用户名: 密码: 验证码:
高超声速飞行器乘波布局优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速技术是研究以吸气式发动机为动力的高超声速飞行器的技术,它代表着一个国家未来开发并利用空间的能力,是衡量军队战斗力和生存力的重要标志,具有重要的军事价值和广泛的应用前景;同时,高超声速技术又是一项集航空、航天技术优势相互融合的新领域,将极大地带动材料、推进、气动、控制、电子等学科领域的深入发展,由此成为二十一世纪航空航天技术领域的战略制高点。
     高超声速飞行器的气动布局和总体性能优化设计是高超声速飞行器的技术关键。由于它高空高速的特点、复杂的飞行环境和不同的执行任务,使得飞行器的优化设计难度较大,传统优化设计方法难以达到设计目标。对高超声速飞行器气动性能的总体优化设计,旨在总结和发展一套高超声速飞行器气动布局的总体优化设计理论与方法。
     论文以吸气式高超声速巡航飞行器为研究对象,通过建立飞行器的参数化模型,引入多目标遗传算法和多目标混合遗传算法,以巡航飞行阶段的气动力、气动热、雷达散射截面(RCS)、操稳性能、机身容积以及机体/推进的一体化作为优化目标,对高超声速飞行器气动布局的部件优化设计、总体优化设计和机体/推进一体化设计展开了全面深入的研究,取得了一系列创新成果:
     1)构造了高超声速飞行器气动布局和性能的总体优化设计框架。借助理论分析、工程计算、优化设计、构型分析对比和数值实验验证等手段,在高超声速飞行器几何建模、性能指标建模、优化算法建模的基础上,构造了高超声速飞行器气动布局优化设计的总体框架。
     2)总结和发展了一套高超声速飞行器气动布局优化设计的理论与方法,提出应从飞行器总体性能和全局、系统的高度出发对飞行器进行优化设计。总体性能应涵盖气动力、热、RCS、操稳特性、机身容积以及机体/推进的一体化,或根据飞行任务和坏境增加其它的性能指标。这一优化方法深化了传统优化设计思想,成为高超声速飞行器优化设计领域的新方法。
     3)建立了全面描述高超声速飞行器类乘波体外形的参数化模型。采用该参数化模型,可以描述所有同类高超声速飞行器的外形,并可将建立参数化模型的思想用于其它飞行器的参数化,提供了用数值方法优化具有复杂外形飞行器的技术基础。
     4)从优化设计的角度完善了各种性能指标的工程计算方法。在气动力、热和RCS的计算中,考虑了较多的影响因素,建立了较完整的性能指标计算模型。尤其是在RCS计算中,考虑了面元遮挡和多次反射效应;并针对翼身二面角结构具有梯形翼面和机身遮挡等特点,提出了等效照明面积概念,将理想二面角反射器的计算公式扩展到由不规则平面构成的有遮挡物存在的不完全二面角结构情况。
     5)在高超声速飞行器超燃冲压发动机性能分析的基础上,应用一维性能计算模型,进行了贯穿整个发动机流道的机体/推进一体化设计,克服了以往将前体/进气道和后体/尾喷管分开优化的缺陷。
     6)针对气动性能的总体优化设计,通过改进标准遗传算法,建立了有约束的基于Pareto级别概念进行全局和局部搜索的多目标遗传算法和多目标混合遗传算法;并首次将多目标混合遗传算法用于高超声速飞行器气动布局总体优化设计这类大规模复杂的多目标优化设计领域,获得了从不同角度、不同性能指标选择的优化结果——D、E、F、G、H最优布局构型,初步实现了设计目标,达到了优化效果。
     论文的研究工作,首次将多目标优化设计方法从常规飞行器引入到高超声速飞行器气动布局总体性能优化设计,克服了传统优化设计方法只注重飞行器局部性能,对总体性能涵盖不够的缺点,提高了飞行器的设计水平。同时,通过对优化设计构型的计算、分析和实验验证,总结出一套高超声速飞行器气动布局优化设计的方法与理论,具有重要创新意义和工程应用价值。
Hypersonic technique is an important technique to study Hypersonic Cruise Vehicle (HCV)with air-breathing engine. It stands for the abilities of exploring and utilizing space of a country,and it is an important symbol of measuring battle and survival effectiveness of military.Hypersonic technique has an important military value and a wide applied prospect, and it is also anew technical field focused on the advantages of aeronautics and astronautics fields, which canaccelerate greatly the development of material, propulsion, aerodynamics, control and electronicssubjects so that it will become the strategetic high land of aeronautics and astronautics fields in21 th century.
     The aerodynamic configuration and integral optimization design is a key technique of HCV.Because HCV has some characteristics such as great flight height and high velocity, complexflight environment and different mission aim, the optimization design is more difficult. Thetraditional design method is not easy to reach the design goal. Through the optimization work, weexpect to summarize and develop an integral optimization design theory and method ofaerodynamic configuration of HCV.
     Based on the air-breathing hypersonic cruise vehicle, and by means of building parametricmodeling of HCV, this dissertation develops a widely complete research on aerodynamic partsoptimization design, integral optimization design and airframe/scramjet integration of HCV withMulti-Objective Genetic Algorithms (MGA) and Hybrid Multi-Objective Genetic Algorithms(HMGA) introduced. In the optimization design, many performances are considered as objectivessuch as aerodynamics, aeroheating, radar cross section (RCS), volume of airframe andairframe/scramjet integration and so on, a series of innovative advantages are got. Theseadvantages attained are as follows.
