用户名: 密码: 验证码:
室间隔缺损患者心肌组织相关基因的筛选及验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景先天性心脏病(congenital heart disease,CHD)是人类最常见的出生缺陷之一,在活产婴儿中的发病率为0.6%~0.9%,而在自然流产婴儿中则高达5%~10%。室间隔缺损是先天性心脏病中最多见的类型,约占CHD发病的33%。
     目前认为,室间隔缺损的发病原因为环境和遗传两方面因素的共同作用结果。虽然现在可以采用外科手术或是介入手术对部分室间隔缺损进行修复治疗,但对其发生,发展等原因还尚未清楚。从遗传学角度,特别是基因水平上研究室间隔缺损的形成机制将为其早期预防提供良好的基础。
     应用基因差异表达分析技术,从转录水平筛选出室间隔缺损相关基因,结合生物信息学及分子生物学手段,进一步探讨筛选出室间隔缺损相关基因在其发生中的作用,为明确室间隔缺损的发病机制及其早期预防提供研究基础,甚至能够更加深入了解心脏的发育,生长,老化和疾病的机制。
     目的运用抑制性差减杂交技术构建双向差减cDNA文库,通过测序,生物信息学分析获得人类室间隔缺损与正常心脏的差异表达基因,为阐明室间隔缺损的病因机制建立实验基础。
     方法以室间隔缺损患者心肌组织作为检测组(Tester),正常人心肌组织作为驱赶组(Driver),进行正向SSH;反之,正常人心肌组织作为检测组(Tester),室间隔缺损患者心肌组织作为驱赶组(Driver),进行反向SSH。经过总RNA的提取,mRNA的纯化,反转录,酶切,接头连接,两轮差减杂交和两轮PCR,获得正向和反向两个cDNA文库,构建文库载体,并转化到感受态细胞中扩增,获得单克隆,进行测序及生物信息学分析,随机挑选部分差异表达基因,运用RT-PCR技术进行验证。
     结果(1)构建了两个分别含有648和730个重组子的正向和反向差减文库,插入片断大小约200~600bp;(2)通过测序获得1378个表达序列标签(expressed sequence tag,EST)序列,对其进行生物信息学分析,发现这些EST序列约对应于551个基因,其中299个基因在室间隔缺损心肌组织中高表达,252个则低表达。这些基因与能量代谢,细胞周期及生长发育,细胞骨架和细胞黏附,LIM蛋白,锌指结构蛋白和发育等密切相关;(3)经RT-PCR验证差减杂交结果证实,差减效率较高。
     结论RT-PCR验证部分基因的表达趋势与差减文库表达谱趋势一致,提示所构建文库的可靠性和可信度较高。随着对这些基因的进一步研究,能够更加深入认识室间隔缺损的病因机制,甚至对心脏发育,老化和疾病的认识提供一定的基础。
Background Congenital heart defects (CHDs) account for the largestnumber of birth defects in human, with an incidence of 0.6%~0.9% inlive births and 5%~10% in spontaneously aborted pregnancies. As asingle cardiac malformation, the ventricular septal defect (VSD) is themost frequent form of CHDs and is present in the 33% of all affectedinfants.
     It is well established that environmental and genetic causes are bothcontributing to the development of VSD. Although the defect of VSD canbe repaired through surgery operation or trans-catheter intervention, thebasic mechanism of VSD is still unknown.
     Using SSH in the present study to identify differentially expressedgenes related to VSD could partly elucidate the mechanism of thedevelopment of VSD and lead to new aspect of diagnosis and primaryprevention of VSD, even the mechanism in cardiac development, aging,and disease.
     Objective Ventricular septal defect (VSD) accounts for the largestnumber of birth congenital heart defects in human, but the geneticprograms that control ventricular septation are poorly understood. UsingSSH in the present study to identify differentially expressed genes related to VSD could elucidate the mechanism of the development of VSD.
     Methods To identify differentially expressed genes between ventricularseptal defect and normal ventricular septum myocardium, we haveundertaken suppression subtractive hybridization (SSH) and generatedreciprocal cDNA collections of representative mRNAs specific to humanheart with ventricular septal defect versus normal control. The products ofSSH were inserted to vectors and transferred to competent Cells. Then,the clones were obtained after amplifying and sequenced, bioinfonnaticsanalysis later. Some randomly selected genes were further validated byRT-PCR.
