用户名: 密码: 验证码:
304不锈钢钝化膜在海水介质中的半导体特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,不锈钢材料由于在其表面会自发的形成一层很薄而稳定的钝化膜(一般不超过10nm),因而具有优异的耐腐蚀性能,但是在海洋环境中,尤其是在微生物膜存在的情况下很容易发生局部腐蚀,因而,长时间浸泡在海水中就会造成失效破坏,给人类生命及国家财产带来极大的损害。
     本论文主要以半导体理论和腐蚀电化学原理为基础,利用电化学测试方法和Mott-Schottky法,由Mott-Schottky图得到钝化膜的掺杂浓度(ND)、平带电位(Vfb)、半导体类型(N/P)、肖特基势(Vs)等信息,由此推测不锈钢钝化膜的半导体特性。然而,对不锈钢在海水介质中,使用电容-电位法对其半导体特性和耐蚀性的系统研究少见报道,因此,研究电容-电位法在海水介质中的有效性,并根据Mott-Schottky图研究不锈钢钝化膜的半导体性和耐海水腐蚀性具有重要的理论和现实意义。论文主要工作和结论如下:
     1.根据边界条件等假设和电化学阻抗、电容-电位的测量分析,证明了Helmholtz层电容远小于空间电荷层电容,而且,钝化膜厚度不随扫描电位的变化而变化,由此验证了使用Mott-Schottky曲线法研究钝化膜在海水介质中半导体特性是可行的;同时,通过实验和理论分析,探索了电容与测量频率的依赖关系;
     2.用电容-电位法研究了不锈钢钝化膜在海水介质中的半导体特性。结果表明,在高于平带电位的电位范围,钝化膜表现为N型半导体;在低于平带电位的电位范围,钝化膜表现为P型半导体。并计算出平带电势Efb为-0.424V,点缺陷浓度ND为8.47×10~(23)cm~(-3);
     3.通过对不同成膜电位下的阻抗图和Mott-Schottky曲线的测试,验证了Cl-的侵害性及钝化膜半导体特性和耐蚀性的关系。结果表明,钝化膜中缺陷浓度的大小关系着抗点蚀能力的强弱,缺陷浓度小,则抗点蚀能力强,缺陷浓度大,则抗点蚀能力弱;同时,发现在钝化区间内,304ss在海水介质中阳极保护存在一个最佳保护电位区间;并且计算了不同成膜电位下的Mott-Schottky斜率、ND、Efb、dOX值和扩散常数D0,定量的分析了钝化膜半导体性与耐蚀性的关系,并得出钝化膜中点缺陷扩散常数为:2.01×10~(-21)cm~2/s。
It is well known that the stainless steel has the good anticorrosion property for the thin and steady passive film formed spontaneously on the surface(generally lower than 10nm). But in the marine environment, it is easy to happen localized corrosion, what was worse is around by microorganism, so the stainless steel will breakdown if immersed in seawater for a long time, bringing so much damage to the human and the country.
     The thesis based on the semiconductor theory and electrochemical corrosion science, and by the method of electrochemical measurement and the Mott-Schottky, testing the capacitance-potential and making the Mott-Schottky plots to get the values of donor density(ND)、flat-band potential(Vfb)、Schottky potential(Vs) and the type of semiconductivity, and etc, so that speculate on the semiconducting properties. But there is little report about researching the relationships between the anticorrosion and semiconductivity by the method of C/E in the seawater. So it is important significance to research the validity of the method and the relationships between the anticorrosion and semiconductivity. The main work and conclusions as follows:
     1. the thesis testifies the validity of the Mott-Schottky to research the semiconducting properties of the passive film in the seawater medium by theory and experiment; and then explore and explain the dependence between the capacitance and frequence.
     2. the thesis researches the semiconducting properties of the passive film formed on the 304ss in seawater by the measurement of C/E. As can be seen from the results, in the range of above the Efb , the passive film exhibits N-type semiconductivity, and below the Efb , it behave as P-type. Furthermore, the Efb and point defect density are calculated by the equation of Mott-Schottky. Efb =-0.424V, ND=8.47×10~(23).
