用户名: 密码: 验证码:
PFOS的肝脏和心脏发育毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PFOS即全氟辛烷磺酸,是一种全球性的持续性有机污染物,可以通过食物链富集,诱导多种毒性效应;且PFOS可以通过胎盘屏障,对子代的生存、生长发育影响很大,所以对它的研究越来越多;近年来研究的热点是它的肝毒性(肝肿大,肝细胞腺癌)和发育毒性(死亡率升高,生长发育迟缓),因为PFOS的这两种毒性效应比较显著。但是,由于机体是由一个复杂调控网络构成,所以此两种毒性的机制尚不清楚,不同的研究报道的结果也不尽相同,如PPARa是否在肝毒性进展中的具有重要性,或肺不张是否在出生后迅速死亡效应中的关键因素。
     而近年来,由于表观遗传学的发展,研究发现许多疾病特别是肝损伤或肝癌均与表观遗传改变相关,而发育毒性也与线粒体尤为相关。本论文以表观遗传毒性和线粒体损伤毒性为研究途径,分别从肝脏细胞表观遗传效应中的DNA总甲基化和特异基因甲基化水平改变与否的角度出发,研究PFOS肝毒性机制是否与其相关;另外,从心脏线粒体损伤及相关核酸、蛋白分子水平研究角度出发,对PFOS的心脏发育毒性的可能机制进行探讨。
     第一部分、胚胎期PFOS暴露对大鼠出生后断乳期肝脏DNA总甲基化水平的影响
     目的:研究对大鼠出生前暴露于PFOS与其出生后生长发育状况和肝脏可能发生的DNA的甲基化修饰程度的改变之间的关系。方法:用阴道冲洗涂片法检测受孕情况;在雌性SD大鼠受孕后的2-21天,对其进行不同剂量PFOS(对照,0.1 mg/kg/d,0.6mg/kg/d,2.0 mg/kg/d)灌胃染毒;记录母鼠孕期生长速度和子鼠出生后的生存率和生长速度。子鼠出生后21天,即生长至断乳期,收集血清和肝脏器官样本。用HE染色观测肝脏细胞正常与否;用液质联用法(LC/MS)检测血清和肝脏中PFOS含量;用总甲基化检测试剂盒进行DNA总甲基化水平的检测;并用BSP产物纯化结合质粒克隆后测序法检测LINE-1的甲基化状态;以及用AP-PCR方法评估CpG岛的甲基化状态;最后用定量PCR检测DNA甲基转移酶(DNA methyltransferase, DNMT)的表达情况。结果:母鼠孕期生长速度和子鼠出生后的生长速度在高剂量组均显著性减慢(p<0.05);总甲基化水平在最高剂量组有显著性降低(p<0.05);测序显示LINE-1的甲基化水平各组间无显著性差异(p>0.05);AP-PCR方法显示各剂量组的CpG岛甲基化水平均与对照组有显著性差异(p<0.05);另外,DNMT3a在最高剂量组的表达水平有显著性升高。结论:出生前暴露于PFOS降低大鼠出生后的生存率和减慢其生长发育速度;大鼠出生后21天肝脏总甲基化水平的降低也与出生前PFOS暴露水平相关,CpG岛甲基化水平降低也与出生前PFOS暴露水平相关。
     第二部分、胚胎期PFOS暴露引起出生后大鼠肝组织中个体基因甲基化状态改变的研究
     目的:PFOS能够引起一系列肝脏毒性和发育毒性,但目前机制尚不明确。本研究试图论证DNA甲基化水平是否与PFOS诱导的肝毒性早期过程相关;尤其是是否能发现相关的DNA甲基化方面的生物标志物,用于早期毒性的判断。方法:在雌性SD大鼠受孕后的2-21天,对其进行不同剂量PFOS(对照,0.1 mg/kg/d,0.6 mg/kg/d, 2.0 mg/kg/d)灌胃染毒;在子鼠出生后21天,即断乳时,收集肝脏组织样本。用HE染色观测肝脏细胞正常与否;用亚硫酸氢钠测序PCR法(Bisulfite sequencing PCR,BSP),即BSP产物纯化结合质粒克隆后测序法检测GSTP(谷胱甘肽S-转移酶pi)、p16等特定的可能为标志性基因启动子区域的甲基化状态;最后用定量PCR检测GSTP等基因的表达情况。结果:虽然显微镜下未见明显的肝组织病理学(肝细胞肿大,空泡化等)改变,但GSTP的甲基化状态在染毒组的断乳期大鼠肝脏中发生了上升(高剂量组中,GSTP的启动子的关键位点+79,81,84的甲基化水平改变高达30%,而对照组无甲基化发生),其CpG岛甲基化状态与出生前PFOS暴露水平呈剂量-反应关系。然而GSTP的表达却与其甲基化水平不一致,后通过检测调控GSTP的通路Keap1-Nrf2/MafK发现,虽然GSTP的转录因子Nrf2/MafK并没有发生量的变化,但是Nrf2的抑制因子Keap1的表达降低了,这可能间接导致了GSTP的表达上调。同时,GSTP的这种表达上调与机体处于氧化应激状态一致。结论:出生前暴露于PFOS使得出生后的大鼠肝脏中GSTP基因启动子关键位点高甲基化,这种指标比普通病理学观察指标更灵敏,且反映了潜在毒性的发展趋势;虽然大鼠机体朝着毒性效应方向发展,但是短期内却是表现的氧化应激,这点正好被GSTP启动子关键位点的高甲基化和GSTP的表达上调分别证实。
     第三部分、胚胎期PFOS暴露与出生后断乳期大鼠心脏线粒体内膜结构功能改变的研究
     目的:大鼠出生前暴露于PFOS对大鼠出生后的生长发育造成很大影响,达到剂量阈值之后,子鼠的死亡率明显升高,生长发育也相对迟缓。而心脏是生长发育过程中的一个关键器官;线粒体是功能细胞器,在心肌细胞中起着重要作用。本研究试图探讨心肌细胞线粒体微观改变与这种发育毒性之间的相关性。方法:本实验中使用了电镜切片观察线粒体,表达谱芯片筛选线粒体功能相关基因,并用定量PCR和蛋白水平检测进行芯片结果的验证,以及用光学显微镜对传统病理学和分子毒理学方面的可能性改变进行观察。结果:线粒体电镜照片观察到空泡化,内膜溶解等现象;表达谱芯片结果筛选选出了部分与线粒体功能相关的表达上调或下调超过1.5倍的基因,其中包括下调的线粒体内膜构成蛋白,ATP合成酶,ATP消耗酶,和上调的线粒体保护蛋白Ucp系列基因等;通过定量PCR和蛋白水平的验证得到一致结果,且有剂量-效应关系。另外在线粒体损伤的后续效应观察中,虽然心脏切片细胞形态学观察结果无显著差异;但PCNA增殖及TUNEL凋亡染色观察结果在暴露组比对照组间有一定增加。结论:大鼠出生前暴露于PFOS对大鼠出生后心脏线粒体造成损伤,虽然在心脏切片形态学观察无显著性改变,但是线粒体微观观察结果和功能相关基因的分子水平检测发生了显著性改变,与损伤效应一致;且一定程度上表现出了损伤后的增殖及凋亡效应。
Perfluorooctane sulfonate (PFOS), a widespread environmental pollutant, is a breakdown product of related perfluorooctanesulfonamides, which were used in many industrial and commercial applications. Due to the extremely stable and accumulative nature of PFOS, it has been considered as a persistent organic pollutant and has been found in high concentrations in serum and liver in wildlife and humans. Increased incidences of hepatotoxicity and developmental toxicity have been reported to be the main toxicity and hazard profile of PFOS. However, the mechanism underlying hepatic effects and developmental toxicity observed in the PFOS-treated mammalians was not well known. Notably, it is proven that PFOS can cross the placental barrier and cause toxicity in developmental mammalians.