     Results (1) Following SSH, forward and backward subtract librariesincluding 648 and 730 recons were built, and the length of insert partswas between 200bp and 600bp; (2) 1378 clones (expressed sequence tag,EST) were sequenced and found to derive from 551 different genes. Ofthese 551 unique genes, 299 genes were up-regulated and 252 genes weredown-regulated in VSD patient's heart. These predominately expressedgenes included genes involved in energy metabolism, cell cycle andgrowth, cytoskeleton and cell adhesion, LIM protein, zinc finger proteinand development; (3) The validation of differential expression of genesby RT-PCR demonstrated the low false positive rate associated with SSHin this experiment.
     Conclusions The trends of validation of differential expression of genes by RT-PCR were consistent to the results of SSH, which suggestedthat the library was highly reliability and credibility. It is anticipated thatfurther study of genes identified will provide insights into their specificroles in the etiology of VSD, even in cardiac development, aging, anddisease.
引文
[1]Hoffman JI. Incidence of congenital heart disease: I. Postnatal incidence. Pediatr Cardiol. 1995 May-Jun;16(3): 103-13.
    [2]Hoffman JI. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol. 1995 Jul-Aug;16(4): 155-65.
    [3]Wenxiang D. Status of paediatric cardiac surgery in China. Heart Lung Circ. 2001; 10(2): A16-9.
    [4]Correa-Villasenor A, Ferencz C, Loffredo C, Magee C. Paternal exposures and cardiovascular malformations. The Baltimore-Washington Infant Study Group. J Expo Anal Environ Epidemiol. 1993;3 Suppl 1:173-85.
    [5]Sakata Y, Kamei CN, Nakagami H, Bronson R, Liao JK, Chin MT. Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor /Hey2. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25): 16197-202.
    [6]Kaynak B, von Heydebreck A, Mebus S, Seelow D, Hennig S, Vogel J, Sperling HP, Pregla R, Alexi-Meskishvili V, Hetzer R, Lange PE, Vingron M, Lehrach H, Sperling S. Genome-wide array analysis of normal and malformed human hearts. Circulation. 2003 May 20;107(19):2467-74.
    [7]Srivastava D. Genetic assembly of the heart: implications for congenital heart disease. Annu Rev Physiol. 2001;63:451-69.
    [8]Gelb BD. Recent advances in the understanding of genetic causes of congenital heart defects. Front Biosci. 2000 Mar 1;5:D321-33.
    [9]Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998 Jul 3;281(5373):108-11.
    [10]Okubo A, Miyoshi O, Baba K, Takagi M, Tsukamoto K, Kinoshita A, Yoshiura K, Kishino T, Ohta T, Niikawa N, Matsumoto N. A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet. 2004 Jul;41(7):e97.
    [11]Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE. Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997 Jan;15(1):30-5.
    [12]Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR, Conway SJ, Yoder MC, Haneline LS, Franco D, Shou W. BMP 10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004 May; 131(9):2219-31.
    [13]Grossfeld PD. The genetics of congenital heart disease. J Nucl Cardiol. 2003 Jan-Feb;10(1):71-6.
    [14]Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967-71.
    [15]Perucho M, Welsh J, Peinado MA, Ionov Y, McClelland M. Fingerprinting of DNA and RNA by arbitrarily primed polymerase chain reaction: applications in cancer research. Methods Enzymol. 1995;254:275-90.
    [16]Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science. 1993 Feb 12;259(5097):946-51.
    [17]Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995 Oct 20;270(5235):484-7.
    [18]Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995 Oct 20;270(5235):467-70.
    [19]Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6025-30.
    [20]Haase D, Lehmann MH, Komer MM, Korfer R, Sigusch HH, Figulla HR. Identification and validation of selective upregulation of ventricular myosin light chain type 2 mRNA in idiopathic dilated cardiomyopathy. Eur J Heart Fail. 2002 Jan;4(1):23-31.
    [21]Chim SS, Cheung SS, Tsui SK. Differential gene expression of rat neonatal heart analyzed by suppression subtractive hybridization and expressed sequence tag sequencing. J Cell Biochem. 2000 Sep 18;80(1):24-36.
    [22]Truter SL, Dumlao TF, Lee JA, Lee E, Supino PG, Borer JS. Vesnarinone-mediated alterations of gene expression in cardiac fibroblasts from aortic regurgitant hearts. Am J Ther. 2004 Sep-Oct;11(5):328-36.
