用户名: 密码: 验证码:
十溴联苯醚的神经毒理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多溴联苯醚(PBDEs)是一种广泛添加于各种生活必须品中的溴代阻燃剂。它的大量使用已造成全球性的环境污染。PBDEs有209种同源物,其中主要的商用五溴和八溴联苯醚已因其严重毒性而被欧盟和美国禁用,但是十溴联苯醚(PBDE209)作为最主要的商用溴系阻燃剂,仍然在大量的使用。已有报道PBDEs能够损伤动物多种器官的功能,尤其是能够损伤中枢神经系统的功能。海马是学习和记忆功能的重要部位,损伤海马的功能,可能是PBDEs损伤中枢神经系统的一条重要途径。本文采用行为和电生理手段,应用morris水迷宫、在位场电位记录和单细胞膜片钳的方法,对PBDE209的神经毒性及其机理进行了研究。
     1.PBDE209对空间学习和记忆能力的影响。
     学习和记忆是神经系统重要的功能。研究学习记忆功能的机制可采用多种方法,Morris水迷宫是最常用的方法之一,主要应用于啮齿类动物空间学习记忆功能的研究和评估。本研究应用Morris水迷宫对PBDE209染毒的C57BL/6J小鼠的学习和记忆功能进行了测试,结果发现PBDE209在定位航行实验中明显延长了实验动物寻找到隐藏平台所用的总路程和总时间,以及在空间探索实验中明显改变了实验动物在目标象限的游泳路程和时间占总路程和时间的比率。这证实PBDE209既可以影响小鼠定位航行中的学习过程,也能影响小鼠空间搜索中的回忆过程和搜寻策略,表明PBDE209和PBDEs能够损伤神经系统的空间学习记忆功能。
     2.PBDE209对大鼠海马DG区突触可塑性的影响。
     海马神经元活动依赖的突触可塑性被认为是学习和记忆功能的细胞和分子基础。我们应用在位电生理技术研究了PBDE209对大鼠海马DG区神经元突触可塑性的影响,并进一步探讨了不同发育期的PBDE209暴露对成年大鼠海马DG区突触可塑性影响的差异。结果表明,PBDE209暴露不仅损伤了EPSP和PS的基础突触传递,也损伤了突触后电位和群峰电位的双脉冲反应和长时程增强。并且在不同发育期其对突触可塑性的损害不同,其中哺乳期是大鼠对PBDE209最敏感的时期。我们发现早期对母体暴露PBDE209,其子代海马神经元的突触可塑性的损伤不明显,但是在终身暴露的大鼠上,这种损伤比单纯的早期母体暴露或单纯的断奶后灌胃暴露PBDE209的损伤都大,因此,早期的母体暴露对这种损伤的累积效应起了重要的作用。
     3.PBDE209对培养大鼠海马神经元电压门控钠通道的影响。
     电压门控钠通道对于神经元动作电位的发放和传导具有重要的意义,钠通道功能特性的变化对于中枢神经系统神经元的功能活动有重要的影响。我们在阻断电压门控型钾通道和钙通道的条件下,在培养的大鼠海马神经元上记录了TTX敏感的电压门控钠通道电流,并研究了PBDE209对钠通道电流以及其动力学特性的作用。结果表明,PBDE209抑制了钠电流的幅度,其最低效应浓度为0.1μM,这种抑制效应具有浓度依赖性并且是不可逆的。PBDE209能使钠通道的激活和失活曲线向超极化方向移动,延长了激活和快速失活的时间,减缓了钠通道复活的时间,减少了钠通道激活的组分。这说明PBDE209可能通过影响钠通道的动力学特性从而损伤中枢神经系统功能。我们进一步施加抗氧化剂,抗坏血酸和维生素E,证实了PBDE209可能通过过氧化途径损伤了钠通道。
Polybrominated diphenyl ethers (PBDEs) is one of the flame-retardant additives, which is largely used in all parts of our lives. Its wide use has caused persistently environmental contamination. There are 209 congeners of PBDEs, and the penta- and octa-brominated diphenyl ethers have been banned by European Union and America for their toxic effects. But the decabrominated diphenyl ether (PBDE209), as the primary commercial product of PBDEs, still persistent and widely use. Previous studies indicated that many organs are targets of PBDEs, especially the central nervous system (CNS). Hippocampus is a region related to learning and memory. Impairing hippocampus may be one of the pathways that PBDEs impair the CNS. In this study, we investigated in depth the effects of PBDE 209 on the CNS, using behavioral and electrophysiological techniques, by morris water maze, field potential recording and patch clamp methods.
     1. The effects of PBDE209 on spatial learning and memory.
     Learning and memory is one of the most important functions of the CNS. There are many methods to study learning and memory. Morris water maze is one of the most frequently used methods, which is used to study and evaluate the spatial learning and memory of the rodents. In our study, we detected the effects of PBDE209 on the learning and memory of C57BL/6J mice through Morris water maze. The results showed PBDE209 could prolong the time and distance of mice finding the hide plate in the place navigation, and also changed the rate of distance and time between mice in target quadrant and all the quadrants in the spatial probe. Our founding indicated that PBDE209 could affect the learning process in the place navigation, and also affect the memory recall process and search strategy in the spatial probe. These confirm that PBDE209 can impair the spatial learning and memory of the CNS.
     2. The influence of PBDE 209 on synaptic plasticity in the rat dentate gyrus (DG) in vivo.
     The activity-dependent synaptic plasticity of hippocampus is regarded as the electrophysioloical substrate of learning and memory. We studied the effects of PBDE209 on synaptic plasticity in the DG in vivo, and discussed different effects of PBDE209 in the different developmental periods. The results demonstrated that PBDE 209 could impair the basic synaptic transmission, the paired-pulse reactions (PPR) and the long-term potentiation (LTP) of the field excitatory postsynaptic potential (fEPSP) slope and the population spike (PS) amplitude, and the lactation period is the most sensitive time of development towards PBDE 209. It was also found that PBDE 209 received from mother in early developmental periods play an important role to the toxic effects of PBDE 209 in whole range exposure.