     As we known, early life stage exposure to toxicants would increase the risk of adverse effects. In the past decade, increasing evidence has been reported to support the associations between exposures during the intrauterine period and health outcomes later in life. So it is possible to find predictive biomarkers for increased incidence of liver toxicity and cardiac developmental toxicity induced by PFOS.
     To test the hypothesis whether prenatal exposure of PFOS to the livers of postnatal rat, may related with the alteration of genomic DNA methylation level and promoter region methylation of individual genes; and to investigate whether prenatal exposure of PFOS to the hearts of postnatal rat, may related with the alteration of cardiac mitochondrial dysfunction and structure damage. Pregnant Sprague-Dawley (SD) rats were exposed to perfluorooctane sulfonate (PFOS) and then livers and hearts of weaned (Postnatal Day 21) offspring rats were investigated through epigenetic effects and mitochondrial injury, respectively.
     Part I:Prenatal exposure to PFOS altered DNA methylation levels in postnatal SD rat livers
     Objectives:To study whether prenatal exposure of PFOS to the livers of postnatal rat, may related with the alteration of DNA methylation level. Methods:After sperm positive was observed, the pregnant rats gavage exposed to different doses of PFOS (control,0.1 mg/kg/d,0.6 mg/kg/d,2.0 mg/kg/d) during the gestational day 2-21, then the dams was allowed to give birth and the livers of postnatal day 21 were collected, and the global DNA methylation level, the methylation status of LINE-1 and the methylation status of CpG islands were evaluated with the global DNA methylation kit, BSP combined cloned sequencing, and AP-PCR, respectively. Results:The global DNA methylation level at the highest dose group decreased significantly (p<0.05); but there were no significant differences of methylation levels of LINE-1 among the groups (p>0.05); The AP-PCR method showed significant difference of CpG islands methylation in three dosed group compared to the control (p<0.05); in addition, the expression of DNMT3a at the highest dose group was significantly increased (p<0.05). Conclusion:In livers of postnatal rats, the global DNA hypomethylation level and the decrease of CpG islands methylation were related to prenatal exposure to PFOS.
     Part II:Prenatal exposure to PFOS altered individual genes methylation levels of livers from postnatal SD rat
     Objectives:The adverse environmental exposure in early life may have deleterious effects on animals through epigenetic aspects. The current study examined the possibility of early epigenetic alteration in PFOS-exposed rat liver. Methods:Pregnant Sprague-Dawley (SD) rats were exposed to Perfluorooctane sulfonate (PFOS) at doses of 0.1,0.6 and 2.0 mg/kg/d and 0.05% Tween 80 as control by gavage from gestation days 2 to 21. The dams were allowed to give birth and liver samples from weaned (Postnatal Day 21) offspring rats were analyzed for individual genes such as tumor suppressor gene glutathione S-transferase pi (GSTP) and p16 promoter methylation level, as well as related genes expression level. Results:In PFOS exposed weaned rats, compared to the control, methylation of critical CpG sites (+79,81,84) in GSTP promoter was found up to 30% methylated in the livers of treated rats, while p16 promoter methylation was not affected. In addition, the up-regulated expression of GSTP was observed and this increase was associated with its main pathway of transcription regulation:Keapl-Nrf2/MafK. Conclusion:early induced hypermethylation in critical cytosines within the GSTP gene promoter region may be a significant biomarker of hepatic PFOS burden, though their direct role in PFOS induced-hepatotoxicity, including its potential carcinogenic action, needs further research.