    [23]Ackerman IL, Karn CA, Denne SC, Ensing GJ, Leitch CA. Total but not resting energy expenditure is increased in infants with ventricular septal defects. Pediatrics. 1998 Nov; 102(5): 1172-7.
    [24]Abdelwahid E, Pelliniemi LJ, Jokinen E. Cell death and differentiation in the development of the endocardial cushion of the embryonic heart. Microsc Res Tech. 2002 Sep 1;58(5):395-403.
    [25]Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, Seidman JG, Seidman C, Granzier H, Labeit S, Frenneaux M, Thierfelder L. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet. 2002 Feb;30(2):201-4.
    [26]Sun G, Yuen Chan S, Yuan Y, Wang Chan K, Qiu G, Sun K, Ping Leung M. Isolation of differentially expressed genes in human heart tissues. Biochim Biophys Acta. 2002 Dec 12;1588(3):241-6.
    [27]Aihara Y, Kurabayashi M, Saito Y, Ohyama Y, Tanaka T, Takeda S, Tomaru K, Sekiguchi K, Arai M, Nakamura T, Nagai R. Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter. Hypertension. 2000 Jul;36(1):48-53.
    [28]Briegel KJ, Baldwin HS, Epstein JA, Joyner AL. Congenital heart disease reminiscent of partial trisomy 2p syndrome in mice transgenic for the transcription factor Lbh. Development. 2005 Jul;132(14):3305-16.
    [29]Xu W, Baribault H, Adamson ED. Vinculin knockout results in heart and brain defects during embryonic development. Development. 1998 Jan;125(2):327-37.
    [30]Ortiz-Lopez R, Li H, Su J, Goytia V, Towbin JA. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation. 1997 May 20;95(10):2434-40.
    [31]Badorff C, Lee GH, Lamphear BJ, Martone ME, Campbell KP, Rhoads RE, Knowlton KU. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med. 1999 Mar; 5 (3): 320-6.
    [32]Hein S, Kostin S, Heling A, Maeno Y, Schaper J. The role of the cytoskeleton in heart failure. Cardiovasc Res. 2000 Jan 14;45(2):273-8.
    [33]Maslen CL. Molecular genetics of atrioventricular septal defects. Curr Opin Cardiol. 2004 May;19(3):205-10.
    [34]Marino B, Digilio MC. Congenital heart disease and genetic syndromes: specific correlation between cardiac phenotype and genotype. Cardiovasc Pathol. 2000 Nov-Dec;9(6):303-15.
    [35]Tabibiazar R, Wagner RA, Liao A, Quertermous T. Transcriptional profiling of the heart reveals chamber-specific gene expression patterns. Circ Res. 2003 Dec 12;93(12): 1193-201.
    [36]Chu PH, Ruiz-Lozano P, Zhou Q, Cai C, Chen J. Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and cardiovascular system. Mech Dev. 2000 Jul;95(1-2):259-65.
    [37]Scholl FA, McLoughlin P, Ehler E, de Giovanni C, Schafer BW. DRAL is a p53-responsive gene whose four and a half LIM domain protein product induces apoptosis. J Cell Biol. 2000 Oct 30;151(3):495-506.
    [38]Chu PH, Bardwell WM, Gu Y, Ross J Jr, Chen J. FHL2 (SLIM3) is not essential for cardiac development and function. Mol Cell Biol. 2000 Oct;20(20):7460-2.
    [39]Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, Sinagra G, Lin JH, Vu TM, Zhou Q, Bowles KR, Di Lenarda A, Schimmenti L, Fox M, Chrisco MA, Murphy RT, McKenna W, Elliott P, Bowles NE, Chen J, Valle G, Towbin JA. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol. 2003 Dec 3;42(11):2014-27.
    [40]Arimura T, Hayashi T, Terada H, Lee SY, Zhou Q, Takahashi M, Ueda K, Nouchi T, Hohda S, Shibutani M, Hirose M, Chen J, Park JE, Yasunami M, Hayashi H, Kimura A. A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J Biol Chem. 2004 Feb 20;279(8):6746-52.
    [41]Heikinheimo M, Scandrett JM, Wilson DB. Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol. 1994 Aug; 164(2):361-73.
    [42] Arceci R J, King AA, Simon MC, Orkin SH, Wilson DB. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol. 1993 Apr; 13(4):2235-46.
    [43] Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC, Srivastava D. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003 Jul 24;424(6947):443-7.
    [44] Watt AJ, Battle MA, Li J, Duncan SA. GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34): 12573-8.