     3. The effects of PBDEs on voltage-gated sodium channels (VGSCs) in rat primary cultured hippocampal neurons.
     VGSCs are responsible for both initiation and propagation of action potentials of the neurons in the hippocampus and throughout the central nervous system. Therefore, modulation of the functional properties of VGSCs would be expected to alter the activity and function of CNS neurons. We recorded TTX-sensitive voltage-gated sodium channels currents (I_(Na)) in rat primary cultured hippocampal neurons and studied the effects of PBDE 209 on I_(Na) and their kinetic properties, when the voltage-gated potassium channels and calcium channels were blocked. The results showed that PBDE 209 could irreversibly decrease I_(Na) in a concentration-dependent manner and the lowest assayed concentration was 0.1μM, PBDE 209 could shift the activation and inactivation of I_(Na) toward hyperpolarizing direction, prolong the time course of activation and fast inactivation, slow down the recovery from inactivation of I_(Na), and decrease the fraction of activated sodium channels. These results suggested that PBDE 209 could modulate voltage-gated sodium channels (VGSCs), which may lead to change in electrical activity and contribute to worsen the neurotoxicological damage. Furthermore, ascorbic acid, as an antioxidant, was found capable of partially reversing those effects, which indicates that PBDE 209 might inhibit I_(Na) through peroxidation.
引文
Alaee, M., Arias, P., Sjodin, A. and Bergman, A., 2003. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int. 29,683-689.
    Bergander, L., Kierkegaard, A., Sellstrom, U., Wideqvist, U. and de Wit, C, 1995. Are brominated flame retardants present in ambient air? Poster In: 6th Nordic Symposium on Organic Pollutants, Smygehuk, September, 17-20.
    Bergman, A., Ostman, C, Nybom, R., Sjodin, A., Carlsson, H., Nilsson, U. and Wachtmeister, C. A., 1997. Flame retardants and plasticisers on particulate in the modern computerized indoor environment. Organohalogen Compd. 47, 89-92.
    Bocio, A., Llobet, J. M., Domingo, J. L., Corbella, J., Teixido, A. and Casas, C, 2003. Polybrominated diphenyl ethers (PBDEs) in foodstuffs: human exposure through the diet. J Agric Food Chem. 51,3191-3195.
    Boyages, S. C. and Halpern, J. P., 1993. Endemic cretinism: toward a unifying hypothesis. Thyroid. 3, 59-69.
    BSEF, 2000. An introduction to Brominated Flame Retardants. Bromine Science and Environmental Forum. Web Site, http://www.bsef.com.
    Burreau, S., Axelman, J., Broman, D. and Jakobsson, E., 1997. Dietary uptake in pike (Esox lucius) of some polychlorinated biphenyls, polychlorinated naphthalenes and polybrominated diphenyl ethers administered in natural diet. Environ Toxicol Chem. 16,2508-2513.
    Burreau, S. and Broman, D., 1998. Uptake of PBDEs in pike (Esox lucius) from food. Organohalogen Compd. 39, 39-42.
    Burreau, S., Broman, D. and Orn, U., 2000. Tissue distribution of 2,2',4,4'-tetrabromo[14C]diphenyl ether ([14C]-PBDE 47) in pike (Esox lucius) after dietary exposure-a time series study using whole body autoradiography. Chemosphere. 40, 977-985.
    Canton, R. F., Sanderson, J. T., Nijmeijer, S., Bergman, A., Letcher, R. J. and van den Berg, M, 2006. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: a novel mechanism of action? Toxicol Appl Pharmacol. 216, 274-281.
    Ceccatelli, R., Faass, O., Schlumpf, M. and Lichtensteiger, W., 2006. Gene expression and estrogen sensitivity in rat uterus after developmental exposure to the polybrominated diphenylether PBDE 99 and PCB. Toxicology. 220, 104-116.
    Chan, S. and Kilby, M. D., 2000. Thyroid hormone and central nervous system development. J Endocrinol. 165,1-8.
    Chao, H. R., Wang, S. L, Lee, W. J., Wang, Y. F. and Papke, O., 2007. Levels of polybrominated diphenyl ethers (PBDEs) in breast milk from central Taiwan and their relation to infant birth outcome and maternal menstruation effects. Environ Int. 33,239-245.
    Chen, D., Bi, X., Zhao, J., Chen, L, Tan, J., Mai, B., Sheng, G, Fu, J. and Wong, M., 2008. Pollution characterization and diurnal variation of PBDEs in the atmosphere of an E-waste dismantling region. Environ Pollut.
    Chen, G, Konstantinov, A. D., Chittim, B. G, Joyce, E. M., Bols, N. C. and Bunce, N. J., 2001. Synthesis of polybrominated diphenyl ethers and their capacity to induce CYP1A by the Ah receptor mediated pathway. Environ Sci Technol. 35,3749-3756.
    Christensen, J. H. and Platz, J., 2001. Screening of polybrominated diphenyl ethers in blue mussels, marine and freshwater sediments in Denmark. J Environ Monit. 3, 543-547.
    Christensen, J. R., MacDuffee, ML, Macdonald, R. W., Whiticar, M. and Ross, P. S., 2005. Persistent organic pollutants in British Columbia grizzly bears: consequence of divergent diets. Environ Sci Technol. 39, 6952-6960.
    Coburn, C. G, Curras-Collazo, M. C. and Kodavanti, P. R., 2007. Polybrominated diphenyl ethers and ortho-substituted polychlorinated biphenyls as neuroendocrine disruptors of vasopressin release: effects during physiological activation in vitro and structure-activity relationships. Toxicol Sci. 98, 178-186.
    Costa, L. G and Giordano, G, 2007. Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology. 28,1047-1067.