     1) The theoretical frame of integral optimization design of aerodynamic configuration andperformance for HCV is constructed. In virtue of theoretical analysis, engineering computation,optimization design, configuration comparison, numerical and experimental validation, and basedon geometrical modeling, performance modeling and optimal method modeling, this dissertationconstructs the theoretical frame of optimization design of aerodynamic configuration for HCV.
     2) Through the optimization work, the theory and method of optimization design for HCVis developed, which puts forward that optimization should be done from a global and systemichighness of integral performance. The integral performance should include aerodynamics,aeroheating, RCS, maneuverability and stability, volume of body and airframe/scramjetintegration. In addition, according to the mission aim and flight environment, other performancescan also be introduced. This optimization method deepens traditional design idea, and will be anew method in aircraft design field.
     3) A complete parametric modeling of HCV is built. With the modeling, we can describeall of quasi-waverider configurations. And this idea of parametric modeling can also be used intoother HCV, which provides a foundation of numerical optimization to aircraft with a complicatedshape.
     4) The engineering methods of performances are improved from optimization design pointof view. In the computations of aerodynamics, aeroheating and RCS, the better generalcomputation models are built. Especially in RCS, the surface shadowing and multi-reflection areconsidered, and aimed at the characteristics of wing-body joint such as trapeziform face and body shadowing, the concept of equivalent illumination area (EIA) are presented, which enlarges theapplied range of classical formula from ideal dihedral corner reflector to a normal one.
     5) On the base of performance analysis of scramjet, the integrated design ofairframe/scramjet is performed with one-dimensional flow model applied, which overcomes theshortage of forebody/inlet integration and aftbody/nozzle integration.
     6) Aimed at the integral optimization design of aerodynamic configuration, themodification to Genetic Algorithms(GA) is performed; MGA and HMGA with restrictions andthe concept of Pareto class in global and local search are built. As an attempt, HMGA is appliedinto a complicated multi-objective optimization problem with a big scale, for an example, ourintegral optimization design to HCV. From the optimization work, some optimal results such asthe optimal configuration D, E, F, G and H are recommended from different performances anddifferent points of view. These optimal configurations have better performances than basic shape,which proves the optimization work is successful and the design aim and optimization effect havebeen achieved.
     In this dissertation, we firstly introduce the method of multi-objective optimization designfrom normal aircraft into HCV, and then put forward the optimization design to aerodynamicconfiguration of HCV aimed at its integral performance. These optimization work and methodsimprove the design level of aircraft and overcome some shortcomings of traditional designmethods such as paying only attention to local perfermance and insufficient care to integralperformances of aircraft. At the same time, through the computation, analysis and wind tunnel testvalidation of optimized configurations, a suit of optimization design theory and method of HCV issummarized, which has a great innovative meaning and engineering applied value.