    [45] Hoyt PR, Bartholomew C, Davis AJ, Yutzey K, Garner LW, Potter SS, Ihle JN, Mucenski ML. The Evil proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech Dev. 1997 Jul;65(1-2):55-70.
    [46] Kazama H, Kodera T, Shimizu S, Mizoguchi H, Morishita K. Ecotropic viral integration site-1 is activated during, and is sufficient for, neuroectodermal P19 cell differentiation. Cell Growth Differ. 1999 Aug; 10(8): 565-73.
    [47] Ehlers JP, Worley L, Onken MD, Harbour JW. DDEF1 is located in an amplified region of chromosome 8q and is overexpressed in uveal melanoma. Clin Cancer Res. 2005 May 15;11(10):3609-13.
    [48] Chiambaretta F, De Graeve F, Turet G, Marceau G, Gain P, Dastugue B, Rigal D, Sapin V. Cell and tissue specific expression of human Kruppel-like transcription factors in human ocular surface. Mol Vis. 2004 Nov 23;10:901-9.
    [49]Huang J, Teng L, Li L, Liu T, Li L, Chen D, Xu LG, Zhai Z, Shu HB. ZNF216 Is an A20-like and IkappaB kinase gamma-interacting inhibitor of NFkappaB activation. J Biol Chem. 2004 Apr 16;279(16): 16847-53.
    [50]Abe S, Katagiri T, Saito-Hisaminato A, Usami S, Inoue Y, Tsunoda T, Nakamura Y. Identification of CRYM as a candidate responsible for nonsyndromic deafness, through cDNA microarray analysis of human cochlear and vestibular tissues. Am J Hum Genet. 2003 Jan;72(1):73-82.
    [51]Godbout R, Squire J. Amplification of a DEAD box protein gene in retinoblastoma cell lines. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7578-82.
    [52]Abel KJ, Brody LC, Valdes JM, Erdos MR, McKinley DR, Castilla LH, Merajver SD, Couch FJ, Friedman LS, Ostermeyer EA, Lynch ED, King MC, Welcsh PL, Osborne-Lawrence S, Spillman M, Bowcock AM, Collins FS, Weber BL. Characterization of EZH1, a human homolog of Drosophila Enhancer of zeste near BRCA1. Genomics. 1996 Oct 15;37(2): 161-71.
    [53]Spencer MJ, Mellgren RL. Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum Mol Genet. 2002 Oct 1;11(21):2645-55.
    [54]Ratajczak P, Oliviero P, Marotte F, Kolar F, Ostadal B, Samuel JL. Expression and localization of caveolins during postnatal development in rat heart: implication of thyroid hormone. J Appl Physiol. 2005 Jul;99(1):244-51.
    [55]Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol. 1999 Nov;19(11):7289-304.
    [56]Liu J, Wang XB, Park DS, Lisanti MP. Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem. 2002 Mar 22;277(12): 10661-8.
    [57]Razani B, Woodman SE, Lisanti MP. Caveolae: from cell biology to animal physiology. Pharmacol Rev. 2002 Sep;54(3):431-67.
    [58]Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, Pereira de Souza A, Kitsis RN, Russell RG, Weiss LM, Tang B, Jelicks LA, Factor SM, Shtutin V, Tanowitz HB, Lisanti MP. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol. 2003 Feb;284(2):C457-74.
    [59]Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC, Lau LF. CYR61 (CCNl) is essential for placental development and vascular integrity. Mol Cell Biol. 2002 Dec;22(24):8709-20.
    [60]Latinkic BV, Mercurio S, Bennett B, Hirst EM, Xu Q, Lau LF, Mohun TJ, Smith JC. Xenopus Cyr61 regulates gastrulation movements and modulates Wnt signaling. Development. 2003 Jun;130(11):2429-41.
    [61]Haffner C, Frauli M, Topp S, Irmler M, Hofmann K, Regula JT, Bally-Cuif L, Haass C. Nicalin and its binding partner Nomo are novel Nodal signaling antagonists. EMBO J. 2004 Aug 4;23(15):3041-50.
    [62]van der Heyden MA, Defize LH. Twenty one years of P19 cells: what an embryonal carcinoma cell line taught us about cardiomyocyte differentiation. Cardiovasc Res. 2003 May l;58(2):292-302.