    Darnerud, P. O., Aune, M., Larsson, L. and Hallgren, S., 2007. Plasma PBDE and thyroxine levels in rats exposed to Bromkal or BDE-47. Chemosphere. 67, S386-392.
    Darnerud, P. O., Eriksen, G S., Johannesson, T., Larsen, P. B. and Viluksela, M., 2001. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environ Health Perspect. 109 Suppl 1, 49-68.
    Darnerud, P. O. and Risberg, S., 2006. Tissue localisation of tetra- and pentabromodiphenyl ether congeners (BDE-47, -85 and -99) in perinatal and adult C57BL mice. Chemosphere. 62, 485-493.
    Darnerud, P. O. and Thuvander, A., 1999. Effects of polybrominated diphenyl ether (PBDE) and polychlorinated biphenyl (PCB) on some immunologocal parameters after oral exposure in rats and mice toxicol Environ Chem. 70, 229-242.
    de Boer, J., Wester, P. G, van der Horst, A. and Leonards, P. E., 2003. Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands. Environ Pollut. 122, 63-74.
    De Wit, C. A., 2002. An overview of brominated flame retardants in the environment. Chemosphere. 46, 583-624.
    Di Carlo, F. J., Seifter, J. and DeCarlo, V. J., 1978. Assessment of the hazards of polybrominated biphenyls. Environ Health Perspect. 23, 351-365.
    Dingemans, M. M., Ramakers, G. M., Gardoni, F., van Kleef, R. G, Bergman, A., Di Luca, M., van den Berg, M., Westerink, R. H. and Vijverberg, H. P., 2007. Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus. Environ Health Perspect. 115, 865-870.
    Dodder, N. G, Strandberg, B. and Hites, R. A., 2000. Concentrations and spatial variations of polybrominated diphenyl ethers in fish and air from the northeastern United States. Organohalogen Compd. 47,69-72.
    Dodder, N. G, Strandberg, B. and Hites, R. A., 2002. Concentrations and spatial variations of polybrominated diphenyl ethers and several organochlorine compounds in fishes from the northeastern United States. Environ Sci Technol. 36, 146-151.
    Dufault, C, Poles, G. and Driscoll, L. L., 2005. Brief postnatal PBDE exposure alters learning and the cholinergic modulation of attention in rats. Toxicol Sci. 88, 172-180.
    EIDareer, S. M., Kalin, J. R., Tillery, K. F. and Hill, D. L. J., 1987. Disposition of decabromobiphenyl ether in rats dosed intravenously or by feeding. Toxicol Environ Health. 22,405-415.
    Ellis-Hutchings, R. G, Cherr, G. N., Hanna, L. A. and Keen, C. L., 2006. Polybrominated diphenyl ether (PBDE)-induced alterations in vitamin A and thyroid hormone concentrations in the rat during lactation and early postnatal development. Toxicol Appl Pharmacol. 215, 135-145.
    Eriksson, P. and Fredriksson, A., 1996. Neonatal exposure to 2,2',5,5'-tetrachlorobiphenyl causes increased susceptibility in the cholinergic transmitter system at adult age Environmental Toxicology and Pharmacology. 1, 217-220.
    Eriksson, P., Jakobsson, E. and Fredriksson, A., 2001. Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ Health Perspect. 109, 903-908.
    Eriksson, P., Viberg, H., Jakobsson, E., Orn, U. and Fredriksson, A., 2002. A brominated flame retardant, 2,2',4,4',5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of neonatal brain development. Toxicol Sci. 67, 98-103.
    Eslami, B., Koizumi, A., Ohta, S., Inoue, K., Aozasa, O., Harada, K., Yoshinaga, T., Date, C, Fujii, S., Fujimine, Y., Hachiya, N., Hirosawa, I., Koda, S., Kusaka, Y., Murata, K., Nakatsuka, H., Omae, K., Saito, N., Shimbo, S., Takenaka, K., Takeshita, T., Todoriki, H., Wada, Y,
    Watanabe, T. and Ikeda, M., 2006. Large-scale evaluation of the current level of polybrominated diphenyl ethers (PBDEs) in breast milk from 13 regions of Japan. Chemosphere. 63, 554-561.
    Fangstrom, B., Hovander, L., Bignert, A., Athanassiadis, I., Linderholm, L., Grandjean, P., Weihe, P. and Bergman, A., 2005. Concentrations of polybrominated diphenyl ethers, polychlorinated biphenyls, and polychlorobiphenylols in serum from pregnant Faroese women and their children 7 years later. Environ Sci Technol. 39,9457-9463.
    Fernie, K. J., Shutt, J. L., Mayne, G, Hoffman, D., Letcher, R. J., Drouillard, K. G. and Ritchie, I. J., 2005. Exposure to polybrominated diphenyl ethers (PBDEs): changes in thyroid, vitamin A, glutathione homeostasis, and oxidative stress in American kestrels (Falco sparverius). Toxicol Sci. 88, 375-383.
    Fernlof, G, Gadhasson, I., Podra, K.., Darnerud, P. O. and Thuvander, A., 1997. Lack of effects of some individual polybrominated diphenyl ether (PBDE) and polychlorinated biphenyl (PCB) congeners on human lymphocyte functions in vitro. Toxicol Lett. 90,189-197.
    Fischer, C, Fredriksson, A. and Eriksson, P., 2008. Coexposure of Neonatal Mice to a Flame Retardant PBDE 99 (2,2',4,4',5-Pentabromodiphenyl Ether) and Methyl Mercury Enhances Developmental Neurotoxic Defects. Toxicol Sci. 101, 275-285.
    Fowles, J. R., Fairbrother, A., Baecher-Steppan, L. and Kerkvliet, N. I., 1994. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice. Toxicology. 86, 49-61.
