用户名: 密码: 验证码:
居住建筑室内空气微细颗粒物净化用滤料的性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
居住环境空气质量与人体健康密切相关,而颗粒物是首要污染物,会携带各种病菌,在居住建筑室内设置空气净化器已势在必行。在颗粒物粒径分布广泛的场合使用滤料,存在滤网堵塞问题,致使滤料更换频繁,造成维护工作成本上升,高效低阻的过滤材料对于维护人体健康及节能有着重要的意义。本文以净化微粒用过滤材料为研究对象,寻找滤料过滤效率高,阻力低,容尘量大,寿命长的设计规律。
     首先,采用GRIMM型气溶胶监测仪等仪器对上海市某大学宿舍及居民楼的室外及室内人员活动(整理被褥)前后PMx的实际浓度及粒径分布状况进行了测试,发现PM10浓度瞬时值高于标准限值,且人员活动会导致10μm左右颗粒物激增,粒径分布呈双峰分布,在0.20~0.40μm与10μm左右处达到峰值。因此,有必要对居住环境进行自洁过滤,同时做到颗粒物“粗细兼收”,对人体健康及节能环保有着重要意义。
     测试常用预过滤材料及驻极体滤料对PM10分级过滤效率,得到颗粒物尺度、过滤速度、孔隙率及滤料纤维直径对滤料过滤效率的影响,结果表明驻极体滤料对各粒径范围均有较好的过滤效果,考虑到驻极体滤料的使用场合及重复使用问题,对比了几种溶液浸泡处理前后过滤分级效率,结果表明清洗后效率均大幅下降,说明静电效应是驻极体滤料高效低阻的原因,故其不适用于富含极性分子的场合。
     为了探究空气净化用清洁滤料结构参数对阻力的影响程度,搭建滤料阻力测试试验台,并对选定滤料进行测试,试验测试结果与理论计算结果对比发现需要对纤维的非均匀分布进行修正。同时,通过试验结果分析过滤速度、孔隙率、纤维细度及厚度对滤料阻力的影响,得出滤料结构参数影响阻力的关系式,由各参数影响滤料阻力的数值范围权重可以对清洁滤料的降阻起到指导作用。
     针对空气净化器滤料预过滤与主过滤材料布置方式及两层滤料叠加的复合滤料折叠型布置方式,采用数值模拟方法对比了不同孔隙率条件下滤层截面的阻力分布与气流速度场,计算其速度场不均匀度,结果表明,气流速度场不均匀度与阻力有关;复合滤料具有阻力低、均匀容尘特点,解决了滤料易堵塞问题。
     通过调整滤料的织物层状构造和滤层结构,采用滤料内层分层分尺度积尘替换现有滤层表层积尘,解决滤料表面滤饼造成阻力上升过快问题和预过滤、主过滤两级串联带来的设备空间问题。对外层大容尘量低阻滤料、内层高效驻极体滤料复合的过滤材料性能分析可知其有对细小颗粒物高效过滤的特点,同时阻力增加的幅度在10%以内。
The air quality in residential environment is closely related to human health. Particulate matters are the primary pollutant, carrying various bacteria. Setting up indoor air purifier is now imperative. Using filter materials in locations with a wide range of particulate matter diameters would suffer from filter net clogging problem, resulting in frequent filter material replacement and higher maintenance cost. Filter material with high efficiency and low resistance is of great significance in both human health and energy saving. This paper, taking filter materials used in particulate matter purification as the research object, seeks the design rules and principles for filter materials that give high filter efficiency, low resistance, large dust capacity and long lifespan.
     First, instruments such as GRIMM Aerosol Speotrometer were used to test the indoor and outdoor actual PMX density and diameter distribution at a college dormitory in Shanghai before and after human activities (cleaning bedding). It was found that the instantaneous value of PM10 density was higher than standard limit and human activities caused an sharp increase in the concentration of TSP. Diameters were in double-peak distribution peaking at 0.20-0.40μm and around 10μm. Therefore, self-purification of residential environment is necessary; meanwhile, taking care of both coarse and fine particulate matters is highly important to human health, energy saving and environment protection.