     Part III:Prenatal exposure to PFOS injured cardiac mitochondrial inner membrane of postnatal SD rat
     Objectives:Xenobiotics exposure in early life may have adverse effects on animals' development through mitochondrial damage or dysfunction. The current study demonstrated the possibility of early cardiac mitochondrial damage in PFOS-exposed rat heart. Methods:Pregnant Sprague-Dawley (SD) rats were exposed to Perfluorooctane sulfonate (PFOS) at doses of 0.1,0.6 and 2.0 mg/kg/d and 0.05% Tween 80 as control by gavage from gestation days 2 to 21. The dams were allowed to give birth and heart tissues from weaned (Postnatal Day 21) offspring rats were analyzed for mitochondrial damage through histology observation, ultramicrostructure by electron microscope, global gene expression profile by microarray, related mRNA and proteins or enzymes expression levels by quantitative PCR and western blot. Results:The mitochondria was damaged at 2.0 mg/kg/d dosage group; there were significant vacuolization and inner membrane injury appeared at the hig dosage group; The global gene expression profile showed significant difference in level of some mRNA expression related with mitochondrial structure and function at 2.0 mg/kg/d dosage group, compared to the control; in addition, the expression of several gene at the highest dose group was indeed significantly increased (p<0.05) through quantitative PCR and western blot analysis. Finally, the changes among groups were almost dose-dependent. Conclusion:In hearts of postnatal rats, the mitochondrial injury level and the status of their function were related to prenatal exposure to PFOS. Thus, early induced changes in cardiac mitochondrial structure and function may be a significant phenomenon in rat development after PFOS exposure, though their direct role in PFOS induced developmental toxicity, including its contribution to development of heart or the whole organism, needs further research.
引文
1. Giesy, J.P. and K. Kannan, Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol,2001.35(7):p.1339-42.
    2. Lau, C., et al., Perfluoroalkyl acids:a review of monitoring and toxicological findings. Toxicol Sci,2007.99(2):p.366-94.
    3. Taniyasu, S., et al., A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environ Sci Technol, 2003.37(12):p.2634-9.
    4. Inoue, K., et al., Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples:assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect,2004.112(11): p.1204-7.
    5. Lau, C., et al., Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. Ⅱ:postnatal evaluation. Toxicol Sci,2003.74(2):p.382-92.
    6. Chang, S.C., et al., Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS). Toxicology,2008.243(3):p.330-9.
    7. Kennedy, GL., Jr., et al., The toxicology of perfluorooctanoate. Crit Rev Toxicol,2004. 34(4):p.351-84.
    8. Seacat, A.M., et al., Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology,2003.183(1-3):p.117-31.
    9. Jirtle, R.L. and M.K. Skinner, Environmental epigenomics and disease susceptibility. Nat Rev Genet,2007.8(4):p.253-62.
    10. Pogribny, I.P., et al., Mechanisms of peroxisome proliferator-induced DNA hypomethylation in rat liver. Mutat Res,2008.644(1-2):p.17-23.
    11. Midasch, O., et al., Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate:a pilot study. Int Arch Occup Environ Health,2007.80(7):p. 643-8.
    12. Thibodeaux, J.R., et al., Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. Ⅰ:maternal and prenatal evaluations. Toxicol Sci,2003.74(2):p.369-81.
    13. Clark, S.J., et al., High sensitivity mapping of methylated cytosines. Nucleic Acids Res, 1994.22(15):p.2990-7.
    14. Tryndyak, V.P., et al., Epigenetic reprogramming of liver cells in tamoxifen-induced rat hepatocarcinogenesis. Mol Carcinog,2007.46(3):p.187-97.
    15. Xiong, Z. and P.W. Laird, COBRA:a sensitive and quantitative DNA methylation assay. Nucleic Acids Res,1997.25(12):p.2532-4.
    16. Eads, C.A. and P.W. Laird, Combined bisulfite restriction analysis (COBRA). Methods Mol Biol,2002.200:p.71-85.
    17. Xie, Y, et al., Aberrant DNA methylation and gene expression in livers of newborn mice transplacentally exposed to a hepatocarcinogenic dose of inorganic arsenic. Toxicology, 2007.236(1-2):p.7-15.
    18. Yang, A.S., et al., A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res,2004.32(3):p. e38.
    19. Luebker, D.J., et al., Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats:dose-response, and biochemical and pharamacokinetic parameters. Toxicology,2005.215(1-2):p.149-69.
    1. Giesy, J.P. and K. Kannan, Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol,2001.35(7):p.1339-42.
    2. Smithwick, M., et al., Perflouroalkyl contaminants in liver tissue from East Greenland polar bears (Ursus maritimus). Environ Toxicol Chem,2005.24(4):p. 981-6.
    3. Kannan, K., et al., Perfluorooctane sulfonate in fish-eating water birds including bald eagles and albatrosses. Environ Sci Technol,2001.35(15):p.3065-70.
    4. Taniyasu, S., et al., A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environ Sci Technol,2003.37(12):p.2634-9.
    5. Lau, C., et al., Perfluoroalkyl acids:a review of monitoring and toxicological findings. Toxicol Sci,2007.99(2):p.366-94.
    6. Fromme, H., et al., Perfluorinated compounds-exposure assessment for the general population in Western countries. Int J Hyg Environ Health,2009.212(3):p.239-70.
    7. Seacat, A.M., et al., Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology,2003.183(1-3):p.117-31.
    8. Seacat, A.M., et al., Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci,2002.68(1):p.249-64.
    9. Midasch, O., et al., Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate:a pilot study. Int Arch Occup Environ Health,2007.80(7):p. 643-8.
