见光增强,紫外光向低能方向有少量偏移,偏移量分别为45、22和16meV。
     I-V特性的测试表明沉积在Al电极表面的准一维ZnO纳米材料与Al电极形成肖脱基接触。由于半导体隧道效应,随着测试温度的升高,其电阻呈下降趋势,当温度超过200℃时,表面氧的物理吸附转为化学吸附,电阻下降趋势变缓。
     研究发现,Pb和Sn掺杂的ZnO纳米材料,促进了ZnO纳米材料表面氧吸附,显著提高对氧气和乙醇的灵敏度。当温度低于300℃时,未掺杂ZnO纳米材料对50ppm乙醇的灵敏度最大值为11,Sn和Pb掺杂后,灵敏度最大值分别提高到62和102。
The carbothermal reduction method and the spray pyrolysis assisted thermal evaporation method were developed in this work to synthesize quasi-one-dimensional (Q1D) ZnO nanomaterials. The modification of ZnO morphologies as well as the mechanisms with the varying parameters of the carbotheraml reduction method has been clarified. Additional elements were successfully doped into the Q1D ZnO nanomaterials via the spray pyrolysis assisted thermal evaporation method. The morphologies, crystal structures and the surface chemical constructions of the Q1D ZnO nanomaterials were carefully characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The growth mechnanisms of the Q1D ZnO nanomaterials such as nanowheels have been revealed. The physical properties, including photoluminescence, electrical transportation and gas sensing property, were measured with respect to the effects and the mechanism of Pb and Sn addition.
     Various ZnO nanomaterials were synthesized by controlling the parameters of the carbothermal reduction method, such as temperature, flow rate, pressure, atomic ratio of initial materials and total mass. Several unique nanostructures, including nano-wires, rods, belts, combs, cones, hollow bulbs, towers, flags, flowers, wreathes and fish-bone-like combs were obtained in this work. Meanwhile, ZnO nanowires arrays were successfully fabricated without any catalyst.
     ZnO nanowheels have been obtained by the spray pyrolysis assisted thermal evaporation method and it can be formed as a result of the compititive cooperation of the vapor-solid (VS) and polar-surface-dominated (PSD) mechanisms. It is suggested that two sides of a nanobelt are dominated by Zn~(2+) and O~(2-) ions, respectively. The teeth preferential growth is along [0001] direction of the Zn-terminated (0001) polar surfaces. With the growth of the ridge, it began to bend with a small cross section where the electrostatic force generated due to the polarity surface, as a result of that nanowheel can be formed.
     The Sn-, In- and Pb doped ZnO nanostructures were obtained by means of adding a certain solute into the spray solution, respectively. Additionally, some unique nanostructures can be induced with additional elements. For example, ultra-long teeth nanocombs were achieved in Sn-ZnO, nanorings in In-ZnO and nanotubes in Pb-ZnO.
     The photoluminescence of pure ZnO nanostructures shows a strong ultra-violet emission but a relatively weak visible emission at room temperature. However, with Sn, In and Pb addition, the peak intensity of ultra-violet emission may be lessened with a slight blue-shift of 45, 22 and 16 meV, respectively.
     I-V characterization of the Al electrodes with Q1D ZnO nanomaterials deposition is supposed to be Schottky contact. In terms of the tunneling effect of semiconductor, the resistance decrease with the increasing temperature and slows down when the temperature is over 200℃due to the conversion from an oxygen physical into an oxygenchemical absorption.
     The oxygen absorption to ZnO nanomaterials surface are increased in the condition of Pb and Sn doping. Therefore, the sensitivities to oxygen and ethanol can be substantially improved. The largest sensitivity of the undoped ZnO nanomaterials with 50 ppm ethanol is of 11, approximately, as the measurement temperature is below 300℃, while that of Sn-ZnO and Pb-ZnO nanomaterials are increased to 62 and 102, repectively.