    Frederiksen, M., Vorkamp, K., Thomsen, M. and Knudsen, L. E., 2008. Human internal and external exposure to PBDEs - A review of levels and sources. Int J Hyg Environ Health.
    Gomara, B., Herrero, L., Ramos, J. J., Mateo, J. R., Fernandez, M. A., Garcia, J. F. and Gonzalez, M. J., 2007. Distribution of polybrominated diphenyl ethers in human umbilical cord serum, paternal serum, maternal serum, placentas, and breast milk from Madrid population, Spain. Environ Sci Technol. 41, 6961-6968.
    Gouin, T., Thomas, G. O., Cousins, I., Barber, J., Mackay, D. and Jones, K. C, 2002. Air-surface exchange of polybrominated diphenyl ethers and polychlorinated biphenyls. Environ Sci Technol. 36,1426-1434.
    Hagmar, L., Jakobsson, K., Thuresson, K., Rylander, L., Sjodin, A. and Bergman, A., 2000. Computer technicians are occupationally exposed to polybrominated diphenyl ethers and tetrabromobisphenol A. Organohalogen Compd. 47, 202-205.
    Hale, R. C, La Guardia, M. J., Harvey, E., Gaylor, M. O. and Mainor, T. M., 2006. Brominated flame retardant concentrations and trends in abiotic media. Chemosphere. 64, 181 -186.
    Hale, R. C, La Guardia, M. J., Harvey,E. and Mainor, T. M., 2002. Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere. 46, 729-735.
    Hardell, L., Bavel, B., Lindstrom, G, Eriksson, M. and Carlberg, M., 2006. In utero exposure to persistent organic pollutants in relation to testicular cancer risk. Int J Androl. 29, 228-234.
    Hardell, L., Lindstrom, G, van Bavel, B., Wingfors, H., Sundelin, E. and Liljegren, G, 1998. Concentrations of the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether in human adipose tissue in Swedish persons and the risk for non-Hodgkin's lymphoma. Oncol Res. 10, 429-432.
    Harrad, S., Hazrati, S. and Ibarra, C, 2006. Concentrations of polychlorinated biphenyls in indoor air and polybrominated diphenyl ethers in indoor air and dust in Birmingham, United Kingdom: implications for human exposure. Environ Sci Technol. 40,4633-4638.
    Harrad, S. and Hunter, S., 2006. Concentrations of polybrominated diphenyl ethers in air and soil on a rural-urban transect across a major UK conurbation. Environ Sci Technol. 40, 4548-4553.
    Harrad, S. and Porter, L., 2007. Concentrations of polybrominated diphenyl ethers in blood serum from New Zealand. Chemosphere. 66,2019-2023.
    Harrad, S., Wijesekera, R., Hunter, S., Halliwell, C. and Baker, R., 2004. Preliminary assessment of U.K. human dietary and inhalation exposure to polybrominated diphenyl ethers. Environ Sci Technol. 38,2345-2350.
    Hayakawa, K., Takatsuki, H., Watanabe, I. and Sakai, S., 2004. Polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) and monobromo-polychlorinated dibenzo-p-dioxins/dibenzofurans (MoBPXDD/Fs) in the atmosphere and bulk deposition in Kyoto, Japan. Chemosphere. 57, 343-356.
    Hazrati, S. and Harrad, S., 2006. Causes of variability in concentrations of polychlorinated biphenyls and polybrominated diphenyl ethers in indoor air. Environ Sci Technol. 40, 7584-7589.
    He, P., He, W., Wang, A, Xia, T., Xu, B., Zhang, M. and Chen, X., 2008. PBDE-47-induced oxidative stress, DNA damage and apoptosis in primary cultured rat hippocampal neurons. Neurotoxicology. 29, 124-129.
    Hites, R. A., 2004. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ Sci Technol. 38,945-956.
    Hu, J., Eriksson, L., Bergman, A., Jakobsson, E., Kolehmainen, E., Knuutinen, J., Suontamo, R. and Wei, X., 2005. Molecular orbital studies on brominated diphenyl ethers. Part II-reactivity and quantitative structure-activity (property) relationships. Chemosphere. 59, 1043-1057.
    Hu, X. Z., Xu, Y., Hu, D. C, Hui, Y. and Yang, F. X., 2007. Apoptosis induction on human hepatoma cells Hep G2 of decabrominated diphenyl ether (PBDE-209). Toxicol Lett. 171, 19-28.
    Inoue, K., Harada, K., Takenaka, K., Uehara, S., Kono, M., Shimizu, T., Takasuga, T., Senthilkumar, K., Yamashita, F. and Koizumi, A., 2006. Levels and concentration ratios of polychlorinated biphenyls and polybrominated diphenyl ethers in serum and breast milk in Japanese mothers. Environ Health Perspect. 114,1179-1185.
    Jo, S. H., Choi, S. Y., Kim, K. T. and Lee, C. O., 2001. Effects of polychlorinated biphenyl 19 (2,2',6-trichlorobiphenyl) on contraction, Ca2+ transient, and Ca2+ current of cardiac myocytes. J Cardiovasc Pharmacol. 38, 11-20.
    Julander, A., Karlsson, M., Hagstrom, K., Ohlson, C. G, Engwall, M., Bryngelsson, I. L., Westberg, H. and van Bavel, B., 2005a. Polybrominated diphenyl ethers-plasma levels and thyroid status of workers at an electronic recycling facility. Int Arch Occup Environ Health. 78, 584-592.
    Julander, A., Westberg, H., Engwall, M. and van Bavel, B., 2005b. Distribution of brominated flame retardants in different dust fractions in air from an electronics recycling facility. Sci Total Environ. 350, 151-160.
    Kierkegaard, A., Balk, L., Tjarnlund, U., de Wit, C. A. and Jansson, B., 1999. Dietary uptake and effects of decabromodiphenyl ether in the rainbow trout (Oncorhynchus mykiss). Environ Sci Technol. 33,1613-1617.