     3. this report exhibits the relationships between the anticorrosion and semiconducting properties of the passive film in the seawater by measuring the EIS and Mott-Schottky at different film formation potentials. It is proved that the point defect density is the key parameter to the ability of anticorrosion. The more the point defect density, the stronger the ability of anticorrosion. Furthermore, 304ss has the best protective potential range in the passive region in the seawater. And it is the first time to calculate the values of the slop、ND、Efb、dOX and diffusion constant D0 at different film formation potentials in the seawater, analysis quantitatively the relationships between the anticorrosion and semiconducting properties of the passive film, D0 =2.01×10~(-21)cm~2/s.
引文
[1]黄桂桥.不锈钢在海洋环境中的腐蚀.腐蚀与防护,1999,(9):32~36.
    [2]黄桂桥等.不锈钢在海水中的耐蚀性与腐蚀电位的关系.中国腐蚀与防护学报,2000,20(1):35.
    [3] C. Scho¨nbein, Pogg. Ann. 37 (1836) 390 (reprinted 1965).
    [4] H. Uhlig, in: R.P. Frankenthal, J. Kruger (Eds.), Passivity of Metals, The Electrochemistry Society, The Corrosion Monograph Series, Princeton, NJ, 1978, p. 1.
    [5] M. Faraday, Experimental Researches, in: Electricity, vol.2 (reprinted), Dover, New York, 1965, p. 234 (Ref. 1).
    [6] A. Gu¨ntherschulze, H. Betz, Z. Phys. 68 (1931) 145; Z. Elektrochem. 37 (1931) 726; Z. Phys. 92 (1934) 367.
    [7] E.J.W. Verwey, Physika 2 (1935) 1059.
    [8] Bonhoeffer, Z. Elektrochemie 47 (1941) 147.
    [9] C. Vanleugenhage, J. Van Muylder, N. De Zoubov, M. Pourbaix, J. Besson, W. Kunz, K. Schwabe, Electrochim. Acta 1 (1959) 349.
    [10]胡茂圃,腐蚀电化学,冶金工业出版社.
    [11]刘士星,邓传芸,王保鼎,1Cr18Ni19Ti钢在硫酸溶液中的阳极保护和极化曲线,合肥工业大学学报,1996,19(3):95~98.
    [12]国玉军,贺春林,才庆魁等,不锈钢在硫酸中形成的钝化膜的导电性能,材料保护,1999,7:1~3.
    [13] D.D.Macdonald and M.Urquidi-Macdonald, J. Electrochem. Soc. 137, 2395(1990).
    [14] D.D.Macdonald, J. Electrochem. Soc. 139, 3434(1992).
    [15] D.D.Macdonald, S. Biaggio and H. Song, J. Electrochem. Soc. 139, 171(1992).
    [16]伊文思UR著,华保定等译,金属腐蚀与氧化,机械工业出版社,1976.
    [17] Ulig H,et al.J Electrochem Sco,1950,97:215.
    [18] I. F. Lin, C. Y. Chao, and D. D. Macdonald, A Point Defect Model for Anodic Passive Films(II), J. Electrochem. Soc.: ELECTROCHEMICAL SCIENCE AND TECHNOLOGY,128. 6 (1981), 1194-1198.
    [19] 4. H. Bohni and H. H. Uhlig, This Journal, 116, 906 (1969); H. P. Leckie and H. H. Uhlig, ibid., 113,1262 (1966).
    [20] Y. M. Kolotyrkin, ibid., 108, 209 (1961).
    [21] T. P. Hoar and W. R. Jacob, Nature, 216, 1299(1967).
    [22] H. H. Strehblow, Werkst. Korros., 27, 792 (1976).
    [23] T. P. Hoar, Corros. Sci., 7, 355 (1967).
    [24] N. Sato, Electrochim. Acta, 19, 1683 (1971).
    [25] C. Y. Chao, L. F. Lin, and D. D. Macdonald, A Point Defect Model for Anodic Passive Films(III), J. Electrochem. Soc.: ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 129. 9(1982), 1874-1879.