     The filtration efficiency for PM10 removal of commonly used pre-filter materials and electrets filter materials were tested, and the influence of particulate matter size, filter velocity, porosity and fiber diameter on the filtration efficiency were determined. The test result indicates that electret filter material has a better performance under various diameter ranges. Considering its use case and repeated usage problem, soaking procedure of electrets filter material in various solutions will largely decrease its efficiency, indicating that electrostatic effects is the reason of its high efficiency and low resistance and it does not apply in situations with rich polar molecules.
     In order to explore the influence of the structural parameters of air filter media on its resistance, a test rig was built to measure the resistance of selected filter materials. The comparison between experimental and theoretical results demonstrates that an amendment is required for the non-uniform distribution of fiber. In the meantime, based on the experimental results, resistance affection level of filter velocity, porosity, fiber fineness and thickness was analyzed. Relationship formulas between structural parameters and resistance were concluded and the value range weight of each parameter can be used to guide resistance reduction of cleaning materials.
     Based on the layout of pre-filter material and main filter material and the folding layout of two-layered composite material in air filters, resistance distribution and flow velocity field of filter layer cross-section under different porosities were compared by a value simulation method. The calculation of velocity field unevenness shows that it is related to resistance; compound materials have the characteristics of low resistance and even dust disposition that solve the material clogging problem.
     By adjusting the fabric layered structure and the filter layer structure of the filter material and replacing current dust in the surface layer with inner layered and scaled dust, excessive resistance increase caused by dust cake in material surface and device space problem due to series connection of pre-filter and main-filter are solved. From the performance study of material compounded from the outer-layer material with large capacity and low resistance and inner-layer electret material with high efficiency, it can be seen that the compound material provides high efficiency against fine particulate matters and keeps the resistance increase within 10%.
引文
[1]陈强,杨际虹,杨勇,蒋秦,杨伯苗.南京市室内空气质量检测结果分析和评价[A].江苏省计量测试学术论文集[C],2005
    [2]Klepeis NE, Nelson WC, Ott WR, et al. The national human activity pattern survey (NHAPS)[R]. A resource for assessing exposure to environmental pollutants,2001
    [3]United States Environmental Protection Agency[R]. Guide to air cleaner in the home,2007
    [4]Hanninen 00, Palonen J, Tuomisto JT, Yli-Tuomi T, Seppanen O, Jantunen MJ. Reduction potential of urban PM2.5 mortality risk using modem ventilation systems in buildings [J]. Indoor Air,2005,15:246-56
    [5]Mendell MJ, Fisk WJ, Petersen M, Dong MX, Hines CJ, Faulkner D, Deddens JA, Ruder AM, Sullivan D, Boeniger MF. Enhanced particle filtration in non-problem office environment:summary finding from a double-blind crossover intervention study[A]. In: Proceedings of indoor air[C]. Edinburgh:1999,974-975
    [6]Jamriska M, Morawska L, Ensor DS. Control strategies for submicrometer particles indoors: model study of air filtration and ventilation[J]. Indoor Air,2003,13:96-105.
    [7]Gabriel Beko, Geo Clausen, Charles J. Weschler. Is the use of particle air filtration justified? Costs and benefits of filtration with regard to health effects, building cleaning and occupant productivity [J]. Building and Environment,2008,43:1647-1657
    [8]Lian-Yu Lin, Hua-Wei Chen, Te-Li Su, Gui-Bing Hong, Li-Chu Huang, Kai-Jen Chuang. The Effects of Indoor Particle Exposure on Blood Pressure and Heart Rate among Young Adults:An Air Filtration-based Intervention Study[J]. Atmospheric Environment,2011
    [9]Weschler CJ. Predictions of benefits and costs derived from improving indoor air quality in telephone switching companies[J]. Indoor Air,1991,1:65-78
    [10]杨德保等编.沙尘暴[M].北京:气象出版社,2003
    [11]陈广庭编.沙害防治技术[M].北京:化学工业出版社,2004
    [12]Nazaroff WW. Indoor particle dynamic [J]. Indoor Air,2004,14:175-183
    [13]Li CS, Wen YM. Control effectiveness of electrostatic precipitation on airborne microorganisms [J]. Aerosol Science and Technology,2003,37:933-938
    [14]Dave Matela, CAFS, Kimberly-Clark Filtration Products. Air filtration:green and clean-how to improve indoor air quality[J]. Filtration & Separation,2006,11:24-7
    [15]GB/T18801—2002,空气净化器[S]
    [16]Zoe Grainge. HVAC efficiency:Can filter selection reduce HVAC energy costs?[J]. Filtration & Separation,2007:20-22
    [17]谭亮亮.建筑环境空气过滤微细颗粒物技术的试验研究[D].上海:东华大学,2006.