    Kodavanti, P. R. and Derr-Yellin, E. C, 2002. Differential effects of polybrominated diphenyl ethers and polychlorinated biphenyls on [3H]arachidonic acid release in rat cerebellar granule neurons. Toxicol Sci. 68, 451-457.
    Kodavanti, P. R., Ward, T. R., Ludewig, G, Robertson, L. W. and Birnbaum, L. S., 2005. Polybrominated diphenyl ether (PBDE) effects in rat neuronal cultures: 14C-PBDE accumulation, biological effects, and structure-activity relationships. Toxicol Sci. 88, 181-192.
    Kuriyama, S. N., Wanner, A., Fidalgo-Neto, A. A., Talsness, C. E., Koerner, W. and Chahoud, I., 2007. Developmental exposure to low-dose PBDE-99: tissue distribution and thyroid hormone levels. Toxicology. 242, 80-90.
    La Guardia, M. J., Hale, R. C. and Harvey, E., 2004. Environmental debromination of decabrominated diphenyl ether. The Third International Workshop on Brominated Flame Retardants Toronto, Canada.
    
    Larsen, G, Hakk, H., Klasson-Wehler, E., Orn, U. and Bergman, A., 1999. Binding of 2,2,4,4,5-pentabromodiphenyl ether (BDE-99) and/or its metabolites to mammalian urinary and biliary carrier proteins. Organohalogen Compd. 40, 371-374.
    Lilienthal, H., Hack, A., Roth-Harer, A., Grande, S. W. and Talsness, C. E., 2006. Effects of developmental exposure to 2,2 ,4,4 ,5-pentabromodiphenyl ether (PBDE-99) on sex steroids, sexual development, and sexually dimorphic behavior in rats. Environ Health Perspect. 114, 194-201.
    Lindberg, P., Sellstrom, U., Haggberg, L. and de Wit, C. A., 2004. Higher brominated diphenyl ethers and hexabromocyclododecane found in eggs of peregrine falcons (Falco peregrinus) breeding in Sweden. Environ Sci Technol. 38, 93-96.
    Lioy, P. J., Weisel, C. P., Millette, J. R., Eisenreich, S., Vallero, D., Offenberg, J., Buckley, B, Turpin, B., Zhong, M., Cohen, M. D., Prophete, C, Yang, I., Stiles, R., Chee, G, Johnson, W., Porcja, R., Alimokhtari, S., Hale, R. C, Weschler, C. and Chen, L. C, 2002. Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower
    
    Manhattan after the collapse of the WTC 11 September 2001. Environ Health Perspect. 110, 703-714.
    Llansola, M., Erceg, S., Monfort, P., Montoliu, C. and Felipo, V., 2007. Prenatal exposure to polybrominated diphenylether 99 enhances the function of the glutamate-nitric oxide-cGMP pathway in brain in vivo and in cultured neurons. Eur J Neurosci. 25,373-379.
    Lorber, M., 2008. Exposure of Americans to polybrominated diphenyl ethers. J Expo Sci Environ Epidemiol. 18,2-19.
    Luckey, E, Fowler, B. and Liren, S., 2001. The second international workshop on brominated flame retardants Stockholm, Sweden: Stakholm University, 309-311.
    Madia, F., Giordano, G., Fattori, V., Vitalone, A., Branchi, I., Capone, F. and Costa, L. G., 2004. Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicol Lett. 154, 11-21.
    Main, K. M., Kiviranta, H., Virtanen, H. E., Sundqvist, E., Tuomisto, J. T., Tuomisto, J., Vartiainen, T., Skakkebaek, N. E. and Toppari, J., 2007. Flame retardants in placenta and breast milk and cryptorchidism in newborn boys. Environ Health Perspect. 115, 1519-1526.
    Mandalakis, M., Stephanou, E. G, Horii, Y. and Kannan, K., 2008. Emerging contaminants in car interiors: evaluating the impact of airborne PBDEs and PBDD/Fs. Environ Sci Technol. 42, 6431-6436.
    Mariussen, E. and Fonnum, F., 2003. The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles. Neurochem Internat. 43, 533-542.
    Marsh, G., Bergman, A., Bladh, L. G, Gillner, M. and Jakobsson, E., 1998. Synthesis of p-hydroxybromodiphenyl ethers and binding to the thyroid hormone receptor. Organohalogen Compd. 37,305-308.
    McDonald, T. A., 2002. A perspective on the potential health risks of PBDEs. Chemosphere. 46, 745-755.
    Meerts, I. A., van Zanden, J. J., Luijks, E. A., van Leeuwen-Bol, I., Marsh, G, Jakobsson, E., Bergman, A. and Brouwer, A., 2000. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci. 56, 95-104.
    Morck, A., Hakk, H., Orn, U. and Klasson Wehler, E., 2003. Decabromodiphenyl ether in the rat: absorption, distribution, metabolism, and excretion. Drug Metab Dispos. 31,900-907.
    Morreale de Escobar, G., Obregon, M. J. and Escobar del Rey, F., 2000. Is neuropsychological development related to maternal hypothyroidism or to maternal hypothyroxinemia? J Clin Endocrinol Metab. 85,3975-3987.
    Muir, D., Teixeira, C., Chigak, M., Yang, F., D'Sa, I., Cannon, C, Pacepavicius, G and Alaee, M., 2003. Current deposition and historical profiles of decabromodiphenyl ether in sediment cores. The 23rd International Symposium on Halogenated Organic Pollutants and Persistent Organic Pollutants Boston, US.
    Naert, C., Piette, M., Bruneel, N. and Van Peteghem, C, 2006. Occurrence of polychlorinated biphenyls and polybrominated diphenyl ethers in belgian human adipose tissue samples. Arch Environ Contam Toxicol. 50,290-296.
    Noren, K. and Meironyte, D., 2000. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years. Chemosphere. 40, 1111-1123.