    [26] C. Y. Chao, L. F. Lin, and D. D. Macdonald, A Point Defect Model for Anodic Passive Films(I), J. Electrochem. Soc.: ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 128. 6 (1981), 1187-1194.
    [27] K. J. Vetter, Electrochim. Acta, 16, 1923 (1971).
    [28] K. J. Vetter and F. Gorn, ibid., 18, 321 (1973).
    [29] K. J. Vetter, Z. physik. Chem. (Leipzig), 202, 1 (1953).
    [30] K. J. Vetter, Z. physik. Chem. NF (Frankfurt), 4, 165(1955).
    [31] C. Wagner, Ber. Bunsenges. physik. Chem., 77, 1090(1973).
    [32] Y. G. Berube and P. L. Bruyn, J. Colloid Interface Sci.,28, 92 (1968).
    [33]R. J. Hunter, Mod. Aspects Electrochem., 11, 33 (1975).
    [34] L. Young, "Anodic Oxide Films," Academic Press,Inc., New York (1961).
    [35] A. T. Fromhold, Jr. , " Theory of Metal Oxidation, Vol.1--Fundamentals, " North Holland, Amsterdam(1976).
    [36] D. D. Macdonald, R. Liang, and B. G. Pound, ibid., 134, 2981 (1988).
    [37] C.-Y. Chao, L. F. Lin, and D. D. Macdonald, ibid., 1874.
    [38] 3. C. L. McBee and J. Kruger, in "Localized Corrosion," R. W. Staehle et al., Editors, p. 252, NACE,Houston (1974).
    [39] K. E. Heusler and L. Fischer, Werkst. Korros., 27, 551(1976).
    [40]杨武。金属的局部腐蚀[M].北京:化学工业出版社, 1995: 46, 51-55.
    [41] F. Wenger, S. Cheriet, B. Talhi. Electrochemical impedance of pits. Influence of the pit morphology[J]. Corrosion Science, 1997, 39(7): 1239-1252.
    [42] N. J. Laycock, R. C. Newman. Localised dissolution kinetics, salt films and pitting potentials [J]. Corrosion Science, 1997, 39(10-11): 1771-1790.
    [43]Azumi K. J. Electrochem. Soc., 1987, 134: 1352.
    [44]Cahan B D, Chen C T. J. Electrochem. Soc., 1982, 129:924.
    [45] Florian Mansfeld, Brenda Little. A Technical Review of Electrochemical Techniques Applied to Microbiologically Influenced Corrosion[J].Corrosion Science,1991,32(3).
    [46]吴建华,刘光洲,于辉等.海洋微生物腐蚀的电化学方法[J].腐蚀与防护, 1999, 5(2): 231~237.
    [47] De-Sheng Kong , Shen-Hao Chen, A study of the passive films on chromium by capacitance measurement, Corrosion Science 45 (2003) 747–758.
    [48] M. G. S. Ferreira, N. E. Hakiki b, G. Goodlet, Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel, Electrochimica Acta 46 (2001) 3767–3776.
    [49] Y.F. Cheng, J.L. Luo. A comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steel in chromate and bicarbonate solutions. Applied Surface Science 167 2000 113–121.
    [50] M.H. Dean, U. Stimming, J. Electroanal. Chem. 228 1987, 135.
    [51] E. Sikora, J. Sikora, D.D. Macdonald, Electrochim. Acta 41(1996) 783.
    [52] A. Goossens, M. Vazquez, D.D. Macdonald, Electrochim. Acta 41 (1996) 35.
    [53] N. E. Hakiki, S. Boudin, B, Rondot and M. Da Cunha Belo. The electronic structure of passive films formed on stainless steels, Corrosion Science, Vol. 37, No. 11, pp. 1809-1822, 1995.
    [54]张俊喜,乔亦男,曹楚南等,不锈钢载波钝化膜的半导体性质,化学学报,60(2002), 30-36.
