用户名: 密码: 验证码:
内陆平原区地下水环境质量评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是人们赖以生存的不可缺少的宝贵资源。作为水资源重要组成部分的地下水,在我国半干旱与干旱的华北、西北地区,往往是主要的、甚至是唯一的生活以及工农业生产的供水水源。近些年来,随着经济的快速发展、人口的不断增加以及都市化进程的逐渐加快,内陆平原区地下水受到了严重的污染威胁。因此,防止地下水污染,保障生活以及工农业的正常用水是实现内陆平原区地下水资源的可持续利用的首要任务。
     以焉耆县平原区为例,采用Piper图解法对研究区的地下水化学类型进行分析,并且分别分析了潜水和承压水中矿化度和Na~++K+、Mg~(2+)、Ca~(2+)、Cl~-、SO_4~(2-)和HCO_3~-含量的相关性。结果表明:潜水中矿化度与Na~++K+、Mg~(2+)、Cl~-和SO_4~(2-)呈现较好的相关性;承压水矿化度与Na~++K~+、Ca~(2+)、Cl-和SO4~(2-)呈现较好的相关性。
     借助SPSS软件计算地下水环境背景值,从而得到地下水环境背景值特征数,将焉耆县研究区作为一个环境单元,选取K~++Na~+、Ca~(2+)、Mg~(2+)、Cl~-、SO_4~(2-)、HCO_3~-、TDS等7个水质指标,指标含量分布类型分别为对数正态分布和正态分布。
     采用模糊综合评价法对焉耆县平原区浅层地下水水质进行评价,结果表明:Ⅰ类水、Ⅱ类水、Ⅲ类水、Ⅳ类水、Ⅴ类水监测井分别占总监测井数的14%、3%、24%、7%、52% ;Ⅳ类水和Ⅴ类水监测井占总监测井数的59%,浅层地下水水质总体较差。
     利用DRAV模型对地下水脆弱性进行评价,结果表明:高脆弱性区分布于研究区西北和东北部(占总面积的21.46%),中等脆弱区分布于西北、东北和东南部(占总面积的71.74%)。脆弱性评价结果与硝酸盐含量分布基本一致,由此说明应用DRAV模型评价焉耆县地下水水质脆弱性是可行性的。
Water is essential resource on which human beings rely for existence. As an important part of water, groundwater is the main even only source of water of life, industry and agriculture in arid North China and northwest area. With the quick economic development, increasingly population and fast urbanization in recent years, the groundwater is polluted seriously in inland plains. Therefore, we should prevent groundwater pollution so that we can realize the normal water utilization of life, industry and agriculture. This is the primary task to achieve the sustainable utilization of groundwater in inland plains.
     Taking Yanqi County Plain in Xinjiang as an example, it analyses the chemical types of the groundwater in the study areas with Piper graphic method and the relevance between TDS and content of Na~++K~+, Mg~(2+), Ca~(2+), Cl~-, SO_4~(2-) and HCO_3~- of unconfined aquifer and confined aquifer.The results show that the relevance between TDS and content of Na~++ K+, Mg~(2+), Cl~-and SO_4~(2-) is better in unconfined aquifer; the relevance between TDS and content of Na++ K~+, Ca~(2+), Cl~- and SO_4~(2-)is better in confined water.
     It uses SPSS software to calculate groundwater environmental background values in order to gain characteristic numbers on groundwater environmental background values. Taking Yanqi County as an environmental unit, it selects seven water quality index such as the K+ + Na+, Ca~(2+), Mg~(2+), Cl~-, SO_4~(2-), HCO_3~-, TDS and so on. Index content distribution type are log-normal distribution and normal distribution.
     It evaluates the shallow groundwater quality in Yanqi County plain using the fuzzy comprehensive evaluation, the results show that the total monitoring wells ofⅠ,Ⅰ,Ⅰ,ⅠandⅤtype are respectively 14% , 3%, 24%, 7%, 52%;ⅠandⅤt ype is 59%;,the overall water quality of shallow groundwater is worse.
     It uses DRAV model to evaluate the vulnerability of groundwater.The results show that: high vulnerability zone locates in the northwest and northeast of the study area (of the total area 21.46%), medium vulnerability areas locat in northwest, northeast and southeast (of the total area 71.74%). Vulnerability assessment results are nearly in line with the distribution of nitrate content. Thus it illustrates the application of DRAV model to evaluate the vulnerability of groundwater quality in Yanji County is feasible.
引文
[1] Heyden C J,New M G,Groundwater pollution on the Zambian Copperbelt:Deciphering the source and the risk [J].Science of the Total Environment,2004,327:17-30.