    Norris, J. M., Kociba, R. J., Schwetz, B. A., Rose, J. Q., Humiston, C. G, Jewett, G L., Gehring, P. J. and Mailhes, J. B., 1975. Toxicology of octabromobiphenyl and decabromodiphenyl oxide. Environ Health Perspect. 11, 153-161.
    Norstrom, R. J., Simon, M., Moisey, J., Wakeford, B. and Weseloh, D. V., 2002. Geographical distribution (2000) and temporal trends (1981-2000) of brominated diphenyl ethers in Great Lakes hewing gull eggs. Environ Sci Technol. 36,4783-4789.
    North, K. D., 2004. Tracking polybrominated diphenyl ether releases in a wastewater treatment plant effluent, Palo Alto, California. Environ Sci Technol. 38, 4484-4488.
    NTP, 1986. Toxicology and carcinogenesis studies of decabromodiphenyl oxide (CAS: No. 1163-19-5) in R344/N rats and B6C3F1 mice (feed studies). NTP technical reprot series No 309. research triangle park, NC: National toxicology program.
    Orn, U. and Klasson-Wehler, E., 1998. Metabolism of 2,2',4,4'-tetrabromodiphenyl ether in rat and mouse. Xenobiotica. 28, 199-211.
    Pacyniak, E. K., Cheng, X., Cunningham, M. L., Crofton, K., Klaassen, C. D. and Guo, G. L., 2007. The flame retardants, polybrominated diphenyl ethers, are pregnane X receptor activators. Toxicol Sci. 97, 94-102.
    
    Peters, A. J., Coleman, P. and Jones, K. C., 1999a. Brominated flame retardants in serum from US blood donors. Organohalogen Compd. 41,447-450.
    Peters, A. J., Tomy, G T., Stern, G. A., Asplund, L., Kierkegaard, A., Coleman, P. and Jones, K. C., 1999b. Persistent organic pollutants in the atmosphere of the United Kingdom. Poster DIOXIN '99: 19th International Symposium on Halogenated Environmental Organic Pollutants and POPs, Venice, Italy, September, 12-17.
    Peters, A. K., van Londen, K., Bergman, A., Bohonowych, J., Denison, M. S., van den Berg, M. and Sanderson, J. T., 2004. Effects of polybrominated diphenyl ethers on basal and TCDD-induced ethoxyresorufin activity and cytochrome P450-1A1 expression in MCF-7, HepG2, and H4IIE cells. Toxicol Sci. 82, 488-496.
    Pettersson-Julander, A., van Bavel, B., Engwall, M. and Westberg, H., 2004. Personal air sampling and analysis of polybrominated diphenyl ethers and other bromine containing compounds at an electronic recycling facility in Sweden. J Environ Monk. 6, 874-880.
    Reistad, T., Fonnum, F. and Mariussen, E., 2006. Neurotoxicity of the pentabrominated diphenyl ether mixture, DE-71, and hexabromocyclododecane (HBCD) in rat cerebellar granule cells in vitro. Arch Toxicol. 80, 785-796.
    Richardson, V. M., Staskal, D. F., Ross, D. G, Diliberto, J. J., DeVito, M. J. and Birnbaum, L. S., 2008. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polybrominated diphenyl ether congener. Toxicol Appl Pharmacol. 226, 244-250.
    
    Schaefer, E. C, Ariano, J. M. and Rothenbacher, K. P., 2001. Fate of decabromodiphenyl ether in anaerobic freshwater sediment. International Symposium on Halogenated Environmental Organic Pollutants and POPs Gyeongiu, Korea.
    
    Schecter, A., Papke, O., Harris, T. R., Tung, K. C, Musumba, A., Olson, J. and Birnbaum, L., 2006. Polybrominated diphenyl ether (PBDE) levels in an expanded market basket survey of U.S. food and estimated PBDE dietary intake by age and sex. Environ Health Perspect. 114, 1515-1520.
    
    Siddiqi, M. A., Laessig, R. H. and Reed, K. D., 2003. Polybrominated diphenyl ethers (PBDEs): new pollutants-old diseases. Clin Med Res. 1,281-290.
    Sjodin, A., Carlsson, H., Thuresson, K., Sjolin, S., Bergman, A. and Ostman, C, 2001a. Flame retardants in indoor air at an electronics recycling plant and at other work environments. Environ Sci Technol. 35,448-454.
    Sjodin, A., Hagmar, L, Klasson-Wehler, E., Kronholm-Diab, K., Jakobsson, E. and Bergman, A., 1999. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers. Environ Health Perspect. 107,643-648.
    Sjodin, A., Patterson, D. G, Jr. and Bergman, A., 2001b. Brominated flame retardants in serum from U.S. blood donors. Environ Sci Technol. 35,3830-3833.
    Soderstrom, G, Sellstrom, U., de Wit, C. A. and Tysklind, M., 2004. Photolytic debromination of decabromodiphenyl ether (BDE 209). Environ Sci Technol. 38, 127-132.
    Stoker, T. E., Cooper, R. L., Lambright, C. S., Wilson, V. S., Furr, J. and Gray, L. E., 2005. In vivo and in vitro anti-androgenic effects of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture. Toxicol Appl Pharmacol. 207, 78-88.
    Stoker, T. E., Laws, S. C, Crofton, K. M., Hedge, J. M., Ferrell, J. M. and Cooper, R. L., 2004. Assessment of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture, in the EDSP male and female pubertal protocols. Toxicol Sci. 78,144-155.
    Taylor, M. M., Hedge, J. M., Gilbert, M. E., DeVito, M. J. and Crofton, K., 2003. Perinatal exposure to a polybrominated diphenyl ether mixture (DE-71): Disruption of thyroid homeostasis and neurobehavioral development. Toxicologist. 72(S-1), 124.
    Thomas, G. O., Wilkinson, M., Hodson, S. and Jones, K. C., 2006. Organohalogen chemicals in human blood from the United Kingdom. Environ Pollut. 141,30-41.