    10. Vanden Heuvel, J.P., et al., Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids:a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha,-beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci,2006.92(2):p. 476-89.
    11. Luebker, D.J., et al., Interactions of fluorochemicals with rat liver fatty acid-binding protein. Toxicology,2002.176(3):p.175-85.
    12. Lau, C., et al., Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. Ⅱ:postnatal evaluation. Toxicol Sci,2003.74(2):p.382-92.
    13. Thibodeaux, J.R., et al., Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. Ⅰ:maternal and prenatal evaluations. Toxicol Sci,2003.74(2):p. 369-81.
    14. Lau, C., J.L. Butenhoff, and J.M. Rogers, The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol,2004.198(2):p.231-41.
    15. Jirtle, R.L. and M.K. Skinner, Environmental epigenomics and disease susceptibility. Nat Rev Genet,2007.8(4):p.253-62.
    16. Hales, C.N. and D.J. Barker, The thrifty phenotype hypothesis. Br Med Bull,2001.60: p.5-20.
    17. Kennedy, GL., Jr., et al., The toxicology of perfluorooctanoate. Crit Rev Toxicol, 2004.34(4):p.351-84.
    18. Anglim, P.P., T.A. Alonzo, and I.A. Laird-Offringa, DNA methylation-based biomarkers for early detection of non-small cell lung cancer:an update. Mol Cancer, 2008.7:p.81.
    19. Phe, V., O. Cussenot, and M. Roupret, Methylated genes as potential biomarkers in prostate cancer. BJU Int.
    20. Chouliaras, L., et al., Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog Neurobiol.
    21. Zhang, Y.J., et al., Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clin Cancer Res,2007.13(8):p.2378-84.
    22. Brooks, J., P. Cairns, and A. Zeleniuch-Jacquotte, Promoter methylation and the detection of breast cancer. Cancer Causes Control,2009.20(9):p.1539-50.
    23. Kovalenko, V.M., et al., Epigenetic changes in the rat livers induced by pyrazinamide treatment. Toxicol Appl Pharmacol,2007.225(3):p.293-9.
    24. Xie, Y., et al., Aberrant DNA methylation and gene expression in livers of newborn mice transplacentally exposed to a hepatocarcinogenic dose of inorganic arsenic. Toxicology,2007.236(1-2):p.7-15.
    25. Watson, R.E., et al., The value of DNA methylation analysis in basic, initial toxicity assessments. Toxicol Sci,2004.79(1):p.178-88.
    26. Verma, M. and S. Srivastava, Epigenetics in cancer:implications for early detection and prevention. Lancet Oncol,2002.3(12):p.755-63.
    27. Luebker, D.J., et al., Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology,2005.215(1-2):p.126-48.
    28. Daniel, V., Glutathione S-transferases:gene structure and regulation of expression. Crit Rev Biochem Mol Biol,1993.28(3):p.173-207.
    29. Nobori, T., et al., Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature,1994.368(6473):p.753-6.
    30. Tchou, J.C., et al., GSTP1 CpG island DNA hypermethylation in hepatocellular carcinomas. Int J Oncol,2000.16(4):p.663-76.
    31. Steinmetz, K.L., et al., Hypomethylation of the rat glutathione S-transferase pi (GSTP) promoter region isolated from methyl-deficient livers and GSTP-positive liver neoplasms. Carcinogenesis,1998.19(8):p.1487-94.
    32. Yang, B., et al., Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol,2003.163(3):p.1101-7.
    33. Esteller, M., et al., Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res,1998.58(20):p.4515-8.
    34. Harder, J., et al., Quantitative promoter methylation analysis of hepatocellular carcinoma, cirrhotic and normal liver. Int J Cancer,2008.122(12):p.2800-4.
    35. Kostka, G., K. Urbanek, and J.K. Ludwicki, The effect of phenobarbital on the methylation level of the p16 promoter region in rat liver. Toxicology,2007.239(1-2): p.127-35.
    36. Clark, S.J., et al., High sensitivity mapping of methylated cytosines. Nucleic Acids Res, 1994.22(15):p.2990-7.
    37. Dinkova-Kostova, A.T., et al., Direct evidence that sulfhydryl groups of Keapl are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A,2002.99(18):p.11908-13.
    38. Sakai, M. and M. Muramatsu, Regulation of glutathione transferase P:a tumor marker of hepatocarcinogenesis. Biochem Biophys Res Commun,2007.357(3):p. 575-8.
    39. Bjork, J.A., et al., Perfluorooctane sulfonate-induced changes in fetal rat liver gene expression. Toxicology,2008.251(1-3):p.8-20.
    40. Chang, S.C., et al., Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats:toxicokinetics, thyroid hormone status, and related gene expression. Reprod Toxicol,2009.27(3-4):p.387-99.
    41. Krajinovic, M., et al., Genetic susceptibility to breast cancer in French-Canadians: role of carcinogen-metabolizing enzymes and gene-environment interactions. Int J Cancer,2001.92(2):p.220-5.
    42. Nakayama, M., et al., GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem,2004.91(3):p.540-52.
    43. Wang, J., et al., Detection of aberrant promoter methylation of GSTP1 in the tumor and serum of Chinese human primary hepatocellular carcinoma patients. Clin Biochem,2006.39(4):p.344-8.
    44. Kovesdi, I., R. Reichel, and J.R. Nevins, Role of an adenovirus E2 promoter binding factor in ElA-mediated coordinate gene control. Proc Natl Acad Sci U S A,1987. 84(8):p.2180-4.