引文
1.张立德,牟季美.纳米材料与纳米结构.科学出版社. 2001: 1~20
    2. S. Iijima. Helical microtubules of graphitic carbon. Nature. 1991, 354: 56~58
    3. R. Tenne, L. Margulis, M. Genut, G. Hodes. Polyhedral and cylindricalstructures of tungsten disulphide. Nature. 1992, 360: 444~446
    4. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettel. Boron nitride nanotubes. Science. 1995, 269: 966~967
    5. Y.Q. Chen, X.F. Cui, K. Zhang, D.Y. Pan, S.Y. Zhang, B. Wang, J.G. Hou. Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem. Phys. Lett. 2003, 369: 16~20
    6. Y.C. Zhu, Y. Bando. Preparation and PL of single-crystal ZnSe nanowires. Chem. Phys. Lett. 2003, 377: 367~370
    7. J.K. Jian, X.L. Chen, M. He, W.J. Wang, X.N. Zhang, F. Shen. Large-scale GaN nanobelts and nanowires grown from milled Ga2O3 powders. Chem. Phys. Lett. 2003, 368: 416~420
    8. G. Gundiah, A. Govindaraj, C.N.R. Rao. Nanowires, nanobelts and related nanostructures of Ga2O3. Chem. Phys. Lett. 2002, 351: 189~194
    9. B. Xiang, H.Z. Zhang, G.H. Li, F. H. Yang, F. H. Su. Green-light-emitting ZnSe nanowires fabricated via vapor phase growth. Appl. Phys. Lett. 2003, 82: 3330~3332
    10. C.C. Tang, S.S. Fan, H.Y. Dang, Y.M. Liu. Simple and high-yield method for synthesizing single-crystal GaN nanowires. Appl. Phys. Lett. 2000, 77: 1961~1963
    11. D.P. Yu, J.L. Bubendorff, J.F. Zhou, Y.L. Wang, M. Troyon. Localized cathodeluminescence investigation on single Ga2O3 nanoribbon/nanowire. Solid State Commun. 2002, 124: 417~421
    12. K.K. Lew, J.M. Redwing. Growth characteristics of silicon nanowires synthesized by vapor– liquid– solid growth in nanoporous alumina templates. J. Cryst. Growth. 2003, 254: 14~22
    13. J.L. Gole, J.D. Stout, W.L. Rauch, Z.L. Wang. Direct synthesis of siliconnanowires, silica nanospheres, and wire-like nanosphere agglomerates. Appl. Phys. Lett. 2000, 76: 2346~2348
    14. X.C. Wu, Y.R. Tao. Growth of CdS nanowires by physical vapor deposition. J. Cryst. Growth. 2002, 242: 309~312
    15. Z. W. Pan, Z.R. Dai, Z.L. Wang. Nanobelts of Semiconducting Oxides, Science. 2001, 291: 1947~1949
    16. J.S. Lee, M. Kang, S.S. Kim, M.S. Lee, Y.K. Lee. Growth of Zinc oxide nanowires by thermal evaporation on vicinal Si(100) substrate. J. Cryst. Growth. 2003, 249: 201~207
    17. K.L. Kulg, V.P. Dravid. Observation of two- and three-dimensional magnesium oxide nanostructures formed by thermal treatment of magnesium diboride powder. Appl. Phys. Lett. 2002, 81: 1687~1689
    18. Z.R. Dai, Z.W. Pan, Z.L. Wang. Ultra-long single crystalline nanoribbons of tin oxide. Solid State Commun. 2001, 118: 351~354
    19. J.J. Zhu, H. Wang, J.M. Zhu, J. Wang. A rapid synthesis route for the preparation of CdS nanoribbons by microwave irradiation. Mat. Sci. Eng. B. 2002, 94: 136~140
    20. J. Zhang, L.D. Zhang. Graphite/hydrogen reduction route to Ga2O3 nanobelts. Solid State Commun. 2002, 122: 493~496
    21. J. Zhang, W.Y. Yu, L.D. Zhang. Fabrication of semiconductiong ZnO nanobelts using a halide source and their photoluminescence properties. Phys. Lett. A. 2002, 299: 276~281
    22. Z.Y. Yuan, J.F. Colomer, B.L. Su. Titanium oxide nanoribbons. Chem. Phys. Lett. 2003, 363: 362~366
    23. Y.B. Li, Y. Bando, T. Sato. Preparation of network-like MgO nanobelts on Si substrate. Chem. Phys. Lett. 2002, 359: 141~145
    24. J.Y. Li, X.L. Chen, Z.Y. Qiao, Y.G. Cao, Y.C. Lan. Formation of GaN nanorods by a sublimation method. J. Cryst. Growth. 2000, 213: 408~410
    25. C.K Xu, G.D. Xu, Y.K. Liu, G.H. Wang. A simple and novel route for the preparation of ZnO nanorods. Solid State Commun. 2002, 122: 175~179
    26. J.Y. Li, Z.Y. Qiao, X.L. Chen, Y.G. Cao, Y.C. Wang. Morphologies of GaN one-dimensional materials. Appl. Phys. A. 2000, 71: 587~588
    27. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng. Ultraviolet-emittingZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 2001, 78: 407~409
    28. G.S. Cheng, L.D. Zhang, Y. Zhu, G.T. Fei, L. Li, C.M. Mo, Y.Q. Mao. Large-scale synthesis of single crystalline gallium nitride nanowires. Appl. Phys. Lett. 1999, 75: 2455~2457