引文
[1] 前哨.空天一体化的高超音速飞行器.环球飞行.2002,(5):24~27
    [2] 康志敏.高超声速飞行器发展战略研究.现代防御技术。2000,28(4):27~33
    [3] 朱荣昌.未来战争中的高超音速飞行器.国际航空.1999,(2):11~13
    [4] 黄志澄,等.高超声速飞行展望.流体力学实验与测量.1997,11(1):6~11
    [5] 黄志澄.高超音速飞行器及其发展趋势分析.国际航空.1998,(3):17~20
    [6] 罗世彬.高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究.长沙:国防科技大学博士学位论文.2004
    [7] J.Hunt, J.Martin. Aero-Space Plane Figures of Merit. AIAA92-5058, 1992
    [8] 侯晓艳,徐文.德国加速研制高超音速导弹.飞航导弹.1995,(11):14~19
    [9] 周军,徐文.法国试验超声速和高超声速发动机.飞航导弹.2003,(2):32~33+42
    [10] 丛敏.防区外发射高超声速攻击导弹.飞航导弹.2003,(2):1~7
    [11] 周军,徐文.高超声速技术综述.飞航导弹.2003,(4):1~7+8
    [12] 周军,徐文.美国高超声速研制的最新进展.飞航导弹.2003,(1):31~35
    [13] E.T.Curran, S.N.B.Murthy. Scramjet Propulsion. Process in Astronautics and Aeronautics. AIAA, Inc. 2002
    [14] R.T.Voland, A.H.Auslender, M.K.Smart, et al. ClAM/NASA Mach 6.5 Scramjet Flight and Ground Test. AIAA99-4848, 1999
    [15] Y.Wakamatsu, T.Kanda, N.Yatsuyanagi. Preliminary Consideration of Hypersonic Test Vehicle for Scramjet Engine Test. ISTS2000-g-24, 2000
    [16] 刘英姿.国外高超音速飞行器研制动态.飞航导弹.1998,(7):11~16
    [17] L.Paul, L.M.Vincent, T.R.Luat, et al. NASA Hypersonic Fight Demonstrators—Overview, Status, and Future Plans. Acta Astronautica 55 (2004) 619~630
    [18] 马正兵.未来空中超级杀手——高超音速巡航导弹.Aerospace China.2000,10:31
    [19] R.R.Kazmar. Hypersonic Propulsion at Pratt & Whitney——Overview. Pratt & Whitney Space Propulsion. AIAA2002-5144, 2002
    [20] 占云.高超声速技术(HyTech)计划.飞航导弹.2003,(3):43~49
    [21] C.R.McClinton, V.L.Rausch, J.Sitz, et al. Hyper—X Program Status. AIAA2001-0828, 2001
    [22] C.R.McClinton, J.L.Hunt, R.H.Ricketts, et al. Airbreathing Hypersonic Technology Vision Vehicles and Development Dreams. AIAA99-4978, 1999
    [23] D.E.Reubush. Hyper—X Stage Separation—Background and Status. AIAA99-4818, 1999
    [24] R.W.Powell, M.K.Lockwood, S.A.Cook. The Road from the NASA Access-to-Space Study to a Reusable Launch Vehicle. 49th International Astronautical Congress. IAF-98-V.4.02. Melbourne, Australia, 1998, Sept28-Oct2
    [25] R.P.Starkey. Investigation of Air-Breathing Hypersonic Missile Configurations within External Box Constraints: [Dissertation]. Department of Aerospace Engineering. University of Maryland. 2000
    [26] J.L.Hunt, R.J.Pegg, D.H.Petley. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix. 1999-01-5515, 1999
    [27] A.Kumar, J.P.Drummond, C.R.McClinton, et al. Research in Hypersonic Vehicle Airbreathing Propulsion at the NASA Langley Research Center. ISABE-2001:Invited Lecture 4, 2001
    [28] L.F.Scuderi, G.F.Orton, J.L.Hunt. Mach 10 Cruise/SpaceAccess Vehicle Study. AIAA Paper, 1998
    [29] 江山.丛X—31到X—50盘点美国的X系列飞行器研究.国际航空.2002,(11):40~43
    [30] C.R.McClinton, D.R.Ronald. Hyper—X Program Status. AIAA2001-1910, 2001
    [31] W.C.Engelund, S.D.Holland, C.E.Cockrell, et al. Propulsion System Airframe Integrated Issues and Aerodynamic Database Development for the Hyper—X Flight Research Vehicle. ISOABE99-7215, 1999
    [32] 美X—43A极速飞机试飞成功,创飞机时速世界记录.http://jczs.sina.com.cn.2004.03.28
    [33] http://www.nasa.gov/missions/x43a.html
    [34] 黄志澄.高超音速飞行——人类新世纪的追求.航空知识.2002,(9):25~28
    [35] 袁越.高超音速飞行技术研究的进展.中国航天.1998,(7):20~23
    [36] 杨爱国,刘陵,唐明,等.模型超音速燃烧室流场和性能的数值模拟.推进技术.1996,17(6):1~5
    [37] 刘敬华,刘兴洲,胡欲立,等.超音速气流中氢燃料强化混合的燃烧试验研究.推进技术.1996,17(1):1~7
    [38] D-2高超音速技术验证机.国际航空.1998,(7):10
    [39] 丛敏.俄罗斯试射高超声速导弹.飞航导弹.2004,(9):24
    [40] 刘桐林.俄罗斯高超声速技术飞行试验计划(一).飞航导弹.2000,(4):23~30
    [41] 刘桐林.俄罗斯高超声速技术飞行试验计划(二).飞航导弹.2000,(5):27~30+39
    [42] 刘桐林.俄罗斯高超声速技术飞行试验计划(续三).飞航导弹.2000,(6):17~23
    [43] 刘桐林.俄罗斯高超声速技术飞行试验计划(四).飞航导弹.2000,(7):18~23