    [1] Hoffman JI. Incidence of congenital heart disease: I. Posmatal incidence. Pediatr Cardiol. 1995 May-Jun;16(3): 103-13.
    [2] Hoffman JI. Incidence of congenital heart disease: Ⅱ. Prenatal incidence. Pediatr Cardiol. 1995 Jul-Aug;16(4): 155-65.
    [3] Stephensen SS, Sigfusson G, Eiriksson H, Sverrisson JT, Torfason B, Haraldsson A, Helgason H. Congenital cardiac malformations in Iceland from 1990 through 1999. Cardiol Young. 2004 Aug; 14(4):396-401.
    [4] Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002 Jun 19;39(12): 1890-900.
    [5] Gelb BD. Genetic basis of congenital heart disease. Curt Opin Cardiol. 2004 Mar; 19(2): 110-5.
    [6]Gittenberger-de Groot AC, Bartelings MM, Deruiter MC, Poelmann RE. Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res. 2005 Feb;57(2): 169-76.
    [7]Kaynak B, von Heydebreck A, Mebus S, Seelow D, Hennig S, Vogel J, Sperling HP, Pregla R, Alexi-Meskishvili V, Hetzer R, Lange PE, Vingron M, Lehrach H, Sperling S. Genome-wide array analysis of normal and malformed human hearts. Circulation. 2003 May 20;107(19):2467-74.
    [8]Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998 Jul 3;281(5373):108-ll.
    [9]Okubo A, Miyoshi O, Baba K, Takagi M, Tsukamoto K, Kinoshita A, Yoshiura K, Kishino T, Ohta T, Niikawa N, Matsumoto N. A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet. 2004 Jul;41(7):e97.
    [10]Reamon-Buettner SM, Borlak J. TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum Mutat. 2004 Jul;24(1): 104.
    [11]Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR, Conway SJ, Yoder MC, Haneline LS, Franco D, Shou W. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004 May;131(9):2219-31.
    [12]Roberts KE, McElroy JJ, Wong WP, Yen E, Widlitz A, Barst RJ, Knowles JA, Morse JH. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J. 2004 Sep;24(3):371-4.
    [13]Robinson SW, Morris CD, Goldmuntz E, Reller MD, Jones MA, Steiner RD, Maslen CL. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet. 2003 Apr;72(4): 1047-52.
    [14]Turbay D, Wechsler SB, Blanchard KM, Izumo S. Molecular cloning, chromosomal mapping, and characterization of the human cardiac-specific homeobox gene hCsx. Mol Med. 1996 Jan;2(1): 86-96.
    [15]Shiojima I, Komuro I, Inazawa J, Nakahori Y, Matsushita I, Abe T, Nagai R, Yazaki Y. Assignment of cardiac homeobox gene CSX to human chromosome 5q34. Genomics. 1995 May 1;27(1):204-6.
    [16]Harvey RP. NK-2 homeobox genes and heart development. Dev Biol. 1996 Sep 15; 178(2):203-16.
    [17]Ikeda Y, Hiroi Y, Hosoda T, Utsunomiya T, Matsuo S, Ito T, Inoue J, Sumiyoshi T, Takano H, Nagai R, Komuro I. Novel point mutation in the cardiac transcription factor CSX/NKX2.5 associated with congenital heart disease. Circ J. 2002 Jun;66(6):561-3.
    [18]Komuro I, Izumo S. Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8145-9.
    [19]Harvey RP, Lai D, Elliott D, Biben C, Solloway M, Prall O, Stennard F, Schindeler A, Groves N, Lavulo L, Hyun C, Yeoh T, Costa M, Furtado M, Kirk E. Homeodomain factor Nkx2-5 in heart development and disease. Cold Spring Harb Symp Quant Biol. 2002;67:107-14.
    [20]Jay PY, Harris BS, Maguire CT, Buerger A, Wakimoto H, Tanaka M, Kupershmidt S, Roden DM, Schultheiss TM, O'Brien TX, Gourdie RG, Berul CI, Izumo S. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest. 2004 Apr; 113(8): 1130-7.
    [21]Kasahara H, Benson DW. Biochemical analyses of eight NKX2.5 homeodomain missense mutations causing atrioventricular block and cardiac anomalies. Cardiovasc Res. 2004 Oct l;64(1):40-51.
    [22]Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, Seidman CE, Plowden J, Kugler JD. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999 Dec; 104(11): 1567-73.