    29. E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81: 1869~1871
    30. Z.G. Bai, D.P. Yu, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, S.Q. Feng, J. Xu, L.P. You. Synthesis and photoluminescence properties of semiconductor nanowires. Mat. Sci. Eng. B. 2000, 72: 117~120
    31. T. Fukumura, Z. Jin, M. Kawasaki. Magnetic properties of Mn-doped ZnO. Appl. Phys. Lett. 2001, 78: 958~960
    32. Y.Q. Chang, D.B. Wang, X.H. Luo. Synthesis, optical, and magnetic properties of diluted magnetic semiconductor Zn1-xMnxO nanowires via vapor phase growth. Appl. Phys. Lett. 2003, 83: 4020~4022
    33. V.A.L. Roy, A.B. Djurisic, H. Liu, X.X. Zhang. Magnetic properties of Mn doped ZnO tetrapod structures. Appl. Phys. Lett. 2004, 84: 756~758
    34. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang. Room-Temperature ultraviolet nanowire nanolasers. Science. 2001, 292: 1897~1899
    35. Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem. Phys. Lett. 2002, 358: 83~86
    36. Y. Dai, Y. Zhang, Y.Q. Bai, Z.L. Wang. Bicrystalline zinc oxide nanowires. Chem. Phys. Lett. 2003, 375: 96~101
    37. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P.D. Yang. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42: 3031~3034
    38. M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13: 113~116
    39. Y.W. Heo, L.C. Tien, D.P. Norton, B.S. Kang, F. Ren, B.P. Gila, S.J. Pearton. Electrical transport properties of single ZnO nanorods. Appl. Phys. Lett.2004, 85: 2002~2004
    40. Z.L. Wang, J.H. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006, 312: 242~246
    41. J.H. Song, J. Zhou, Z.L. Wang. Piezoelectricand semiconducting dual -property coupled power generating process of a single ZnO belt/wire-a technology for harvesting electricity from the environment. Nano Lett. 2006, 6: 1656~1662
    42. L. Chaikarn, P. Sukon. Improvement of flame-made ZnO nanoparticulate thick film morphology for ethanol sensing. Sensors. 2007, 7: 650~675
    43. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, D.P. Yu. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 2003, 83: 144~146
    44. C.H. Hung, W.T. Whang. Low-temperature solution approach toward highly aligned ZnO nanotip arrays. J. Cryst. Growth. 2004, 268: 242~248
    45. J.B. Cui, C.P. Baghlian, U.J. Gibson, R. Püsche, P. Geithner, L. Ley. Low-temperature growth and field emission of ZnO nanowire arrays. J. Appl. Phys. 2005, 97: 044315-1~7
    46. G. Zhang, Q.F. Zhang, Y. Pei, L. Chen. Field emission from nonaligned zinc oxide nanowires. Vacuum. 2004, 56: 53~56
    47. C.X. Xu, X.W. Sun. Field emission from zinc oxide nanopins. Appl. Phys. Lett. 2003, 83: 3806~3808
    48.ü. ?Zgür, Ya. L. Alivov, C, Liu, A. Teke, M.A. Reshchikov, S. Do?an, V. Avrutin, S.J. Cho, H. Morko?. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98: 041301-1~3
    49. X.Y. Kong, Y. Ding, R.S. Yang, and Z.L. Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science. 2004, 303: 1348~1351
    50. P.X. Gao, Y. Ding, Z.L. Wang. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Lett. 2003, 3: 1315~1320
    51. W.I. Park, D.H. Kim, S.W. Jung, G.C. Yi. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 2002, 80: 4232~4234
    52. X.C. Sun, H.Z. Zhang, J. Xu, Q. Zhao, R.M. Wang, D.P. Yu. Shapecontrollable synthesis of ZnO nanorod arrays via vapor phase growth. Solid State Commun. 2004, 129: 803~807
    53. P.X. Gao, C.S. Lao, W.L. Hughes, Z.L. Wang. Three-dimensional interconnected nanowire networks of ZnO. Chem. Phys. Lett. 2005, 408: 174~178
    54. P.D. Yang. Semiconductor nanowire array. Proc of SPIE. 2002, 4806: 222~224
    55. P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnsos, R. Saykally, N. Morris, J. Pham, R.R. He, H.J. Choi. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 2002, 12: 323~331
    56. P.X. Gao, Y. Ding, W.J. Mal, W.L. Hughes, C.S. Lao, Z.L. Wang. Conversion of zinc oxide nanobelts into supperlattice- structured nanohelices. Seience. 2005, 309: 1700~1704
    57. H. Gao, X.T. Zhang, M.Y. Zhou, E. Zhang, Z.G. Zhang. Super-uniform ZnO nanohelices synthesized via thermal evaporation. Solid State Commun. 2006, 140: 455~458