    45. Macleod, D., et al., Spl sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev,1994.8(19):p.2282-92.
    46. Karlseder, J., H. Rotheneder, and E. Wintersberger, Interaction of Spl with the growth-and cell cycle-regulated transcription factor E2F. Mol Cell Biol,1996.16(4): p.1659-67.
    47. Lin, S.Y., et al., Cell cycle-regulated association of E2Fl and Spl is related to their functional interaction. Mol Cell Biol,1996.16(4):p.1668-75.
    48. Brandeis, M., et al., Spl elements protect a CpG island from de novo methylation. Nature,1994.371(6496):p.435-8.
    49. Bakker, J., X. Lin, and W.G. Nelson, Methyl-CpG binding domain protein 2 represses transcription from hypermethylated pi-class glutathione S-transferase gene promoters in hepatocellular carcinoma cells. J Biol Chem,2002.277(25):p.22573-80.
    50. Lin, C.H., et al., Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res,2001.61(10):p.4238-43.
    51. Matsumoto, M., M. Imagawa, and Y. Aoki, Identification of an enhancer element of class Pi glutathione S-transferase gene required for expression by a co-planar polychlorinated biphenyl. Biochem J,1999.338 (Pt 3):p.599-605.
    52. Ramos-Gomez, M., et al., Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci U S A,2001.98(6):p.3410-5.
    1. Lau, C., et al., Perfluoroalkyl acids:a review of monitoring and toxicological findings. Toxicol Sci,2007.99(2):p.366-94.
    2. Fromme, H., et al., Perfluorinated compounds-exposure assessment for the general population in Western countries. Int J Hyg Environ Health,2009.212(3):p.239-70.
    3. Giesy, J.P. and K. Kannan, Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol,2001.35(7):p.1339-42.
    4. Inoue, K., et al., Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples:assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect, 2004.112(11):p.1204-7.
    5. Midasch,O., et al., Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate:a pilot study. Int Arch Occup Environ Health,2007.80(7):p. 643-8.
    6. Washino, N., et al., Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Health Perspect,2009.117(4):p.660-7.
    7. Thibodeaux, J.R., et al., Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. Ⅰ:maternal and prenatal evaluations. Toxicol Sci,2003.74(2):p. 369-81.
    8. Lau, C., et al., Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. Ⅱ:postnatal evaluation. Toxicol Sci,2003.74(2):p.382-92.
    9. Luebker, D.J., et al., Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology,2005.215(1-2):p.126-48.
    10. Apelberg, B.J., et al., Determinants of fetal exposure to polyfluoroalkyl compounds in Baltimore, Maryland. Environ Sci Technol,2007.41(11):p.3891-7.
    11. Apelberg, B.J., et al., Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect,2007.115(11):p.1670-6.
    12. Olsen, GW., et al., Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect,2007.115(9):p. 1298-305.
    13. Abbott, B.D., et al., Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR alpha) in the mouse. Reprod Toxicol,2009.27(3-4):p.258-65.
    14. Abbott, B.D., et al., Perfluorooctanoic acid induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol Sci,2007.98(2):p.571-81.
    15. Grasty, R.C., et al., Prenatal window of susceptibility to perfluorooctane sulfonate-induced neonatal mortality in the Sprague-Dawley rat. Birth Defects Res B Dev Reprod Toxicol,2003.68(6):p.465-71.
    16. Yahia, D., et al., Neonatal death of mice treated with perfluorooctane sulfonate. J Toxicol Sci,2008.33(2):p.219-26.
    17. Grasty, R.C., et al., Effects of prenatal perfluorooctane sulfonate (PFOS) exposure on lung maturation in the perinatal rat. Birth Defects Res B Dev Reprod Toxicol,2005. 74(5):p.405-16.
    18. Cui, L., et al., Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol,2009. 56(2):p.338-49.
    19. Huang, H., et al., Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS). Aquat Toxicol.
    20. Cao, J., et al., Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol Sci,2006.91(2):p.476-83.
    21. Dunnick, J., et al., Critical pathways in heart function: bis(2-chloroethoxy)methane-induced heart gene transcript change in F344 rats. Toxicol Pathol,2006.34(4):p.348-56.
    22. Bjork, J.A., et al., Perfluorooctane sulfonate-induced changes in fetal rat liver gene expression. Toxicology,2008.251(1-3):p.8-20.
    23. Dietrich, M.O. and T.L. Horvath, The role of mitochondrial uncoupling proteins in lifespan. Pflugers Arch.459(2):p.269-75.
    24. Voelker, D., et al., Differential gene expression as a toxicant-sensitive endpoint in zebrafish embryos and larvae. Aquat Toxicol,2007.81(4):p.355-64.
    25. Palmieri, F., The mitochondrial transporter family (SLC25):physiological and pathological implications. Pflugers Arch,2004.447(5):p.689-709.
    26. Ramirez-Iniguez, A.L., et al., Acute treatment of constant darkness increases the efficiency of ATP synthase in rat liver mitochondria. Ann Hepatol,2009.8(4):p. 371-6.
    27. Korzeniewski, B., et al., Effect of pyruvate, lactate and insulin on ATP supply and demand in unpaced perfused rat heart. Biochem J,2009.423(3):p.421-8.
    28. Birceanu, O., et al., Failure of ATP supply to match ATP demand:the mechanism of toxicity of the lampricide, 3-trifluoromethyl-4-nitrophenol (TFM), used to control sea lamprey (Petromyzon marinus) populations in the Great Lakes. Aquat Toxicol,2009. 94(4):p.265-74.
    29. Rousset, S., et al., The biology of mitochondrial uncoupling proteins. Diabetes,2004. 53 Suppl 1:p. S130-5.
    30. Guo, R. and J. Ren, Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice:role of mitochondrial death pathway. PLoS One,2010.5(1):p. e8757.