    [2] Mclay C D A,Dragten R,Sparling G, etal. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use:A comparison of three approaches[J]. Environment Pollution,2001,115:191-204.
    [3] Raji B A,Alagbe S A. Hydrochemical facies in parts of the Nigerian basement complex [J]. Environmental Geology,1997,29(1-2):45-49.
    [4] Fisher R S. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert,Trans-Pecos,Texas,USA[J].Hydrogeology Journal ,1997,5(2):4-16.
    [5]张水龙,冯平.海河流域地下水资源变化及对生态环境的影响[J].水利水电技术,2003,34(9):47-49.
    [6] Chan Ho Jeong. Effect of land use and urbanization on Hydrochemistry and contamination of groundwater from Taejon area,Kroea[J].Journal of Hydrology,2001,253:194-210.
    [7]毛任钊,刘小京,娄华君.华北平原缺水盐渍区浅层地下水位动态分析[J].地理科学进展,2002,21(6):564-573.
    [8]郭占荣,聂振龙,焦鹏程,等.三屯河流域平原区地下水化学组成特征及变化[J].勘察科学技术,2002,(3):34-38.
    [9] Jaroslav Vrba. and Alexander Zaporozec. Guidebook on Mapping Groundwater Vulnerability [A]. G. Castany. and E. Groba. and E. Romijn. International Contributions to Hydrogeology Founded [C]. Volume(16).
    [10] Duijvenbooden W,Van Waegengh H G.Vulnerability of soil and groundwater to pollutants [C].Proceedings. InternationalConference.Steasdrukkerij,Gravenhage,Netherlands ,1987.
    [11] National Research Council (U.S.).1993.Ground water vulnerability assessment– predicting relative contamination potential under conditions of uncertainty [M].Committee on Techniques for Assessing Ground Water vulnerability.National Research Council,National Academy Press,Washington.DC,204 p.
    [12]孙才志,林山杉.地下水脆弱性概念的发展过程与评价现状及研究前景[J].吉林地质,2000,(19)1:30-36.
    [13]孙才志,潘俊.地下水脆弱性的概念、评价方法与研究前景[J].水科学进展,1999,(10)4:444-449.
    [14]刘淑芳,郭永海.区域地下水防污性能评价方法及其在河北平原的应用[J].河北地质学院学报,1996(1):41-45.
    [15]郑西来,吴新利,荆静,等.西安市潜水污染的潜在性分析与评价[J].工程勘察,1997(4):22-24.
    [16]陶涛,纪昌明.可靠性、回弹性、脆弱性在水资源系统中的应用[J].水力发电学报,1999(3):103-109.
    [17]马振民,陈鸿汉,刘立才.泰安市第四系水文地质结构对浅层地下水污染敏感性控制作用研究[J].地球科学-中国地质大学学报,2000,25(5):472- 476.
    [18] Nizar Abu-Jaber.Geochemical Evolution and Recharge of the shallow aquifers at tulul Al Ashaqif NE Jordan [J].Environmental Geology,2001,41:372-383.
    [19] Alan E Fryar,William F.MullicanⅢ.Groundwater recharge and chemical evolution in the southern high plains of texas,USA [J].Hydrogeology Journal,2001,(9):522-542.
    [20] M Gabriela Garcia,Margarita del V,Hidalgo Miguel A Blesa.Geochemistry of Groundwater in the Alluvial Plain of Tucuman Province,Argentina[J].Hydrogeology Journal.2001,(9):597-610.
    [21] Stephen Y Acheampong,John W Hess.Hydrogeologic and Hydrochemical Framework of the Shallow Groundwater System in the Southern Voltaian Sedimentary Basin,Ghana [J].Hydrogeology Journal,1998,(6):527-537.
    [22]吴恒,张信贵,代志宏,等.南宁市地下水化学场分区特征及其主要影响因素[J].广西科学,2000,7(1):30-34.
    [23]任增平,闫俊萍.内蒙古达拉特旗平原区地下水水化学特征及形成机制分析[J].中国煤田地质,1999,11(3):30-33.
    [24]廖资生,林学钰.松嫩盆地的地下水化学特征及水质变化规律[J].地球科学—中国地质大学学报,2004,(1):96-102.
    [25]史维浚.编制水化学图的水化学分类方法及其应用效果[C].地质矿产部水文地质工程地质研究所.水文地球化学理论与方法的研究.北京:地质出版社,1985.
    [26] Hill R A. Geochemical Patterns in the Coachella Valley,California[J].Trans Am Geophys Union,1940,21:46-49.
    [27] Piper A M.A Graphic Procedure in Geochemical Interpretation of Water Analyses [J].Trans Am Geophys Union,1944,25:914-923.