    Thomsen, C., Liane, V. H. and Becher, G., 2007. Automated solid-phase extraction for the determination of polybrominated diphenyl ethers and polychlorinated biphenyls in serum-application on archived Norwegian samples from 1977 to 2003. J Chromatogr B Analyt Technol Biomed Life Sci. 846,252-263.
    Thuresson, K., Bergman, A. and Jakobsson, K., 2005. Occupational exposure to commercial decabromodiphenyl ether in workers manufacturing or handling flame-retarded rubber. Environ Sci Technol. 39,1980-1986.
    Tomy, G. T., Palace, V. P., Halldorson, T., Braekevelt, E., Danell, R., Wautier, K., Evans, B., Brinkworth, L. and Fisk, A. T., 2004. Bioaccumulation, biotransformation, and biochemical effects of brominated diphenyl ethers in juvenile lake trout (Salvelinus namaycush). Environ Sci Technol. 38,1496-1504.
    Van den Steen, E., Covaci, A., Jaspers, V. L., Dauwe, T, Voorspoels, S., Eens, M. and Pinxten, R., 2007. Accumulation, tissue-specific distribution and debromination of decabromodiphenyl ether (BDE 209) in European starlings (Sturnus vulgaris). Environ Pollut. 148, 648-653.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2003a. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol. 192, 95-106.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2004. Investigations of strain and/or gender differences in developmental neurotoxic effects of polybrominated diphenyl ethers in mice. Toxicol Sci. 81,344-353.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2007. Changes in spontaneous behaviour and altered response to nicotine in the adult rat, after neonatal exposure to the brominated flame retardant, decabrominated diphenyl ether (PBDE 209). Neurotoxicology. 28,136-142.
    Viberg, H., Fredriksson, A., Jakobsson, E., Orn, U. and Eriksson, P., 2003b. Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicol Sci. 76, 112-120.
    Viberg, H., Johansson, N., Fredriksson, A., Eriksson, J., Marsh, G. and Eriksson, P., 2006. Neonatal exposure to higher brominated diphenyl ethers, hepta-, octa-, or nonabromodiphenyl ether, impairs spontaneous behavior and learning and memory functions of adult mice. Toxicol Sci. 92, 211-218.
    Viberg, H., Mundy, W. and Eriksson, P., 2008. Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. Neurotoxicology. 29, 152-159.
    Vonderheide, A. P., Mueller, K. E., Meija, J. and Welsh, G. L., 2008. Polybrominated diphenyl ethers: causes for concern and knowledge gaps regarding environmental distribution, fate and toxicity. Sci Total Environ. 400,425-436.
    Wang, D., Cai, Z., Jiang, G, Wong, M. H. and Wong, W. K., 2005. Gas chromatography/ion trap mass spectrometry applied for the determination of polybrominated diphenyl ethers in soil. Rapid Commun Mass Spectrom. 19, 83-89.
    Watanabe, I., Kawano, M., Wang, Y., Chen, Y. and Tatsukawa, R., 1992. Polybrominated dibenzo-p-dioxins (PBDDs) and -dibenzofurans (PBDFs) in atmospheric air in Taiwan and Japan. Organohalogen Compd. 9, 309-312.
    Webster, L., Russell, M., Adefehinti, F., Dalgarno, E. J. and Moffat, C. F., 2008. Preliminary assessment of polybrominated diphenyl ethers (PBDEs) in the Scottish aquatic environment, including the Firth of Clyde. J Environ Monit. 10,463-473.
    WHO, 1994. Brominated Diphenyl Ethers. IPCS Environ Health Criteria 162 Geneva, World Health Organization.
    Wiegand, H., Desaiah, D., Dehnhardt, M. and Smolnikar, K., 2001. Polyhalogenated hydrocarbon induced perturbation of intracellular calcium homeostasis; from astrocytes to human macrophages. Organohalogen Compd. 53,182-185.
    Wilford, B. H., Thomas, G. O., Alcock, R. E., Jones, K. C. and Anderson, D. R., 2003. Polyurethane foam as a source of PBDEs to the environment. The 23rd International Symposium on Halogenated Organic Pollutants and Persistent Organic Pollutants Boston,US.
    Zegers, B. N., Lewis, W. E., Booij, K., Smittenberg, R. H., Boer, W., de Boer, J. and Boon, J. P., 2003. Levels of polybrominated diphenyl ether flame retardants in sediment cores from Western Europe. Environ Sci Technol. 37, 3803-3807.
    Zhou, T., Ross, D. G., DeVito, M. J. and Crofton, K. M., 2001. Effects of short-term in vivo exposure to polybrominated diphenyl ethers on thyroid hormones and hepatic enzyme activities in weanling rats. Toxicol Sci. 61, 76-82.
    Zhou, T., Taylor, M. M., DeVito, M. J. and Crofton, K. M., 2002. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption. Toxicol Sci. 66,105-116.
    Zoeller, R. T., 2005. Environmental chemicals as thyroid hormone analogues: new studies indicate that thyroid hormone receptors are targets of industrial chemicals? Mol Cell Endocrinol. 242,10-15.
    Zoeller, R. T. and Crofton, K. M., 2000. Thyroid hormone action in fetal brain development and potential for disruption by environmental chemicals. Neurotoxicology. 21,935-945.
    Zweidinger, R. A., Cooper, S. D., Erickson, M. D., Michael, L. C. and Pellizzari, E. D., 1979.Sampling and analysis for semivolatile brominated organics in ambient air. ACS Symp Ser.94,217-231.
    中国化工网,2007.我国阻燃剂产业的发展近况.中国化工网.网址,www.zhongchem.com/info/20070706124113.htm.
    姜玉起,2006.溴系阻燃剂的现状及其发展趋势.化工技术经济.24,14-18.