    [18]Andreas Seeberger. Synthetic filter media:Balancing energy efficiency and electrostatics in new synthetic filter media[J]. Filtration & Separation,2011:22-25.
    [19]S.Fotovati, H.Vahedi Tafreshi, B.Pourdeyhimi. Analytical expressions for predicting performance of aerosol filtration media made up of trilobal fibers[J]. Journal of Hazardous Materials,2011,186:1503-1512.
    [20]朱辉.环境空气中微粒过滤材料性能的实验研究[D].上海:东华大学,2005
    [21]魏学孟,叶海.带静电过滤器与驻极体[J].通风除尘,1998,(4):1-4
    [22]Shinhao Yang, Grace W.M.Lee. Filtration characteristics of a fibrous filter pretreated with anionic surfactants for monodisperse solid aerosols[J]. Journal of Aerosol Science,2005,36: 419-437.
    [23]吴生,黄翔,武俊梅.驻极体空气过滤材料的发展与特点[A].见:中国纺织工程学会空调专业委员会、中国纺织勘察设计协会空调除尘专业委员会编.全国纺织空调除尘新技术、新设备、新成果研讨会论文集[C].江苏无锡:2007:115-118.
    [24]黄翔,谢小军,狄育慧.驻极体空气过滤材料的功能整理及其性能分析[A].见:中国建筑学会暖通空调分会、中国制冷学会空调热泵专业委员会编.全国暖通空调制冷2006年学术年会文集[C].湖北:2006:58-61.
    [25]曹明.驻极体滤料对微细颗粒物分级效率的试验研究[D].上海:东华大学,2007.
    [26]高晖,郭烈锦.下进风袋式除尘器内部气固两相流动数值模拟[J].化学工程,2001
    [27]高晖,郭烈锦.除尘器袋式结构改进及内部气固两相流动特征分析[J].西安交通大学学报,2000
    [28]顾正萌,郭烈锦,高晖.沉流式滤筒除尘器气固两相流动的数值模拟与分析[J].化工机械,2002
    [29]杨俊,江锋,叶隧生.核空气净化过滤小室内气流均匀性的模拟分析[J].清华大学学报(自然科学版),2000,40(1)
    [30]张峰超,曹家枞.多管式高效空气过滤器内流动的数值模拟[J].洁净与空调技术,2007(2)
    [31]朱辉,付海明,亢燕铭.粉尘颗粒在单纤维表面沉积的计算机模拟[J].环境污染与防治,2009,31(3):10-15.
    [32]杨健儿.上海市近地表大气颗粒物污染特性及来源分析研究[D].上海:华东师范大学,2011
    [33]文远高.室内外空气污染物相关性研究[D].上海:上海交通大学,2008.
    [34]Riley WJ, McKone TE, Lai AK, Nazaroff WW. Indoor particulate matter of outdoor origin: importance of size-dependent removal mechanism\s[J]. Environmental Science and Technology,2002,36:200-207.
    [35]Clayton CA, Perrit RL, Pellizzari ED, Thomas KW, Whitmore RW, Wallace LA, et al. Particle total exposure assessment methodology (PTEAM) study:distributions of aerosol and elemental concentrations in personal, indoor and outdoor air samples in a southern California community[J]. Journal of Exposure Analysis and Environmental Epidemiology,1993, 3:227-250.
    [36]史捍民等.颗粒物环境空气质量USEPA基准[M].北京:中国环境科学出版社,2008(5):138-139.
    [37]Wang H., Zhuang Y., Wang Y., Sun Y., Yuan H., Zhuang G., Hao Z. Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China[J]. Journal of environmental sciences,2008,20:1323-1327.