    [28] Yangxiao Zhou,Johannes C.Nonner etal. Strategies and Techniques for Groundwater Resources Development in Northwest China[M].Beijing:China Land Press,2007.
    [29] Durov S A. Natural Waters and Graphic Representationof Their Compositions [J].Dokl Akad Nauk Ssssr ,1948,59:87-90.
    [30] Burdon D J,Mazloum S. Some Chemical Types of Groundwater from Syria [J].Unesco Symp Teheran,1958,3:73-90.
    [31] Lloyd J W.The Hydrochemistry of the Aquifers of Northeastern Jordan [J].J Hydrol,1965,3:319-330.
    [32]周金龙.多矩形图解法及其在塔里木盆地中的应用[J].水文地质工程地质,2006(2):4-6.
    [33]王景华.区域环境与影响评价[M].北京:中国环境科学出版社,1990:14-16.
    [34] Georg,Matthess. The Properties of Groundwater[M]. John Wiley&Sons,Inc.1982:139-141.
    [35] Janusz,Krupka et al,Effect of urbanization and Industry on Groundwater quality of unconfined aquifer in southern Poland ,Case study[C].Proceedings of International Workshop on Groundwater and Environment,Beijing,Agust 16-18,1992:425-433.
    [36]谢明武.第二松花江流域地下水环境背景值研究的实验方法[C].孙昌仁主编.中国环境地质研究.北京:科学出版社,1988,232-236.
    [37]汪海.趋势面分析用于污染起始值计算初试[C].孙昌仁主编.中国环境地质研究.北京:科学出版社,1988,241-244.
    [38]齐万秋,周金龙.石河子市地下水环境背景值[J].干旱环境监测,1994,8(1):14-17.
    [39]邱汉学,黄巧珍.地下水环境背景值及其确定方法[J].青岛海洋大学学报,1994(S):16-19.
    [40]贺秀全.地下水环境背景值研究中存在的几个问题[J].地下水,1994;16(2):68-69.
    [41]高迪,潘国营,钟福平,等.新乡市地下水化学背景值研究[J].露天采矿技术,2006,(4):51-54.
    [42]梅学彬,王福刚,曹剑锋.模糊综合评判法在水质评价中的应用及探讨[J].世界地质,2000,19(2):172-177.
    [43]束龙仓,邱汉学.济宁市开采层地下水水质的FUZZY综合评价及FORTRAN程序[J].长春地质学院学报,1988,18(4):431-440.
    [44]彭祖增,,孙韫玉.模糊数学及其应用[M].武汉:武汉大学出版社,2002.
    [45]孙才志,廖资生.水质模糊评价中污染因子赋权方法的改进及应用[J].勘查科学技术,1998,16(6):3-6.
    [46]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002:606-609.
    [47]王大纯,张人权,史毅虹,等.水文地质学基础[M].北京:地质出版社,1994.
    [48]周金龙,董新光,兰卫松.分步聚类分析方法划分地下水化学类型[J].新疆农业大学学报,2003(2):72-75.
    [49]李砚阁,雷志栋.地下水系统保护[M].北京:中国环境科学出版社,2006.
    [50]周金龙,向永.灰色关联分析方法评价地下水水质及其PC-1500机程序[J].勘察科学技术,1990(5):38-41.
    [51]周金龙.灰色关联分析法在水质评价中的应用[J].干旱环境监测,1993(1):21-24.
    [52]周继成.人工神经网络[M].北京:科学普及出版社,1993:22-25.
    [53]闻新,周露,王丹力,等.MATLAB神经网络应用设计[M].北京:科学出版社,2000:223- 245.
    [54]樊文艳,吴国元.水质综合评价物元模型的建立与应用[J].上海环境科学,2000,19(5):205-207.
    [55]薛巧英.水环境质量评价方法的比较分析[J].环境保护科学,2004,30(124):46-49.
    [56]赵焕臣.层次分析法[M] .北京:科学出版社,1986.
    [57]冯绍元.环境水利学[M].北京:中国农业出版社,2007.
    [58]彭小金,张艳红,李辉辉.模糊综合评价在地下水质评价中的应用[J]水科学与工程技术,2008,6:46-48.
    [59]马玉杰,郑西来,李永霞,等.地下水质量模糊综合评判法的改进与应用[J]中国矿业大学学报,2009,38(5):745-750.
    [60]邹胜章,张文慧,梁彬,等.西南岩溶区表层岩溶带水脆弱性评价指标体系的探讨[J].地学前缘,2005,4(12):152-158.