    [40] 易轩.再续急速神话——X-43A高超音速飞机.太空探索.2005,(1):18~20
    [45] 王淑芬.美欧加紧对高超声速技术的研究.飞航导弹.2000,(9):29~35
    [46] 王淑芬.法国航空航大公司进行高超音速研究.飞航导弹.1998,(9):29~30
    [47] 何广.日本高超音速飞行技术发展迅速.中国航天.1992,(6):44~45
    [48] 丛敏.国外高超声速计划一瞥.飞航导弹.2003,(3):9~10
    [49] 丛敏.印度依靠本国力量开发导弹——问津可重复使用的高超声速导弹.飞航导弹.2001,(1):3~6
    [50] 张家骅.国外超声速、高超声速导弹及无人机吸气式推进技术发展述评.航空兵器.2000.(3):30~33
    [51] 刘陵,张榛.超音速燃烧冲压发动机最佳设计参数.推进技术.1988,9(1):73~78
    [52] 葛运圻.超燃冲压发动机燃烧室的积分分析方法.推进技术.1988,9(1):79~84
    [53] 刘陵,张榛,牛海发,等.超音速燃烧室燃烧效率数学模型及气流状态参数的计算.推进技术.1989,10(2):1~7
    [54] 朱守梅,刘陵,刘敬华.超音速气流中横向喷射氢气流场数值模拟.推进技术.1993,14(21:1~7
    [55] 胡欲立,刘陵,张榛,等.超音速燃烧二元流场的数值模拟.推进技术.1995,16(4):7~13
    [56] 刘陵,张榛,刘敬华.氢燃烧超音速燃烧室实验研究.航空动力学报.1993,6(3):
    [57] 胡欲立,刘陵,刘敬华.超音速混合及燃烧的强化技术.推进技术.1994,15(5):23~27
    [58] 王晓鹏.遗传算法及其在气动优化设计中的应用.西安:西北工业大学博士学位论文.2000
    [59] 方宝瑞.飞机气动布局设计.北京:航空工业出版社,1997
    [60] K.G.Bowcutt. Multidisciplinary Optimization of Airbreathing Hypersonic Vehicles. Journal of Propulsion and Power. 2001, 17(6): 1184~1190
    [61] J.L.Hunt, C.R.McClinton. Scramjet Engine/Airframe Integration Methodology. AGARD Conference Palaiseau. France, 1997
    [62] 李敬,李天,武哲.飞机气动力与隐身一体化外形参数模糊优化.航空学报.1999,20(3):283~284
    [63] 李天,武哲,李敬.飞机外形参数的气动与隐身综合优化设计.北京航空航天大学学报.2001,27(1):76~78
    [64] 夏露,高正红,李天.飞行器外形多目标多学科综合优化设计方法研究.空气动力学学报.2003,21(3):275~281
    [65] 潘正君,康立山,陈毓屏.演化计算.北京:清华火学出版社,1999
    [66] P.Ramamoorthy, K.Padmavathi. Airfoil Design by Optimization. Journal of Aircraft. 1977, 14(2):219~221
    [67] J.H.Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, MIT press, 1975
    [68] K.A.De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. [Ph.D. Dissertation]. University of Michigan, No.76-9381, 1975
    [69] J.D.Bagley. The Behavior of Adaptive System which Employ Genetic and Coorelation Algorithm. [Ph.D. Dissertation]. University of Michigan, No.68-7556, 1967
    [70] S.Kirkpatrick, C.Gelatt, M.Vecchi. Optimization by simulated annealing. Science. 1983(220):671~680
    [71] 罗亚中,唐国金,田蕾.给予模拟退火算法的最优控制问题全局优化.南京理工大学学报.2005,29(2):144~148
    [72] P.J.M.Van Learhoven, E.H.L.Aats. Simulated Annealing: Theory and Application. D.Reidal Publishing Company, 1987
    [73] 康立山,谢云,尤矢勇,等.模拟退火算法.北京:科学出版社,1994
    [74] M.Dorigo, V.Maniezzo, A.Colorni. The ant system: Optimization by a colony of cooperating agents. IEEE Trans on Systems, Man, and Cybernetics—Part B. 1996, 26(1):29~41
    [75] B.Bullnheimer, R.F.Hartl, C.Strauss. A new rank-based version of the ant system: A computational study. Central European J for Operations Research and Economics. 1999, 7(1):25~38
    [76] M.Dorigo, L.M.Gambardella. Ant colony system: A cooperative learning approach to the traveling asleman problem. IEEE Trans on Evolutionary Computations. 1997, 1(1):53~66
    [77] T.Stutzle, H.H.Hoos. Max-rain ant system. Future Generation Computer Systems. 2000, 16(8):889~914
    [78] D.Quagliarella, A.D.Cioppa. Genetic algorithms applied to the aerodynamic design of transonic airfoils. AIAA94-1896, 1994
    [79] B.A.Murray, A.G.Glenn. Using Pareto genetic algorithms for preliminary subsonic wing design. AIAA96-4023, 1996
    [80] A.Oyama, S.Obayashi, T.Nakamura. Transonic Wing Optimization Using Genetic Algorithm. AIAA97-1854, 1997
    [81] CHE Jing, TANG Shuo. The Application of Multi-Objective Genetic Algorithms in Airframe/Scramjet Integrated Design of Hypersonic Cruise Vehicle. Proceedings of the Sino-Russian Conference on Aerospace Technology. Xi'an, China, 2006.04, 454~459
    [82] 车竞,唐硕.高超声速飞行器后体/尾喷管一体化设计.飞行力学.2006,24(3):74~77
    [83] 车竞,唐硕.高超声速飞行器机身/超燃冲压发动机一体化设计研究.实验流体力学.2006,20(2):41~44+49