    [23]Jay PY, Harris BS, Maguire CT, Buerger A, Wakimoto H, Tanaka M, Kupershmidt S, Roden DM, Schultheiss TM, O'Brien TX, Gourdie RG, Berul CI, Izumo S. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest. 2004 Apr;113(8):1130-7.
    [24]Pashmforoush M, Lu JT, Chen H, Amand TS, Kondo R, Pradervand S, Evans SM, Clark B, Feramisco JR, Giles W, Ho SY, Benson DW, Silberbach M, Shou W, Chien KR. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell. 2004 Apr 30;117(3):373-86.
    [25]Evans T, Reitman M, Felsenfeld G. An erythrocyte- specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci U S A. 1988 Aug; 85(16):5976-80.
    [26]Arceci RJ, King AA, Simon MC, Orkin SH, Wilson DB. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol. 1993 Apr; 13(4):2235-46.
    [27]Arceci RJ, King AA, Simon MC, Orkin SH, Wilson DB. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol. 1993 Apr;13(4):2235-46.
    [28]Peterkin T, Gibson A, Loose M, Patient R. The roles of GATA-4, -5 and -6 in vertebrate heart development. Semin Cell Dev Biol. 2005 Feb;16(1):83-94.
    [29]Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, Izumo S, Pu WT. Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest. 2005 Jun; 115(6): 1522-31.
    [30]Holtzinger A, Evans T. Gata4 regulates the formation of multiple organs. Development. 2005 Sep;132(17):4005-14.
    [31]Pehlivan T, Pober BR, Brueckner M, Garrett S, Slaugh R, Van Rheeden R, Wilson DB, Watson MS, Hing AV. GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23.1 and congenital heart disease. Am J Med Genet. 1999 Mar 19;83(3):201-6.
    [32]Kennedy SJ, Teebi AS, Adatia I, Teshima I. Inherited duplication, dup (8) (p23.1p23.1) pat, in a father and daughter with congenital heart defects. Am J Med Genet. 2001 Nov 15;104(1):79-80.
    [33]Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC, Srivastava D. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003 Jul 24;424(6947):443-7.
    [34]Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, Orkin SH. Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev. 2001 Apr 1;15(7):839-44.
    [35]Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, Izumo S, Pu WT. Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest. 2005 Jun; 115(6): 1522-31.
    [36]Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE. Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997 Jan;15(1):30-5.
    [37]Vaughan CJ, Basson CT. Molecular determinants of atrial and ventricular septal defects and patent ductus arteriosus. Am J Med Genet. 2000 Winter;97(4):304-9.
    [38]Basson CT, Huang T, Lin RC, Bachinsky DR, Weremowicz S, Vaglio A, Bruzzone R, Quadrelli R, Lerone M, Romeo G, Silengo M, Pereira A, Krieger J, Mesquita SF, Kamisago M, Morton CC, Pierpont ME, Muller CW, Seidman JG, Seidman CE. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2919-24.
    [39]Takeuchi JK, Ohgi M, Koshiba-Takeuchi K, Shiratori H, Sakaki I, Ogura K, Saijoh Y, Ogura T. Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development. 2003 Dec; 130(24):5953-64.
    [40]Riazi AM, Lee H, Hsu C, Van Arsdell G. CSX/Nkx2.5 modulates differentiation of skeletal myoblasts and promotes differentiation into neuronal cells in vitro. J Biol Chem. 2005 Mar 18;280(11):10716-20.
    [41]Dentice M, Morisco C, Vitale M, Rossi G, Fenzi G, Salvatore D. The different cardiac expression of the type 2 iodothyronine deiodinase gene between human and rat is related to the differential response of the Dio2 genes to Nkx-2.5 and GATA-4 transcription factors. Mol Endocrinol. 2003 Aug; 17(8): 1508-21.
    [42]Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet. 2001 Jul;28(3):276-80.
    [43]Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 1997 Sep 15;16(18):5687-96.
    [44]Linhares VL, Almeida NA, Menezes DC, Elliott DA, Lai D, Beyer EC, Campos de Carvalho AC, Costa MW. Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovasc Res. 2004 Dec l;64(3):402-11.
    [45]Ding B, Liu CJ, Huang Y, Hickey RP, Yu J, Kong W, Lengyel P. p204 protein is required for the differentiation of P19 murine embryonal carcinoma cells to beating cardiac myocytes. Its expression is activated by the cardiac Gata4, Nkx2.5 and Tbx5 proteins. J Biol Chem. 2006 May 26;281(21):14882-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700