    [61]周金龙,刘丰,李国敏,等.应用DRAV模型评价干旱区地下水脆弱性—以新疆塔里木盆地孔隙潜水为例[J].人民黄河,2009(12):53-55.
    [62]张保祥.黄水河流域地下水脆弱性评价与水源保护区划分研究[D].中国地质大学(北京)博士学位论文,2006.
    [63]贺新春,邵东国,陈南祥,等.几种评价地下水环境脆弱性方法之比较[J].长江科学院院报,2005(03):17-24.
    [64]雷静,张思聪.唐山市平原区地下水脆弱性评价研究[J].环境科学学报,2003,23(1):94-99.
    [65]董亮,朱荫湄,胡勤海,等.应用DRASTIC模型评价西湖流域地下水污染风险[J].应用生态学报,2002,13(2):217-220.
    [66]王焰新,李义连,付素蓉,等.武汉市区第四系含水层地下水有机污染敏感性研究[J].地球科学-中国地质大学学报,2002,27(5):616-620.
    [67]马金珠,高前兆.干旱区地下水脆弱性特征及评价方法探讨[J].干旱区地理,2003,26(1):44-49.
    [68]郑西来,李涛,贾丽华.基于MapInfo的大沽河地下水库脆弱性评价[J].中国海洋大学学报,2004,34(6):1023-1028.
    [69]刘仁涛.三江平原地下水脆弱性研究[D].东北农业大学硕士学位论文,2007.
    [70] Cucchi F,Franceschini G,Zini L,et al. Intrinsic vulnerability assessment of Sette Comuni Plateau aquifer [ J]. Journal of Environmental Management,2007:1-11.
    [71] Uricchio V F,Giordano R,Lopez N. A fuzzy knowledge-based decision support system for groundwater pollution risk evaluation [J].Journal of Environmental Management,2004,73:189-197.
    [72] Dimitra R C,Sdao F,Masi S. Pollution risk assessment based on hydrogeological data and management of solid waste landfills [J].Engineering Geology,2006,85:122-131.
    [73]曲士松,李庆国,王维平,等.中国北方地下水可持续管理[M].郑州:黄河水利出版社,2008,89-90.
    [74] Ibe KM,Nwankwor G I,Onyekuru SO.Assessment of ground water vulnerability and its application to the development of protection strategy for the water supply aquifer in Owerri,southeastern Nigeria[J].Environmental Monitoring and Assessment,2001,67(3):323-360.
    [75]钟佐燊.地下水防污性能评价方法探讨[J].地学前缘,2005,12(增):3-11.
    [76]周金龙.内陆干旱区地下水脆弱性评价方法及其应用研究[D].中国科学院研究生院博士学位论文,2009:97-124.
    [77]姜桂华.地下水脆弱性研究进展[J].世界地质,2002,21(1):33-38.
    [78]雷静.地下水环境脆弱性的研究[D].清华大学硕士学位论文,2002.
    [79]姜桂华.关中盆地地下水脆弱性研究[D].长安大学博士学位论文,2002.
    [80]李涛.基于MapInfo的大沽河地下水库脆弱性研究[D].中国海洋大学硕士学位论文,2004.
    [81]王松,章程,裴建国.岩溶地下水脆弱性评价研究.地下水,2008,30(6):14-18.
    [82]白利平,王液耀.地下水脆弱性评价研究综述[J].工程勘察,2009,(4):43-48.
    [83]张妨.地下水脆弱性问题探讨[J].中国环境管理,2007,(12):29-31.
    [84]刘仁涛,付强,李伟业,等.地下水脆弱性研究与探讨[J].水资源与水工程学报,2006,(6):1-5.
    [85]郭永海,沈照理,钟佐燊,等.河北平原地下水有机氯污染及其与防污性能的关系[J].水文地质工程地质,1996,23(1):40-42.
    [86]林学钰,陈梦熊,王兆馨,等.松嫩盆地地下水资源与可持续发展研究[M].北京:地震出版社,2000.
    [87]张泰丽,冯小铭,刘红樱,等.DRASTIC评价模型在台州市浅层地下水脆弱性评价应用[J].资源调查与环境,2007,82(2):138-144.
    [88]蒋方媛,郭清海.大型新生代断陷盆地的浅层地下水的脆弱性评价——以山西太原盆地为例[J].地质科技情报,2008,27(2):97-102.
    [89]金菊良,魏一鸣,付强,等.层次分析法在水环境系统工程中的应用[J].水科学进展,2002,13(4):467-472.
    [90]金菊良,张礼兵,魏一鸣.水资源可持续利用评价的改进层次分析法[J].水科学进展,2004,15(2):227-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700