    [84] T.R.F.Nonweiller. Aerodynamic Problems of Manned Space Vehicle. Journal of the Royal Aeronautical Society. 1959, 63(9):521~528
    [85] M.L.Rasmussen. Waverider Configurations Derived from inclined Circular and Elliptic Cones. Journal of Spacecraft and Rockets. 1980, 17(6):537~545
    [86] L.D.Huebner, K.E.Rock, E.G.Ruf, et at. Hyper-X flight engine ground testing for X-43 flight risk reduction. AIAA2001-1809,2001
    [87] E.J.Saltzman. Flight-Determined Subsonic Lift and Drag Characteristics of Seven lifting-Body and Wing-Body Reentry Vehicle Configurations With Truncated Bases, Analytical Services& Materials Edwards, California, 1999
    [88] G.J.Brauckmann. X-34 Vehicle Aerodynamic Characteristics. NASA Langley Research Center, Hampton, VA 23681-0001, 1998
    [89] C.I.Cruz, G.M.Ware. Control Effectiveness and Tip-Fin Dihedral Effects for the HL-20 Lifting-Body Configuration at Mach Numbers from 1.6 to 4.5. Langley Research Center. Hampton, Virginia, 1995
    [90] K.J.Murphy, R.J.Nowak, R.A.Thompson. X-33 Hypersonic Aerodynamic Characteristics. AIAA Atmospheric Flight Mechanics Conference and Exhibit, 1999
    [91] J.D.Shaughnessy, S.Z.Pinckney. J.D.McMinn, et al. Hypersonic Vehicle Simulation Models: Winged-Cone Congiguation. NASA Technical Memorandum, 1990
    [92] R.Hicks, RHenne. Wing Design by Numerical Optimization. Journal of Aircraft. 1978, 15(7):407~413
    [93] G.S.Dulikravich. Aerodynamic Shape Design and Optimization. AIAA91-0476, 1991
    [94] K.K.Mani. Design Using Euler Equations. AIAA84-2166, 1984
    [95] N.Hirose, S.Takanashi, N.Kawai. Transonic Airfoil Design Proceedure Utilizing a Navier-Stokes Analysis Code. AIAA Journal. 1987, 25(3):353-359
    [96] J.B.Malone, J.C.Narranmore, L.N.Sankar. Airfoil Design Method Using the Navier-Stokes Equations. Journal of Aircraft. 1991, 28(3):216~224
    [97] J.Reuther, A.Jameson. Aerodynamic Shape Optimization of Wing and Wing-body Configuration Using Control Theory. AIAA95-0123, 1995
    [98] A.Jameson, N.A.Pierce, L.Martinelli. Optimum Aerodynamic Design Using Navier-Stokes Equations. AIAA97-0101, 1997
    [99] 陈国良,王煦法,庄镇泉,等.遗传算法及其应用.北京:人民邮电出版社.1996
    [100] 王小平,曹立明.遗传算法——理论、应用与软件实现.西安:西交交通大学出版社.2002
    [101] L.J.Eshelman. The CHC Adaptive Search Algorithm: How to Have Safe Search when Engaging in Nontraditional Genetic Recombination. In: Foundations of Genetic Algorithms, Morgan Kaufmann Publishers, 1991, 265~283
    [102] D.E.Goldberg, B.Korb, K.Deb. Messy Genetic Algorithms: Motivation, Analysis and First Results. Complex Systems. 1989(3): 493~530
    [103] M.Srinivas, L.M.Patnaik. Adaptive Probabilities of Crossover and Mutations in Gas. IEEE Tran. On SMC, 1994,24(4): 656~667
    [104] 王晓鹏,高正红.应用混合演化策略的机翼气动优化设计.航空计算技术.2000,30(3):28~31+35
    [105] 罗世彬,罗文彩,王振国.基于并联协作混合遗传算法的高超声速巡航飞行器一体化优化设计研究.宇航学报.2004,25(1):28~34
    [106] E.Cantu-Paz. A Summary of Research on Parallel Genetic Algorithms. IlliGAL Report, No.95007, 1995
    [107] D.E.Goldberg, J.Rechardson. Genetic Algorithms with Sharing for Multimodal Optimization. Proceedings of the Second International Conference on Genetic Algorithms, Lawrence Erlbaum Associates, 1987, 69~76
    [108] M.D.Ardema, J.V.Bowles, T.Whittaker. Near-Optimal Propulsion-System Operation for an Air-Breathing Launch Vehicle. Journal of Spacecraft and Rochet. 1995, 32(6):951~956
    [109] M.D.Ardema, J.V.Bowles, T.Whittaker. Optimal Trajectories for Hypersonic Vehicles. Dynamics and Control. 1994, 4(4):337~342
    [110] M.D.Ardema, J.V.Bowles, E.J,Terjesen, et al. Approximate Altitude Transitions for High-Speed Aircraft. Journal of Guidance, Control and Dynamics. 1995, 18(3):561~566