    31. Wang, G., et al., Mitochondrial DNA damage and a hypoxic response are induced by CoCl(2) in rat neuronal PC12 cells. Nucleic Acids Res,2000.28(10):p.2135-40.
    32. Ohtaki, H., et al., Increased mitochondrial DNA oxidative damage after transient middle cerebral artery occlusion in mice. Neurosci Res,2007.58(4):p.349-55.
    33. Qian, Y., et al., Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells:role in endothelial permeability. J Toxicol Environ Health A.73(12):p.819-36.
    34. Xue, B., et al., Transcriptional synergy and the regulation of Ucpl during brown adipocyte induction in white fat depots. Mol Cell Biol,2005.25(18):p.8311-22.
    35. Klingenberg, M., E. Winkler, and K. Echtay, Uncoupling protein, H+ transport and regulation. Biochem Soc Trans,2001.29(Pt 6):p.806-11.
    36. Klingenberg, M. and K.S. Echtay, Uncoupling proteins:the issues from a biochemist point of view. Biochim Biophys Acta,2001.1504(1):p.128-43.
    37. Klingenberg, M., Uncoupling proteins-how do they work and how are they regulated. IUBMB Life,2001.52(3-5):p.175-9.
    38. Hoerter, J., et al., Mitochondrial uncoupling protein 1 expressed in the heart of transgenic mice protects against ischemic-reperfusion damage. Circulation,2004. 110(5):p.528-33.
    1. Hekster, F.M., R.W. Laane, and P. de Voogt, Environmental and toxicity effects of perfluoroalkylated substances. Rev Environ Contam Toxicol,2003.179:p.99-121.
    2. Lau, C., et al., Perfluoroalkyl acids:a review of monitoring and toxicological findings. Toxicol Sci,2007.99(2):p.366-94.
    3. Olsen, G.W., et al., Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect,2007.115(9):p. 1298-305.
    4. Harada, K., et al., Airborne perfluorooctanoate may be a substantial source contamination in Kyoto area, Japan. Bull Environ Contam Toxicol,2005.74(1):p. 64-9.
    5. Sasaki, K., et al., Impact of airborne perfluorooctane sulfonate on the human body burden and the ecological system. Bull Environ Contam Toxicol,2003.71(2):p. 408-13.
    6. Barton, C.A., et al., Characterizing perfluorooctanoate in ambient air near the fence line of a manufacturing facility:comparing modeled and monitored values. J Air Waste Manag Assoc,2006.56(1):p.48-55.
    7. Jahnke, A., et al., Development and application of a simplified sampling method for volatile polyfluorinated alkyl substances in indoor and environmental air. J Chromatogr A,2007.1164(1-2):p.1-9.
    8. Moriwaki, H., Y. Takatah, and R. Arakawa, Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in vacuum cleaner dust collected in Japanese homes. J Environ Monit,2003.5(5):p.753-7.
    9. Fromme, H., et al., Perfluorinated compounds-exposure assessment for the general population in Western countries. Int J Hyg Environ Health,2009.212(3):p.239-70.
    10. Tittlemier, S.A., et al., Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J Agric Food Chem,2007.55(8):p.3203-10.
    11. Tittlemier, S.A., K. Pepper, and L. Edwards, Concentrations of perfluorooctanesulfonamides in Canadian total diet study composite food samples collected between 1992 and 2004. J Agric Food Chem,2006.54(21):p.8385-9.
    12. Tittlemier, S.A., et al., Development and characterization of a solvent extraction-gas chromatographic/mass spectrometric method for the analysis of perfluorooctanesulfonamide compounds in solid matrices. J Chromatogr A,2005. 1066(1-2):p.189-95.
    13. Martin, J.W., et al., Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem,2003.22(1):p. 196-204.
    14. Giesy, J.P. and K. Kannan, Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol,2001.35(7):p.1339-42.
    15. Kannan, K., et al., Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Arch Environ Contam Toxicol,2005.48(4):p. 559-66.
    16. Smithwick, M., et al., Perflouroalkyl contaminants in liver tissue from East Greenland polar bears (Ursus maritimus). Environ Toxicol Chem,2005.24(4):p. 981-6.
    17. Wilhelm, M., et al., Assessment and management of the first German case of a contamination with perfluorinated compounds (PFC) in the Region Sauerland, North Rhine-Westphalia. J Toxicol Environ Health A,2008.71(11-12):p.725-33.
    18. Falandysz, J., et al., Is fish a major source of fluorinated surfactants and repellents in humans living on the Baltic Coast? Environ Sci Technol,2006.40(3):p.748-51.
    19. Holzer, J., et al., Biomonitoring of perfluorinated compounds in children and adults exposed to perfluorooctanoate-contaminated drinking water. Environ Health Perspect, 2008.116(5):p.651-7.
    20. Harada, K., et al., Perfluorooctane sulfonate contamination of drinking water in the Tama River, Japan:estimated effects on resident serum levels. Bull Environ Contam Toxicol,2003.71(1):p.31-6.
    21. Saito, N., et al., Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. J Occup Health,2004.46(1):p.49-59.
    22. Loos, R., et al., Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Anal Bioanal Chem,2007.387(4):p.1469-78.
    23. Emmett, E.A., et al., Community exposure to perfluorooctanoate:relationships between serum levels and certain health parameters. J Occup Environ Med,2006. 48(8):p.771-9.
    24. Ericson, I., et al., Human exposure to perfluorinated chemicals through the diet: intake of perfluorinated compounds in foods from the Catalan (Spain) market. J Agric Food Chem,2008.56(5):p.1787-94.