    58. X.Y. Kong, Z.L. Wang. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 2003, 3: 1625~1631
    59. W.L. Hughes, Z.L. Wang. Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl. Phys. Lett. 2005, 86: 043106-1~3
    60. C.S. Lao, P.X. Gao, R.S. Yang, Y. Zhang, Y. Dai, Z.L. Wang. Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated Polar surface. Chem. Phys. Lett. 2005, 417: 359~363
    61. H.Q. Yan, R.R. He, J. Johnson, M. Law, R.J. Saykally, P.D. Yang. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 2003, 125: 4278~4279
    62. F. Li, Y. Ding, P.X. Gao, X.Q. Xin, Z.L. Wang. Single-crystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism. Angew. Chem. Int. Edit. 2004, 116: 5350~5354
    63. X.L. Yuan, B.P. Zhang, J. Niitsuma, T. Sekiguchi. Cathodluminescence characterization of ZnO nanotubes grown by MOCVD on sapphire substrate. Mat. Sci. Semicon. Proc. 2006, 9: 146~150
    64. H.Q. Yan, R.R. He, J. Pham, P.D. Yang. Morphogenesis of one-dimensionalZnO nano- and microcrystals. Adv. Mater. 2003, 15: 402~405
    65. Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem. Phys. Lett. 2002, 358: 83~86
    66. P.X. Gao, Z.L. Wang. Nanopropeller arrays of zinc xide. Appl. Phys. Lett. 2004, 83: 2883~2885
    67. Z.L. Wang. Nanostructures of zinc oxide. Materials Today. 2004, 6: 26~33
    68. J. He, Y.H. Huang, Y. Zhuang, Y.S. Gu, Z. Ji, C. Zhou. Large-scale synthesis, microstructure and growth mechanism of self-assembled core-shell ZnO/SiOx nanowires. Mater. Lett. 2006, 60: 150~153
    69. J. He, Y.H. Huang, Y. Zhang. Synthesis, growth mechanism and micro-structure of ZnO nanocables. Acta Phys. -Chim. Sin. 2005, 21: 637~640
    70. J.Y. Lao, J.G. Wen, Z.F. Ren. Hierarchical ZnO nanostructures. Nano Lett. 2002, 2: 1287~1291
    71. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren. ZnO nanobridges and nanonails. Nano Lett. 2003, 3: 235~238
    72. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.J. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, H.Q. Yan. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 2003, 15: 353~389
    73. S.S. Brenner, G.W. Sears. Mechanism of whisker growth-Ⅲnature of growth sites. Acta Metall. 1956, 4: 268~270
    74. A. Miura, S. Shimada, T. Sekiguchi, M. Yokoyama, B. Mizobuchi. Vapor-phase growth of high-quality GaN single crystals in crucible by carbothermal reduction denitridation of Ga2O3. J. Cryst. Growth. 2008, 310: 530~535
    75. J.H. Jie, G.Z. Wang, X.H. Han, J.P. Fang, B. Xu, Q.X. Yu, Y. Liao, F.Q. Li, J.G. Hou. Growth and properties of well-aligned ZnO hexagonal cones prepared by carbothermal reaction. J. Cryst. Growth. 2004, 267: 223~230
    76. S.T. Lee, N. Wang, Y.F. Zheng, Y.H. Tang. Oxide-assisted semiconductor nanowire growth. MRS. Bull. 1999: 36~42
    77. S. S. Lee, N. Wang, C. S. Lee, Semiconductor nanowires: synthesis, structure and properties. Mat. Sci. and Eng. A. 2000, 286: 16~23
    78. X.B. Song, Z.G. Guo, J. Zheng. AlN nanorod and nanoneedle arrays prepared by chloride assisted chemical vapor deposition for field emissionapplications. Nanotechnology. 2008, 19: 115609-1~3
    79. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma. Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett. 1992, 61: 2051~2053
    80. X.T. Zhang, K.M Ip, Z. Liu, Y.P. Leung, Q. Li, S.K. Hark. Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 2004, 84: 2641~2643
    81. Y. Dai, Y. Zhang, Z.L. Wang. The octa-twin tetraleg ZnO nanostructures. Solid State Commun. 2003, 126: 629~633
    82. R.S.Wagner, W.C.Ellis. Vapor-Liquid-Solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4: 89~90
    83. A.M. Morales, C.M. Lieber. A laser ablation method for the synthesisi of crystalline semiconductor nanowires. Science. 1998, 279: 208~211
    84. Y. Ding, P.X. Gao, Z.L. Wang. Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO. J. Am. Chem. Soc. 2004, 126: 2066~2072
    85. C.C. Chen, C.C. Yeh. Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 2000, 12: 738~740
    86. Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 2002, 124: 1817~1822