    [111] M.K.Lockwood, D.H.Petley, J.L.Hunt, et al. Airbreathing Hypersonic Vehicle Design and Analysis Methods. AIAA96-0381, 1996
    [112] M.K.Lockwood, D.H.Petley, J.G.Martin, et al. Airbreathing Hypersonic Vehicle Design and Analysis Methods and Interactions. Progress in Aerospace Sciences. 1999(35): 1~32
    [113] P.L.Moses, K.A.Bouchard, R.F.Vause, S.Z.Pinckney, et al. An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion. AIAA99-4948, 1999
    [114] I.M.Blankson, P.Hagseth. Propulsion/Airframe Integration Issues for Waverider Aircraft. AIAA93-0506, 1993
    [115] RSafarik, A.Polak. Optimal Shock Wave Parameters for Supersonic Inlets. Journal of Propulsion and Power. 1996, 12(1):202~204
    [116] M.K.Smart. Optimization of Two-Dimensional Scramjet Inlets. Journal of Aircraft. 1999, 36(2):430~433
    [117] J.J.Korte, D.J.Singh, A.Kumar, et al. Numerical Study of the Performance of Swept, Curved Compression Surface Scram jet Inlets. Journal of Propulsion and Power. 1994, 10(6):841~847
    [118] Y.Kergaravat, E.Vives, D.Knight. Inlet/Body Integration Preliminary, Design for Supersonic Air-Breathing Missiles Using Automated Multi-Disciplinary Optimization. ADA386248
    [119] G.Carrier, D.Knight, K.Rasheed, et al. Multi-criteria Design Optimization of Two-Dimensional Supersonic Inlet. AIAA2001-1064, 2001
    [120] A.Gaiddon, D.D.Knight. Multicriteria Design Optimization of Integrated Three-Dimensional Supersonic Inlets. Journal of Propulsion and Power. 2003, 19(3):456~463
    [121] C.L.Q.Edwards, W.J.Small, J.P.Weidner. Studies of Scramjet/airframe Integration Techniques for Hypersonic Aircraft. AIAA75-58, 1975
    [122] O.Baysal, M.Eleshaky. Aerodynamic Design Optimization Using Sensitivity Analysis and Computational Fluid Dynamics. AIAA Journal, 1992,30(3):718~725
    [123] O.Baysal, M.Eleshaky, G.Burgreen. Aerodynamic Shape Optimization Using Sensitivity Analysis on Third-Order Euler Equations. Journal of Aircraft. 1993, 30(6):953~961
    [124] G.W, Burgreen, O.Baysal, M.E.Eleshaky. Improving the Efficiency of Aerodynamic Shape Optimization. AIAA Journal. 1994, 32(1):69~76
    [125] P.J.Waltrup, KS.Billing, R.D.Stockbridge. A Procedure for Optimization the Design of Scramjet Engines. Journal of Spacecraft and Rockets. 1979, 16(3):163~172
    [126] P.D.McQuade, S.Eberhardt, E.Livne. CFD-Based Aerodynamic Approximation Concepts Optimization of a Two-Dimensional Scramjet Vehicle. Journal of Aircraft. 1995, 32(2):262~269
    [127] C.S.Craddock.. Computational Optimization of Scramjets and Shock Tunnel Nozzles: [dissertation]. Department of Mechanical Engineering, The University of Queensland, Brisbane, Australia, 1999
    [128] 胥继斌,黄志澄.乘子罚函数法在航天飞机机翼外形优化设计中的应用.空气动力学学报.1991.9(4):477~481
    [129] 朱一锟,周家胜,石光煜.航天飞机机翼外形优化的初步设计方法.北京航空航天大学学报.1997,23(2):182~186
    [130] Zubair Islam,朱一锟,朱自强,等.跨音速翼型气动优化设计方法.航空学报.1998,19(1):83~86
    [131] 孙金标.整机气动外形与RCS一体化设计研究.西 安:西北工业大学博士学位论文.1994
    [132] 张才文,屠立忠,周建江.飞行器隐身与气动外形综合优化设计初探.南京航空航天大学学报.1996,28(3):303~308
    [133] 孙金标,刘千刚.飞机气动外形的优化设计.空气动力学学报.1995,13(1):87~91
    [134] 王晓鹏.基于遗传算法的飞机气动优化设计.计算力学学报.2002,19(2):188~121
    [135] 王晓鹏,高正红.基于遗传算法的翼型气动优化设计.空气动力学学报.2000,18(3):324~329
    [136] 陈小前.飞行器总体优化设计理论与应用研究.长沙:国防科技大学博士学位论文.2001
    [137] 唐伟,张勇,李为吉,等.可变弯尾飞行器气动设计研究.西北工业大学学报.2003,21(5):519~522
    [138] 唐伟,张勇,李为吉,等.基于MATLAB的现代优化算法在飞行器气动外形设计中的应用.宇航学报.2003,24(1):103~106
    [139] 徐旭,蔡国飙.超燃冲压发动机二维进气道优化设计方法研究.推进技术.2001,22(6):468~472
    [140] 陈兵,徐旭,蔡国飙.二维超燃冲压发动机尾喷管优化设计.推进技术.2002,23(5):433~437
    [141] 徐大军,孙冰,徐旭,等.超燃冲压发动机一体化设计与优化方法研究.推进技术.2002.23(5):360~362
    [142] 罗世彬,罗文彩,丁猛,等.超燃冲压发动机二维进气道多级多目标优化殴计方法.国防科技大学学报.2004,26(3):1~6