    [55] Se Jin Ahn, Hyuk Sang Kwon, Effects of solution temperature on electronic properties of passive film formed on Fe in pH 8.5 borate buffer solution, Electrochimica Acta 49 (2004) 3347–3353.
    [56] H.J. Engel, B. Ilschner, Z. Elektrochem. 59 (1955) 716.
    [57]王成,江峰,王福会等. 304不锈钢在硝酸盐及硫酸溶液中的钝化,腐蚀科学与防护技术,Vol. 15.No. 6.Nov. 2003.334-336.
    [58] Yangcheng Zhang, Digby D. Macdonald, Passivity breakdown on AISI403 stainless steel in chloride-containing borate buffer solution, Corrosion Science (2006),In press.
    [59]葛红花,周国定,吴文权,316不锈钢在模拟冷却水中的钝化模型,中国腐蚀与防护学报,Vol.24.No.2.Apr.2004.65-70.
    [60] Yin Q, Kelsall G H, Vaughan D J, et al. Mathematical models for time-dependent impedance of passive electrodes[J]. J. Electrochem. Soc., 2001, 148(3): A200-A208.
    [61] Itagaki M. Measurement and interpretation of electrochemical Impedance [J]. Corros. Eng., 1999, 48: 905-913.
    [62]李伟善,陈红雨等,Fe基合金钝化膜点蚀敏感性的电化学研究,电化学,Vol.10 No.4 Nov.2004,397-403.
    [63] Tench, D. M.; Yeager, E. J. Electrochem. Soc. 1973, 120, 164.
    [64] Paola, A. D. Electrochim. Acta 1989, 34, 203.
    [65] M.W. Peterson, B.A. Parkinson, J. Electrochem. Soc. 133(1986) 2538.
    [66] M.H. Dean, U. Stimming, Corros. Sci. 29 1989 199.
    [67] M.H. Dean, U. Stimming, J. Phys. Chem. 93 1989 8053.
    [68] D.B. Bonham, M.E. Orazem, J. Electrochem. Soc. 139(1992) 127.
    [69] Janusz Sikora, Elzbieta Sikora, The electronic structure of the passive film on tungsten, Electrochimica Acta 45 (2000) 1875–1883.
    [70] Sato, N. J. Electrochem. Soc. 1982, 129, 225.
    [71] Hoppe, H. H,; Sloehblow, H. H. Surf. Interface Anal. 1989, 14, 121.
    [72]Schmuki, P.; Bohni, M. J. Electrochem. Soc. 1995, 142, 3336.
    [73]林玉华,杜荣归.不锈钢钝化膜耐蚀性与半导体特性的关联研究,物理化学学报, 2005, 21(7): 740-745.
    [74] Hiroaki, T.; Shinji, F.; Osamu, C.; Toshio, S. Electrochim. Acta, 2002, 47: 4357.
    [75] J. Kuger, R. P. Frankenthal (Eds.), Passivity of Metals, The Electrochemical Society Corrosion Monograph Series, Princeton, NJ, 1978.
    [76] L. Young, Anodic Oxide Films, Academic Press, New York, 1961.
    [77] A.T. Fromhold Jr., Theory of metal oxidation, Fundamentals, vol. I, North Holland, Amsterdam, 1976.
    [78] M. Froment (Ed.), Passivity of Metals and Semiconductors, Elsevier Scientific, Amsterdam, 1983.
    [79] D.D. Macdonald, S.R. Biaggio, H. Song, J. Electrochem. Soc. 139 (1992) 170.
    [80] J. Liu, D.D. Macdonald, J. Electrochem. Soc. 148 (2001) B425.
    [81] E. Sikora, J. Sikora, D.D. Macdonald, Electrochim. Acta 41 (1996) 783.
    [82] Y.F. Cheng, C. Yang, J.L. Luo, Thin Solid Films 416 (2002) 169.
    [83] M. Bojinov, Electrochim. Acta 42 (1997) 3489.
    [84] D.D.Macdonald, M.Urquidi and B. G. Pound, Proc. Australasian Corrosion Conference, Rotorua, NZ(1980).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700