    87. S.J. Young, L.W. Ji, S.J. Chang, T.H. Fang, T.J. Hsueh, T.H.Meen, I.C. Chen. Nanoscale mechanical characteristics of vertical ZnO nanowires grown on ZnO:Ga/glass templates. Nanotechnology. 2007, 18: 225603-1~5
    88. B.Q. Wei, Z.J. Zhang, G. Ramanath, P.M. Ajayan. Lift-up growth of aligned carbon nanotube patterns. Appl. Phys. Lett. 2001, 77: 2985~2987
    89. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J.F. Wang, C.M. Lieber. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 2001, 78: 2214~2216
    90. Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, C.J. Huang. Effect of Sn dopant on the properties of ZnO nanowires. J. Phys. D: Appl. Phys. 2004, 37: 2274~2282
    91. S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, H.W. Shim, E.K. Such, C.S. Lee. Low temperature growth and photoluminescence of well-aligned zinc oxidenanowires. Chem. Phys. Lett. 2002, 363: 134~138
    92. H.J. Yuan, S.S. Xie, D.F. Liu. Characterization of zinc oxide crystal nanowires grown by thermal evaporation of ZnS powders. Chem. Phys. Lett. 2003, 371: 337~341
    93. Y.W. Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu, C.H. Liang. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties. J. Cryst. Growth. 2002, 234: 171~175
    94. Y.Y. Wu, R. Fan, P.D. Yang. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett., 2002, 2: 83~86
    95. J.T. Hu, M. Ouyang, P.D. Yang, C.M. Lieber. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature. 1999, 399: 48~51
    96. Y.G. Guo, L.J. Wan, C.F. Zhu, D.L. Yang, D.M. Chen, C.L. Bai. Ordered Ni-Cu nanowire array with enhanced coercivity. Chem. Mater. 2003, 15: 664~667
    97. X.Y. Liu, B.Z. Tian, C.Z. Yu, B. Tu, Z. Liu, O. Terasaki, D.Y. Zhao. Ordered nanowire arrays of metal sulfides templated by mesoporous silica SBA-15 via a simple impregnation reaction. Chem. Lett. 2003, 32: 824~825
    98. W.Q. Han, S.S. Fan, Q.Q. Li, Y.D. Hu. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science. 1997, 277: 1287~1289
    99. B.I. Seo, U.A. Shaislamov. M.H. Ha, S.W. Kim, H.K. Kim, B.Y. Yang. ZnO nanotubes by template wetting process. Phys. E. 2007, 37: 241~244
    100. G.S. Wu, T. Xie, X.Y. Yuan, Y. Yuan, Y. Li, L. Yagn, Y.H. Xiao, L.D. Zhang. Controlled synthesisi of ZnO nanowires or nanotubes via sol-gel template process. Solid State Commun. 2005, 134: 485~489
    101. H.Q. Wu, X.W. W, M.W. Shao, J.S. Gu. Synthesis of zinc oxide nanorods using carbon nanotubes as templates. J. Cryst. Growth. 2004, 265: 184~189
    102. L.M. Xiong, J.L. Shi, J.L. Gu, L. Li, W.H. Shen, Z.L. Hua. Co-templating synthesis of highly dispersed 1D ZnO nanostructures in amorphous SiO2 under hydrothermal condition. Solid State Sci. 2004, 6: 1341~1346
    103. M. Fu, J. Zhou, Q.F. Xiao, B. Li, R.L. Zong, W. Chen, J. Zhang. ZnO nanosheets with ordered pore periodicity via colloidal crystal templateassisted electrochemical deposition. Adv. Mater. 2006, 18: 1001~1004
    104. B. Liu, H.C. Zeng. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125: 4430~4431
    105. X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 2002, 78: 99~104
    106. J. Li. S. Srinivasan, G.N. He, J.Y. Kang, S.T. Wu, F.A. Ponce. Synthesis and luminescence properties of ZnO nanostructures produced by the sol-gel method. J. Cryst. Growth. 2008, 310: 599~603
    107. J.M. Wang, L. Gao. Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J. Mater. Chem. 2003, 13: 2551~2554
    108. R.A. Mcbride, J.M. Kelly, D.E. Mccormack. Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts. J. Mater. Chem. 2003, 13: 1196~1201
    109. J. Zhang, L.D. Sun, C.S. Liao, C.H. Yan. A simple route towards tubular ZnO. Chem. Commun. 2002, 3: 262~263
    110.董亚杰,李亚栋.一维纳米材料的合成、组装与器件.科学通报. 2002, 47: 641~649
    111. Q. Tang, W.J. Zhou, J.M. Shen, W. Zhang, L.F. Kong, Y.T. Qian. A template-free aqueous route to ZnO nanorod arrays with high optical property. Chem. Commun. 2004, 6: 712~713
    112. Q. Xie, Z. Dai, J.B. Liang, L.Q. Xu, W.C. Yu, Y.T. Qian. Synthesis of ZnO three-dimensional architectures and their optical properties. Solid State Commun. 2005, 136: 304~307