    [143] 罗世彬,罗文彩,王振国.高超声速巡航飞行器机体—推进系统一体化设计参数灵敏度分析.国防科技大学学报.2003,25(4)110~14
    [144] 周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999
    [145] C.Z.Jomikow, Z.Michalewicz. An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithm. In: Proc. of 4th Conf. on Genetic Algorithms, Morgan Kaufmann, 1991,31~36
    [146] Z.Michalewicz, et. al. Genetic Algorithms and Optimal Control Problem. In: Proc. of 29th IEEE Conf. on Decision and Control, 1990, 1664~1666
    [147] Z.Michalewicz. Genetic Algorithms + Data Structures=Evolution Programs. Springer-Verlag, Berlin. 3th, Revised and Extended Edition, 1996
    [148] D.J.Cavicchio. Adaptive Search Using Simulated Evolution. Ph. D Dissertation, University of Michigan, 1970
    [149] 张京军,崔炜,王南 .小生境遗传算法的多刚体系统动力学参数优化.机械工程学报,2004,40(3):66~70
    [150] 陈格娟,崔炜,张京军.小生境遗传算法在机械优化设计中的应用.河北建筑科技学院学报,2004,21(1):56~59
    [151] J.D.Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Proc. of 1st Int. Conf. on genetic Algorithms and Their Applications, Lawrence Erlbaum Associates, 1985, 93~100
    [152] D.E.Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. MA, Addison-Wesley, 1989
    [153] 文瑛,蒋华,雷鸿.一类基于混合遗传算法的多目标优化方法.广西师范学院学报(自然科学版).2003,20(1):35~39
    [154] 陈章潮,顾洁,孙纯军.改进的混合模拟退火—遗传算法应用于电网规划.电力系统自动化.1999,23(10):28~31
    [155] 吴志远,邵惠鹤,吴新余.遗传退火进化算法.上海交通大学学报.1997,31(12):69~75
    [156] 黄志澄.高超声速飞行器空气动力学.北京:国防工业出版社,1995
    [157] 黄志澄.航天空气动力学.北京:宇航出版社,1994
    [158] R.RStarkey, M.J.Lewis. A Shock-Expansion Method for Determing Surface Properties on Irregular Geometries. AIAA2002-0547, 2002
    [159] A.C.Grantz. Calibration of Aerodynamic Engineering Methods for Waverider Design. AIAA Paper 94-0382, 1994
    [160] R.L.vonEggers, M.J.Lewis. Comparison of Shock Calculation Methods. AIAA Journal of Aircraft. Vol35, July-Aug, 1998. P647~649
    [161] M.J.Hemsch, J.N.Nielsen. Tactical Missile Aerodynamics. AIAA Inc. 1986
    [162] L.E.Ericsson. Unsteady Embedded Newtonian Flow. Astronautica Aata. 1973, 18
    [163] 毛国良.工程方法在高超音速气动力计算中的地位.北京空气动力研究所内部报告.1982.10
    [164] 孙洪森.高超音速钝锥气动力特性的工程计算方法.气动中心5所5所内部报告.1976.9
    [165] M.Moore, J.Williams. Aerodynamic Prediction Rationale for Analyses of Hypersonic Configurations. AIAA89-0525, 1989
    [166] 傅德熏.计算空气动力学.北京:宇航工业出版社,1994
    [167] A.W.Whilhite. Optimum Wing Sizing of a Single-Stage-to-Orbit Vehicle. AIAA82-0174, 1982
    [168] 陈志敏,雷延花.天地往返运输器气动力和气动热工程计算方法研究.西北工业大学学报.2001,19(2):205~208
    [169] 李东华.X.F航天飞机高超音速气动特性的研究.气动中心5所内部报告.
    [170] 孙洪森.高超音速钝锥气动力特性的工程计算方法.气动中心5所内部报告.1976.9
    [171] 徐翔,黄志澄.航天飞机高超音速纵向气动力工程计算方法.气动中心5所内部报告.
    [172] 徐翔,黄志澄.航天飞机高超声速气动力工程计算方法.气动中心5所内部报告.1988.9
    [173] 秦伊贤.航天飞机高超声速气动力工程计算.北京空气动力学研究所内部报告.
    [174] 沈仲书,刘亚飞.弹丸空气动力学.北京:国防工业出版社,1984.12.
    [175] 杨蚱生,俞守勤.飞行器部件空气动力学.北京:航空工业出版社,1987.04
    [176] 吕国鑫等.飞航导弹气动设计.北京:宇航出版社,1989.12
    [177] 张维全.超音速翼体干扰气动力特性与计算.弹箭与制导学报.1996,(4):24~30
    [178] 张维全,等.箭弹空气动力特性分析与计算.北京:国防工业出版社,1997.05
    [179] 徐敏,严恒元.飞行器空气动力工程计算方法.西安:西北工业大学出版社,1998.04
    [180] 列别捷夫.无人驾驶飞行器的飞行动力学.北京:国防工业出版社,1964,第一版
    [181] 雷延花.高超声速飞行器气动特性工程估算.西安:西北工业大学硕士学位论文.2001.
    [182] 姜贵庆,刘连元.高速气流传热与烧蚀热防护.北京:国防工业出版社,2003.01.
    [183] F.A.Greene. Viscous equilibrium computations using program LAURA, AIAA91-1389, 1991
    [184] L.Lees. Laminar heat transfer over blunt nosed bodies at hypersonic flight speeds. Jet Propulsion 26(4):259~269
    [185] E.R.G.Eckert. Engineering relations For heat transfer and friction in high velocity laminar and turbulent boundary layer flow over surfaces with constant pressure and temperature. A.S.M.E. paper 55-A-31, 1955
    [186] 张志成主编.高超声速气动热和热防护.北京:国防工业出版社,2003.05.