    [38]2010年环境公报:http://www.mep.gov.cn/gzfw/xzzx/
    [39]环保部科技标准司:http://news.china.com.cn/rollnews/2010-09/06/content_4141268.htm.
    [40]Fan GC, Chang CN, Wu YS, Lu SC, Fu PP, Chang SC, et al. Concentration of atmospheric particulates during a dust storm period in central Taiwan, Taichung[J]. The Science of the Total Environment,2002,87(2):141-145.
    [41]Hsien-Wen Kuo, Huna-Yi Shen. Indoor and outdoor PM2.5 and PM10 concentrations in the air during a dust storm [J]. Building and Environment,2010,45:610-614.
    [42]SLEZAKOVA K, CASTRO D, PEREIRA M C, MORAIS S, DELERUE C, ALVIM-FERRAZ M C. Influence of tobacco smoke on carcinogenic PAH composition in indoor PM10 and PM2.5[J]. Atmospheric Environment,2009,43:6376-82.
    [43]王作元,王昕,曹吉生. World Health Organization.空气质量准则[M].北京:人民卫生出版社,2003:3-5.
    [44]Ning DT, Zhong LX, Chung YS. Aerosol size distribution and elemental composition in urban areas of northern China[J]. Atmospheric Environment,1996,30(13):2355-2362.
    [45]中新社-中国新闻网:http://www.chinanews.com/
    [46]高红武.室内空气中可吸入颗粒物的监测与研究[J].云南冶金,2006,35(3):75-77.
    [47]GB/T 6165—2008,空气过滤器[S].
    [48]GB/T14295-2008,高效空气过滤器[S].
    [49]张宝莹,刘凡.室内空气净化装置颗粒物净化效果评价技术进展[J].环境与健康,2009,26(3)
    [50]S. Fotovati, S.A. Hosseini, H. Vahedi Tafreshi, B. Pourdeyhimi. Modeling instantaneous pressure drop of pleated thin filter media during dust loading [J]. Chemical Engineering Science,2011,66(18):4036-4046
    [51]Wallace Woon-Fong Leung, Chi-Ho Hung. Investigation on pressure drop evolution of fibrous filter operating in aerodynamic slip regime under continuous loading of sub-micron aerosols [J]. Separation and Purification Technology,2008,63(3):691-700
    [52]A. Joubert, J.C. Laborde, L. Bouilloux, S. Chazelet, D. Thomas. Modelling the pressure drop across HEPA filters during cake filtration in the presence of humidity [J]. Chemical Engineering Journal,2011,166(2):616-623
    [53]冯朝阳,张振中,江锋等.核级高效空气过滤器的结构与阻力关系探讨[J].环境科学学报,200,28(6):1041-1046
    [54]李淮颖,曹家枞,聂雪丽.多管式低阻高效空气过滤器的阻力特性研究[J].洁净与空调技术,2003,(2):38-41
    [55]付海明,徐芳,晋瑞芳.褶型气溶胶过滤器过滤阻力与结构参数关系[J].华侨大学学报(自然科学版),2010,31(3)
    [56]向晓东.烟尘纤维过滤理论、技术及应用[M].北京:冶金工业出版社,2007
    [57]Davies C N. Air Filtration [M]. London:Academic Press,1973
    [58]王洪涛.多孔介质污染物迁移动力学[M].北京:高等教育出版社,2008
    [59]蔡杰.空气过滤ABC[M]北京:中国建筑工业出版社,2002
    [60]Yiren Wu, Henggen Shen, Min Fang and Jin He. Numerical Simulation and Analysis of Velocity Field in Folding-type Air Filters[J]. Advanced Materials Research,2012,374-377: 1207-1211
    [61]Stuart Batterman, Christopher Godwin and Chunrong Jia. Long Duration Tests of Room Air Filters in Cigarette Smokers' Homes[J]. Environ. Sci. Technol.2005,39:7260-7268
    [62]J.贝尔著,李京生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983
    [63]Fluent6.1 User's guide[M].2003,2.
    [64]Jean-Noel Baleo, Albert Subrenat, Pierre Le Cloirec. Numerical simulation of flows in air treatment devices using activated carbon cloths filters[J]. Chemical Engineering Science, 2000,55:1807-1816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700