    113. W.S. Sheldriek, M. Waehtlold. Solventothermal synthesis of solid-state chalcogenidometalates. Angew. Chem. Int. Ed. 1997, 36: 206~224
    114. P. Feng,X. Bu,G.D. Stueky. Hydrothemral syntheses and structural characterizations of cobalt phosphate based zeolite analogues. Nature. 1997, 388: 735~741
    115. Y. Xie, Y.T. Qian, W.Z. Wang, S. Zhang, Y. Zhang. A benzene-thermal synthetic route to nanocrystalline GaN. Science. 1996, 272: 1926~1927
    116. Y.K. Liu, C.L. Zheng, W.Z. Wang, G.H. Wang. Preparation of SnO2 nanorods by redox reaction. J. Cryst. Growth. 2001, 233: 8~12
    117. Y.J. Zhan, C.L. Zheng, Y.K. Liu, G.H. Wang. Synthesis of NiO nanowires by an oxidation route. Mater. Lett. 2003, 57: 3265~3268
    118. W.Z. Wang, Y.J. Zhan, X.S. Wang, Y.K. Liu, C.L. Zheng, G.H. Wang. Synthesis and characterization of CuO nanowhiskers by a novel one step, solid state reaction in the presence of a nonionic surfactant. Mater. Res. Bull. 2003, 37: 1093~1100
    119. C.K. Xu, Z.H. Liu, S. Liu, G.H. Wang. Growth of hexagonal ZnO nanowires and nanowhiskers. Scripta Mater. 2003, 48: 1367~1371
    120. Z.Y. Jiang, T. Xu, Z.X. Xie, Z.W. Lin, X. Zhou, X. Xu, R.B. Huang, L.S. Zheng. Molten salt route toward the growth of ZnO nanowires in unusual growth directions. J. Phys. Chem. B. 2005, 109: 23269~23273
    121. S. Matushima, T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe. Role of additives on alcohol sensing by semiconductor gas sensor. Chem. Lett. 1989, 5: 845~848
    122. J.Tamaki, T.Maekawa, S. Matsushima, N. Miura, N. Yamazoe. Ethanol gas sensing properties of Pd–La2O3–In2O3 thick film element. Chem. Lett. 1990, 3: 477~480
    123. T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe. Sensing behavior of CuO-loaded SnO2 element for H2S detection. Chem. Lett. 1991, 4: 575~578
    124. T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe. Gold-loaded tungsten oxide sensor for detection of ammonia in air. Chem. Lett. 1992, 4: 639~642
    125. S. Matsushima, J. Tamaki, N. Miura, N. Yamazoe. TEM observation of the dispersion state of Pd on SnO 2 Chem. Lett. 1989, 9: 1651~1654
    126. S. Matsushima, Y. Teraoka, N. Miura, N. Yamazoe, Metal-support interactions in semiconductor gas sensors. Mater. Res. Soc. 1989, 2: 349~352
    127. N. Yamazoe, S. Matsushima, T. Maekawa, J. Tamaki, N. Miura. Control of Pd dispersion in SnO2-based sensors. Catal. Sci. Technol. 1991, 1: 201~204
    128. J. Kong, N.R. Franklin, H.J. Dai. Nanotube molecular wires as chemical sensors. Science 2000, 287: 622~625
    129. Y. Cui, C.M. Lieber. Nanowire nanosensors for highly sensitive and selective detective of biological and chemical species. Science. 2001, 293: 1289~1292
    130. C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han. In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 2003, 82: 1613~1615
    131. G.S. Devi, V.B. Subrahmanyam, S.C. Gadkari, S.K. Gupta. NH3 gas sensing properties of nanocrystalline ZnO based thick films. Anal. Chim. Acta. 2006, 568: 41~46
    132. I. Simon, N. Barsan, M. Bauer, U. Weimar. Micromachined metal oxide gas sensors opportunities to improve sensor performance. Sens. Actuators B. 2001, 73: 1~26
    133. V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane, S.H. Han. Use of chemically synthesized ZnO thin film as a liquefied petroleum gas sensor. Mater. Sci. Eng. B. 2007, 137: 119~125
    134. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang. Fabrincation and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84: 3654~3656
    135. X.H. Wang, J. Zhang, Z.Q. Zhu, J.Z. Zhu. Humidity sensing properties of Pd2+-doped ZnO nanotetrapods. Appl. Surf. Sci. 2007, 253: 3168~3173
    136. M. Aslam, V.A. Chaudhary, I.S. Mulla, S.R. Sainkar, A.B. Mandale, A.A. Belhekar, K. Vijayamohanan. A highly selective ammonia gas sensor using surface-ruthenated zinc oxide. Sens. Actuators A. 1999, 75:162~167
    137. T.H. Kwon, S.H. Park, J.Y. Ryu, H.H. Choi. Zinc oxide thin film doped with Al2O3, TiO2 and V2O5 as sensitive sensor for trimethylamine gas. Sens. Actuators B. 1998, 46: 75~79