    [187] E.R.G.Eckert. Engineering relations for friction and heat transfer to surface in high velocity flow. J.A.S. 1955:585~587
    [188] F.A.Fay, F.R.Riddle. Theory of stagnation point heat transfer in dissociated air. J.A.S. 1958
    [189] F.R.Rejarnette. A review of approximate methods used in aerodynamic heating analysis. AIAA85-0906, 1985
    [190] E.Resholko, I.E.Beckwith. Compressible laminar boundary layer over a yawed infinite cylinder with heat transfer and arbitrary prandtl number. NASC Report, 1379, 1958
    [191] 乐发仁,杨军,姜贵庆,等.微重力火箭气动加热计算.固体火箭技术.2003,26(1):1~4
    [192] 雷延花,徐敏,陈士橹.高超音速飞行器气动加热计算.上海航天.2001(5):10~13
    [193] LE Jia-ling, V.L Ganimedov, M.I.Muchnaja, et al. The calculation of aerodynamic heating and viscous friction forces on the surface of hypersonic flight vehicle. Experiments and Measurements in Fluid Mechanics. 2002(1):8~20
    [194] D.K.Prabhu, M.P.Loomis, et al. X-33 Aerothermal Environment Simulations and Aerothermodynamic Design. AIAA98-0868,1998
    [195] K.Cowart, J.Olds. Integrating Aeroheating and TPS Into Conceptual RLV Design. AIAA99-4806,1999
    [196] C.G.Miller. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles. AIAA98-2600,1998
    [197] 王南炎,张可忠,张国强.尾翼片气动加热温度分布数值研究.弹道学报.1994(4):51~56
    [198] 阮颖铮,等.雷达截面与隐身技术.北京:国防工业出版社,1998.06
    [199] 郭文彦,朱颜镇,李海涛.飞机进气道的电磁散射特性及RCS计算.哈尔滨工业大学学报.1999,31(1):123~126+129
    [200] 汪广元.再入弹头宽带RCS的计算.绵阳:中国空气动力研究与发展中心硕士学位论文.1999
    [201] 李建周.雷达散射截面算法研究及应用.西安:西北工业大学硕士学位论文.2002
    [202] 夏露.导弹外形气动与隐身一体化优化设计研究.西安:西北工业大学硕士学位论文.2001
    [203] D.C.Jenn. Radar and laser cross section engineering. AIAA education series, 1995
    [204] 黎峰.复杂目标的RCS计算.西安:西北工业大学硕士学位论文.2001
    [205] 崔索民,吴振森,方大纲.一种计算多面体目标RCS的等效边缘电磁流公式.微波学报.1997,13(1):20~25
    [206] A.Michaeli. Equivalent Edge Currents for Arbitrary Aspects of Observation. IEEE Trans, AP-32(3):252~258, Mar 1984
    [207] A.Michaeli. Elimination of lnfinites in Equivalent Edge Currents, Part Ⅰ: Fringe Current Components. IEEE Trans, AP-34(7):912~918, July 1986
    [208] N.N.Youssef. Radar Cross Section of Complex Targets. Proc. IEEE, 77(5): 722~734, May 1989
    [209] 阮颖铮,田军.飞行器翼身结合部的散射特性分析.航空学报.1992,13(11):641~646
    [210] A.Michaeli. A Closed Form Physical Theory of Diffraction Solution for Electromagnetic Scattering by Strips and 90° Dihedrals. Radio Science. 1984,19(2):609~616
    [211] T.Griesser, C.A.Balanis. Backscatter Analysis of Dihedral Corner Reflectors Using Physical Optics and the Physical Theory of Diffraction. IEEE Trans, AP-35(10): 1137~1147, 1987
    [212] T.Griesser, C.A.Balanis. Dihedral Comer Reflector Backscatter Using Higher Order Reflections and Diffractions. IEEE Trans, AP-35(11): 1235~1247, Nov, 1987
    [213] W.C.Anderson. Consequences of Nonorthogonality on the Scattering properties of dihedral reflectors. IEEE Trans, AP-35(10):1154~1159, 1987
    [214] 李敬,武哲,李天.弹翼角反射器效应的雷达散射截面分析.北京航空航天大学学报.1998,24(5):542~545
    [215] 周力行.二面角反射器的RCS预估.长沙电力学院学报(自然科学版).1997,12(3):276~279
    [216] E.F.Knott. RCS reduction of dihedral comers. IEEE Trans. AP-25:406~409, May 1977
    [217] W.B.Gordon. Far-Field Approximations to the Kirchhoff-Helmholtz Representati—ons of Scattered Fields. IEEE Trans, AP-23:864~867, July, 1975
    [218] 马云辉.二维理想角反射器电磁散射场的计算.微波学报.2000,16(2):193~197
    [219] T.Griesser, C.A.Balanis, Kefeng LIU. RCS Analysis and Reduction for Lossy Dihedral Corner Reflectors. Proc. IEEE, 77(5): 806~814, May 1989
    [220] 袁生学.论超声速燃烧.中国科学(A辑).1998,28(8):735~741
    [221] 刘陵,刘敬华,张榛,等.超音速燃烧与超燃冲压发动机.西安:西北工业大学出版社.1993.01
    [222] 乐嘉陵,刘陵.高超声速飞行器的炭氢燃料双模态超燃冲压方案研究.流体力学实验与测量.1997,11(2):1~13
    [223] 潘锦珊等.气体动力学基础(修订版).北京:国防工业出版社
    [224] 何献忠,李萍.优化技术及其应用.北京:北京理工大学出版社.1995.02
    [225] 徐勇勤.高超声速飞行器总体概念研究.西安:西北工业大学硕士学位论文.2005
    [226] 许志.高超音速动力学与动态特性分折.西安:西北工业大学硕士学位论文.2005
    [227] 马强,唐伟,张鲁民.带控制舵双锥体气动力工程计算方法研究.宇航学报.2003,24(6):552~554

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700