    25. Fromme, H., et al., Exposure of an adult population to perfluorinated substances using duplicate diet portions and biomonitoring data. Environ Sci Technol,2007. 41(22):p.7928-33.
    26. Fromme, H., et al., Integrated Exposure Assessment Survey (INES) exposure to persistent and bioaccumulative chemicals in Bavaria, Germany. Int J Hyg Environ Health,2007.210(3-4):p.345-9.
    27. Olsen, G. W. and L.R. Zobel, Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int Arch Occup Environ Health,2007.81(2):p.231-46.
    28. Olsen, G.W., et al., Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ Med,2003.45(3):p.260-70.
    29. Olsen, G.W., et al., An occupational exposure assessment of a perfluorooctanesulfonyl fluoride production site:biomonitoring. AIHA J (Fairfax, Va),2003.64(5):p.651-9.
    30. Karrman, A., et al., Levels of 12 perfluorinated chemicals in pooled australian serum, collected 2002-2003, in relation to age, gender, and region. Environ Sci Technol, 2006.40(12):p.3742-8.
    31. Kannan, K., et al., Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol,2004.38(17):p.4489-95.
    32. Ewers, U., et al., Reference values and human biological monitoring values for environmental toxins. Report on the work and recommendations of the Commission on Human Biological Monitoring of the German Federal Environmental Agency. Int Arch Occup Environ Health,1999.72(4):p.255-60.
    33. Kudo, N. and Y. Kawashima, Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals. J Toxicol Sci,2003.28(2):p.49-57.
    34. Langlois, I. and M. Oehme, Structural identification of isomers present in technical perfluorooctane sulfonate by tandem mass spectrometry. Rapid Commun Mass Spectrom,2006.20(5):p.844-50.
    35. Vyas, S.M., I. Kania-Korwel, and H.J. Lehmler, Differences in the isomer composition of perfluoroctanesulfonyl (PFOS) derivatives. J Environ Sci Health A Tox Hazard Subst Environ Eng,2007.42(3):p.249-55.
    36. Karrman, A., et al., Identification and pattern of perfluorooctane sulfonate (PFOS) isomers in human serum and plasma. Environ Int,2007.33(6):p.782-8.
    37. De Silva, A.O. and S.A. Mabury, Isomer distribution of-perfluorocarboxylates in human blood:potential correlation to source. Environ Sci Technol,2006.40(9):p. 2903-9.
    38. Hinderliter, P.M., et al., Perfluorooctanoate:Placental and lactational transport pharmacokinetics in rats. Toxicology,2005.211(1-2):p.139-48.
    39. Tittlemier, S.A., et al., Polybrominated diphenyl ethers in retail fish and shellfish samples purchased from Canadian markets. J Agric Food Chem,2004.52(25):p. 7740-5.
    40. Apelberg, B. J., et al., Determinants of fetal exposure to polyfluoroalkyl compounds in Baltimore, Maryland. Environ Sci Technol,2007.41(11):p.3891-7.
    41. Apelberg, B.J., et al., Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect,2007.115(11):p.1670-6.
    42. Inoue, K., et al., Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples:assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect, 2004.112(11):p.1204-7.
    43. Olsen, G.W., et al., Human donor liver and serum concentrations of perfluorooctanesulfonate and other perfluorochemicals. Environ Sci Technol,2003. 37(5):p.888-91.
    44. Kuklenyik, Z., et al., Automated solid-phase extraction and measurement of perfluorinated organic acids and amides in human serum and milk Environ Sci Technol,2004.38(13):p.3698-704.
    45. Lau, C., et al., Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. Ⅱ:postnatal evaluation. Toxicol Sci,2003.74(2):p.382-92.
    46. Hundley, S.G., A.M. Sarrif, and G.L. Kennedy, Absorption, distribution, and excretion of ammonium perfluorooctanoate (APFO) after oral administration to various species. Drug Chem Toxicol,2006.29(2):p.137-45.
    47. Seacat, A.M., et al., Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology,2003.183(1-3):p.117-31.
    48. Seacat, A.M., et al., Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci,2002.68(1):p.249-64.
    49. Luebker, D.J., et al., Interactions of fluorochemicals with rat liver fatty acid-binding protein. Toxicology,2002.176(3):p.175-85.
    50. Biegel, L.B., et al., Mechanisms of extrahepatic tumor induction by peroxisome proliferators in male CD rats. Toxicol Sci,2001.60(1):p.44-55.
    51. Cook, J.C., et al., Induction of Leydig cell adenomas by ammonium perfluorooctanoate:a possible endocrine-related mechanism. Toxicol Appl Pharmacol,1992.113(2):p.209-17.
    52. Kennedy, G.L., Jr., et al., The toxicology of perfluorooctanoate. Crit Rev Toxicol, 2004.34(4):p.351-84.
    53. Chang, S.C., et al., Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats:toxicokinetics, thyroid hormone status, and related gene expression. Reprod Toxicol,2009.27(3-4):p.387-99.
    54. Yu, W.G., et al., Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development:a cross-foster study on chemical burden and thyroid hormone system. Environ Sci Technol,2009.43(21):p.8416-22.
    55. Qazi, M.R., et al.,28-Day dietary exposure of mice to a low total dose (7 mg/kg) of perfluorooctanesulfonate (PFOS) alters neither the cellular compositions of the thymus and spleen nor humoral immune responses:does the route of administration play a pivotal role in PFOS-induced immunotoxicity? Toxicology.267(1-3):p.132-9.
    56. Peden-Adams, M.M., et al., Suppression of humoral immunity in mice following exposure to perfluorooctane sulfonate. Toxicol Sci,2008.104(1):p.144-54.