    138. Y. Hu, X.H. Zhou, Q. Han, Q.X. Cao, Y.X. Huang. Sensing properties of CuO–ZnO heterojunction gas sensors. Mater. Sci. Eng. B. 2003, 99: 41~43
    139. B.B. Rao. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapor.Mater. Chem. Phys. 2000, 64: 62~65
    140. Q.H. Li, Q. Wan, Y.X. Liang, T.H. Wang. Electronic transport through individual ZnO nanowires. Appl. Phys. Lett. 2004, 84: 4556~4558
    141. Q.H. Li, Y.X. Liang, Q. Wan, T.H. Wang. Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett. 2004, 85: 6389~6391
    142. K. Keem, H. Kim, G.T. Kim, J.S. Lee, B. Min, K. Cho, M.Y. Sung, S. Kim. Photocurrent in ZnO nanowires grown from Au electrodes. Appl. Phys. Lett. 2004, 84: 4376~4378
    143. H. Kim, H.Q. Yan, B. Messer, M. Law, P.D. Yang. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14: 158~160
    144. C.H. Liu, W.C. Yiu, F.C.K. Au, J.X. Ding, C.S. Lee, S.T. Lee. Electrical properties of zinc oxide nanowires and intramolecular p–n junctions. Appl. Phys. Lett. 2003, 83: 4358~4360
    145. J.H. He, Y.H. Lin, M.E. Mcconney, V.V. Tsukruk, Z.L. Wang, G. Bao. Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization. J. Appl. Phys. 2007, 102: 084303-1~4
    146. D.C. Reynolds, D.C. Look, B. Jogai. Optically pumped ultraviolet lasing from ZnO. Solid State Commun. 1996, 99: 873~875
    147. T.V. Butkhuizi, A.V. Bueryev, N.P. Geogrobiani. Optical and electrical properties of radical beam gettering epitaxy grown n-and p-type ZnO single crystals. J. Cyrst. Gorwth. 1992, 117: 366~369
    148. P. Yu, Z.K. Tang, G.K.L. Wong. Room temperature stimulated emission from ZnO quantum dot films. Proc 23rd Inter Conf on the Physics of Semiconductor World Scientific. Singapore. 1996, 2: 1453~1456
    149. R.F. Service. Will UV lasers beat the blues. Science. 1997, 276: 895~897
    150. S. Choopun, R.D. Vispute, W. Noch, A. Balsamo, R.P. Sharma, T. Venkatesan, A. Lliadis, D.C. Look. Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire. Appl. Phys. Lett. 1999, 75: 3947~3949
    151. Y.R. Ryu. W.J. Kim, H.W. White. Fabrication of homostructural ZnO p-n junctions. J. Cryst. Growth. 2000, 219: 419~422
    152. W.L. Hughes, Z.L. Wang. Nanobelts as nanocantilevers. Appl. Phys. Lett. 2003, 82: 2886~2888
    153. M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang. Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B. 2003, 107: 659~663
    154. C.H. Liang, L.D. Zhang, G.W. Meng, Y.W. Wang, Z.Q. Chu. Preparation and characterization of amorphous SiOx nanowires. J. Non-Cryst. Solids. 2000, 277: 63~67
    155. Y.C. Choi, W.S. Kim, Y.S. Park, S.M. Lee, D.J. Bae, Y.H. Lee, G..S. Park, W.B. Choi, N.S. Lee, J.M. Kim. Catalytic growth ofβ-Ga2O3 nanowires byarc discharge. Adv. Mater. 2000,12: 746~750
    156. Y.Y. Wu, P.D. Yang. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123: 3165~3166
    157. H. Li, C.S. Xue, H.Z. Zhuang, J.H. Chen, Z.Z. Yang, L.X. Qin, Y.L. Huang, D.D. Zhang. Synthesis and characterization of GaN nanowires with Tantalum catalyst. Mater. Chem. Phys. 2008, 109: 249~252
    158. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 2002, 81: 3648~3650
    159. X.Y. Xu, H.Z. Zhang, Q. Zhao, Y.F. Chen, J. Xu, D.P. Yu. A new method for bulk-quantity synthesis of patterned well-aligned ZnO nanowire arrays. Mater. Sci. Forum. 2005, 475: 3509~3512
    160. A. Sekar, S.H. Kim, A. Umar, Y.B. Hahn. Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders. J. Cryst. Growth. 2005, 277: 471~478
    161. C.Bundesmann, N. Ashkenov, M, Schubert. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 2003 83: 1974~1976
    162. S.K Sharma, G.J. Exarhos. Raman spectroscopic investigation of ZnO and doped ZnO films, nanoparticles and bulk material at ambient and high pressures. Solid State Phenom. 1997, 55: 32~37
    163. M. Futsuhara, K. Yoshioka, O. Takai. Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films. 1998, 322: 274~281
    164. I.S. Mulla, V.J. Rao, H.S. Soni, S. Badrinarayanan, A.P.B. Sinha. Electron spectroscopic studies on films of SnO2 and SnO2:Sb. Surf. Coat. Technol. 1987, 31: 77~88
    165. P. Jiang, J.J. Zhou, H.F. Fang, C.Y. Wang, Z.L. Wang, S.S. Xie. Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays. Adv. Funct. Mater. 2007, 17: 1303~1310
    166. Z.L. Wang, X.Y. Kong, J.M.Zuo. Polar surface induced asymmetric growth of single-side teethed ZnO nanocombs was attributed to the self-catalysis of the Zn-terminated (0001) surface. Phys. Rev. Lett. 2003, 91: 185502-1~4
    167. J.Y. Li, Z.Y. Qiao, X.L. Chen, Y.G. Cao, Y.C. Cao, M. He. Large-scale synthesis of single-crystallineβ-Ga2O3 nanoribbons, nanosheets and nanowires. J. Phys.: Condens. Matter. 2001, 13: L937~L941
    168. X. Xiang, C.B. Cao, F.L. Huang, R. Lv, H.S. Zhu. Synthesis and characterization of crystalline gallium nitride nanoribbon rings. J. Cryst. Growth. 2004, 263: 25~29
    169. Y. Ding, X.Y. Kong, Z.L. Wang. Doping and planar defects in the formation of single-crystal ZnO nanorings. Phys. Rev. B. 2004,70: 235048-1~7
    170. Dulub, L.A. Boatner, U. Diebold. STM study of the geometric and electronic structure of ZnO (0001)-Zn, (0001)-O, (1010), and (1120) surfaces. Surf. Sci. 2002, 519: 201~217
    171. B. Meyer, D. Marx. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B. 2003, 67: 035403-1~11
    172. W.L. Hughes, Z.L. Wang. Formation of piezoelectric single-crystal nanorings and nanobows. J. Am. Chem. Soc. 2004, 126: 6703~6709
    173. J. H. Duan, S. G. Yang, H. W. Liu, J. F. Gong, H. B. Huang, X. N. Zhao, J. L. Tang, R. Zhang, Y, W, Du. AlN nanorings. J. Cryst. Growth. 2005, 283: 291~296
    174. J.K. Jian, Z.H. Zhang, Y.P. Sun, M. Lei, X.L. Chen, T.M. Wang, C. Wang. GaN nanorings: another example of spontaneous polarization-induced nanostructure, J. Cryst. Growth. 2007, 303: 427~432
    175. D.M. Bagnall, Y.F. Chen, M.Y. Shen. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE. J. Cryst. Growth. 1998, 185: 605~609
    176. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gande. Mechanisms behind green photoluminescence in ZnO phosphor powders. Appl. Phys. 1996, 79: 7983~7986
    177. D. Banerjee, J.Y. Lao, D.Z. Wang, J.Y. Huang, Z.F. Ren, D. Steeves, B. Kimball, M. Sennett. Large-quantity free-standing ZnO nanowires. Appl. Phys. Lett. 2003, 83: 2061~2063
    178. W. Lee, M.C. Jeong and J.M. Myound, Optical characteristics of arsenic-doped ZnO nanowires. Appl. Phys. Lett. 2004, 85: 6167~6169
    179. J. Grabowska, A. Meaney, K.K. Nanda, J.P. Mosnier, M.O. Henry, J.R.Duclere, E. McGlyn. Surface exitonic emission and quenching effects in ZnO nanowire/nanowall systems: Limiting effects on device potential. Phys. Rev. B. 2005, 71: 115439-1~6
    180. S.W. Jung, W.I. Park, H.D. Cheorg, G.C. Yi, H.M. Jang, S. Hong, T. Joo. Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2002, 80: 1924~1925
    181. V.A. Fonoberov, K.A. Alim, A.A. Balandin, F.X. Xiu and J.L. Liu. Photoluminescence Investigation of the Carrier Recombination Processes in ZnO Quantum Dots and Nanocrystals. Phys. Rev. B. 2006, 73: 165317-1~11
    182.张喜田.纳米氧化锌薄膜的结构和光学特性研究.中国科学院研究生院博士学位论文. 2002: 33~37
    183. S.Y. Bae, C.W. Na, J.H. Kang, J. Park. Comparative Structure and Optical Properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. J. Phys. Chem. B. 2005, 109: 2526~2531
    184. Y. Ding, X.Y. Kong, Z.L. Wang. Doping and planar defects in the formation of single-crystal ZnO nanorings. Phy.Rev. B. 2004, 70: 235408-1~9
    185. M. Girtan, G. Folcher. Structural and optical properties of indium oxide thin films prepared by an ultrasonic spray CVD process. Surf. Coat. Technol. 2003, 172: 242~250
    186. D.W. Chu, Y.P. Zeng, D.L. Jiang. Controlled growth and properties of Pb2+ doped ZnO nanodisks. Mater. Res. Bull. 2007, 42: 814~819
    187.周晓华,徐毓龙,阎西林等. SnO2气敏元件的阻温特性及其机理讨论.传感技术学报. 1992, 5: 23~27
    188. B.B. Rao. Zinc oxide ceramic Semiconductor gas sensor for ethanol vapour. Mater. Chem. Phys. 2000, 64(1): 62~65
    189. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84: 3554~3556
    190.徐甲强,张全法,范福玲.传感器技术(下).哈尔滨:哈尔滨工业大学出版社. 2004
    191. J.A. Dean. Lange’s Handbook of Chemistry.中文版,科学出版社. 2003: 43~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700