    57. Lau, C., J.L. Butenhoff, and J.M. Rogers, The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol,2004.198(2):p.231-41.
    58. Klaunig, J.E., et al., PPARalpha agonist-induced rodent tumors:modes of action and human relevance. Crit Rev Toxicol,2003.33(6):p.655-780.
    59. Vanden Heuvel, J.P., et al., Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids:a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha,-beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci,2006.92(2):p. 476-89.
    60. Shipley, J.M., et al., trans-activation of PPARalpha and induction of PPARalpha target genes by perfluorooctane-based chemicals. Toxicol Sci,2004.80(1):p.151-60.
    61. Takacs, M.L. and B.D. Abbott, Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci,2007.95(1):p.108-17.
    62. Yang, Q., et al., Potent suppression of the adaptive immune response in mice upon dietary exposure to the potent peroxisome proliferator, perfluorooctanoic acid. Int Immunopharmacol,2002.2(2-3):p.389-97.
    63. Yang, Q., et al., Involvement of the peroxisome proliferator-activated receptor alpha in the immunomodulation caused by peroxisome proliferators in mice. Biochem Pharmacol,2002.63(10):p.1893-900.
    64. Yang, Q., et al., Peroxisome proliferator-activated receptor alpha activation during pregnancy severely impairs mammary lobuloalveolar development in mice. Endocrinology,2006.147(10):p.4772-80.
    65. Abbott, B.D., et al., Perfluorooctanoic acid induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol Sci,2007.98(2):p.571-81.
    66. Trosko, J.E. and R.J. Ruch, Cell-cell communication in carcinogenesis. Front Biosci, 1998.3:p. d208-36.
    67. Hu, W., et al., Inhibition of gap junctional intercellular communication by perfluorinated compounds in rat liver and dolphin kidney epithelial cell lines in vitro and Sprague-Dawley rats in vivo. Toxicol Sci,2002.68(2):p.429-36.
    68. Upham, B.L., et al., Inhibition of gap junctional intercellular communication by perfluorinated fatty acids is dependent on the chain length of the fluorinated tail. Int J Cancer,1998.78(4):p.491-5.
    69. Luebker, D.J., et al., Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology,2005.215(1-2):p.126-48.
    70. Abbott, B.D., et al., Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR alpha) in the mouse. Reprod Toxicol,2009.27(3-4):p.258-65.
    71. Yahia, D., et al., Neonatal death of mice treated with perfluorooctane sulfonate. J Toxicol Sci,2008.33(2):p.219-26.
    72. Grasty, R.C., et al., Effects of prenatal perfluorooctane sulfonate (PFOS) exposure on lung maturation in the perinatal rat. Birth Defects Res B Dev Reprod Toxicol,2005. 74(5):p.405-16.
    73. Du, Y, et al., Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish:a partial life-cycle test. Chemosphere,2009.74(5):p. 723-9.
    74. Shi, X., et al., Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. Chemosphere,2009.77(7):p. 1010-8.
    75. Ye, L., et al., [Toxicological study of PFOS/PFOA to zebrafish (Danio rerio) embryos]. Huan Jing Ke Xue,2009.30(6):p.1727-32.
    76. Butenhoff, J.L., et al., Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats:developmental neurotoxicity. Reprod Toxicol,2009.27(3-4):p.319-30.
    77. Liu, X., et al., Effect of gestational and lactational exposure to perfluorooctanesulfonate on calcium-dependent signaling molecules gene expression in rats'hippocampus. Arch Toxicol.84(1):p.71-9.
    78. Alexander, B.H., et al., Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occup Environ Med,2003.60(10):p.722-9.
    79. Gilliland, F.D. and J.S. Mandel, Mortality among employees of a perfluorooctanoic acid production plant. J Occup Med,1993.35(9):p.950-4.
    80. Olsen, G.W., et al., An epidemiologic investigation of reproductive hormones in men with occupational exposure to perfluorooctanoic acid. J Occup Environ Med,1998. 40(7):p.614-22.
    81. Voelker, D., et al., Differential gene expression as a toxicant-sensitive endpoint in zebrafish embryos and larvae. Aquat Toxicol,2007.81(4):p.355-64.
    82. Bjork, J.A., et al., Perfluorooctane sulfonate-induced changes in fetal rat liver gene expression. Toxicology,2008.251(1-3):p.8-20.
    83. Rosen, M.B., et al., Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses:comparison to changes induced by exposure to perfluorooctanoic acid. Reprod Toxicol,2009.27(3-4):p.278-88.
    84. Clark, S.J., et al., High sensitivity mapping of methylated cytosines. Nucleic Acids Res, 1994.22(15):p.2990-7.
    85. Tryndyak, V.P., et al., Epigenetic reprogramming of liver cells in tamoxifen-induced rat hepatocarcinogenesis. Mol Carcinog,2007.46(3):p.187-97.
    86. Xiong, Z. and P.W. Laird, COBRA:a sensitive and quantitative DNA methylation assay. Nucleic Acids Res,1997.25(12):p.2532-4.
    87. Eads, C.A. and P.W. Laird, Combined bisulfite restriction analysis (COBRA). Methods Mol Biol,2002.200:p.71-85.
    88. Pogribny, I.P., et al., Mechanisms of peroxisome proliferator-induced DNA hypomethylation in rat liver. Mutat Res,2008.644(1-2):p.17-23.
    89. Hughes, L.A., et al., Early life exposure to famine and colorectal cancer risk:a role for epigenetic mechanisms. PLoS One,2009.4(11):p. e7951.
    90. Heijmans, B.T., et al., Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A,2008.105(44):p.17046-9.
    91. Ernfors, P., et al., Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol,1995.39(5):p.799-807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700