    刘汉霞,张庆华and江桂斌,2005.多溴联苯醚及其环境问题.化学进展.17,554-562.
    张明,何卫红,何平,夏涛,陈学敏and王爱国,2007.多溴联苯醚对SH-SY5Y细胞氧化应激及凋亡的影响.中华劳动卫生职业病杂志.25,145-147.
    汤保华,祝凌燕and周启星,2008.多溴二苯醚(PBDEs)对环境的污染及其生态化学行为.生态学杂志.27,96-104.
    Adams, J. P. and Sweatt, J. D., 2002. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol. 42, 135-163.
    Bagal, A. A., Kao, J. P., Tang, C. M. and Thompson, S. M., 2005. Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc Natl Acad Sci U S A. 102, 14434-14439.
    Barnes, C. A., 1979. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 93, 74-104.
    Bear, M. F. and Abraham, W. C, 1996. Long-term depression in hippocampus. Annu Rev Neurosci. 19, 437-462.
    Bliss, T. V. and Collingridge, G. L., 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 361, 31-39.
    Bliss, T. V. and Lomo, T., 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 232, 331-356.
    Bortolotto, Z. A. and Collingridge, G. L., 1993. Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CAl of the hippocampus. Neuropharmacology. 32, 1-9.
    Bronzino, J. D., Abu-Hasaballah, K., Austin-LaFrance, R. J. and Morgane, P. J., 1994. Maturation of long-term potentiation in the hippocampal dentate gyrus of the freely moving rat. Hippocampus. 4,439-446.
    Castillo, P. E., Janz, R., Sudhof, T. C, Tzounopoulos, T., Malenka, R. C. and Nicoll, R. A., 1997. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature. 388, 590-593.
    Castillo, P. E., Schoch, S., Schmitz, F., Sudhof, T. C. and Malenka, R. C, 2002. RIMlalpha is required for presynaptic long-term potentiation. Nature. 415, 327-330.
    Collingridge, G. L., Isaac, J. T. and Wang, Y. T., 2004. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci. 5, 952-962.
    Davies, S. N., Lester, R. A., Reymann, K. G. and Collingridge, G. L., 1989. Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation. Nature. 338, 500-503.
    Dingledine, R., Borges, K., Bowie, D. and Traynelis, S. F., 1999. The glutamate receptor ion channels. Pharmacol Rev. 51,7-61.
    Dudek, S. M. and Bear, M. F., 1993. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci. 13,2910-2918.
    Durand, G. M., Kovalchuk, Y. and Konnerth, A., 1996. Long-term potentiation and functional synapse induction in developing hippocampus. Nature. 381,71-75.
    English, J. D. and Sweatt, J. D., 1997. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem. 272, 19103-19106.
    Finkbeiner, S., Tavazoie, S. F., Maloratsky, A., Jacobs, K. M., Harris, K. M. and Greenberg, M. E., 1997. CREB: a major mediator of neuronal neurotrophin responses. Neuron. 19,1031-1047.
    Fox, C. J., Russell, K. I., Wang, Y. T. and Christie, B. R., 2006. Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivo. Hippocampus. 16, 907-915.
    Giese, K. P., Fedorov, N. B., Filipkowski, R. K. and Silva, A. J., 1998. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 279, 870-873.
    Gooney, M. and Lynch, M. A., 2001. Long-term potentiation in the dentate gyrus of the rat hippocampus is accompanied by brain-derived neurotrophic factor-induced activation of TrkB. J Neurochem. 77,1198-1207.
    Gray, R. and Johnston, D., 1987. Noradrenaline and beta-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature. 327,620-622.
    Greengard, P., Valtorta, F., Czernik, A. J. and Benfenati, F., 1993. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 259, 780-785.
    Grover, L. M. and Teyler, T. J., 1990. Two components of long-term potentiation induced by different patterns of afferent activation. Nature. 347,477-479.
    Guthrie, P. B., Segal, M. and Kater, S. B., 1991. Independent regulation of calcium revealed by imaging dendritic spines. Nature. 354, 76-80.
    Guzowski, J. F., Lyford, G. L., Stevenson, G. D., Houston, F. P., McGaugh, J. L., Worley, P. F. and Barnes, C. A., 2000. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci. 20, 3993-4001.
    Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C. and Malinow, R., 2000. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science. 287, 2262-2267.
    
    Hebb, 1949. The Organization of Behavior: A Neuropsychological Theory. New York: Wiley. Higashima, M. and Yamamoto, C, 1985. Two components of long-term potentiation in mossy fiber-induced excitation in hippocampus. Exp Neurol. 90,529-539.
    Hinoi, E., Balcar, V. J., Kuramoto, N., Nakamichi, N. and Yoneda, Y., 2002. Nuclear transcription factors in the hippocampus. Prog Neurobiol. 68,145-165.
    Huang, Y. Y. and Kandel, E. R., 1994. Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Mem. 1, 74-82.
    Impey, S., Obrietan, K., Wong, S. T., Poser, S., Yano, S., Wayman, G, Deloulme, J. C, Chan, G. and Storm, D. R., 1998. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron. 21, 869-883.
    Isaac, J. T., Nicoll, R. A. and Malenka, R. C, 1995. Evidence for silent synapses: implications for the expression of LTP. Neuron. 15, 427-434.
    Kandal, E. R., Schwartz, J. H., Jessell, T. M. and Hill, M., 1991. Principles of Neural Science. Third Edition. New York: Elsevier. Kauer, J. A., Malenka, R. C. and Nicoll, R. A., 1988. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron. 1,911-917.
    Kelly, A. and Lynch, M. A., 2000. Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor, wortmannin. Neuropharmacology. 39, 643-651.
    Kim, M. J., Dunah, A. W., Wang, Y. T. and Sheng, M., 2005. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron. 46, 745-760.
    Kohr, G, Jensen, V., Koester, H. J., Mihaljevic, A. L, Utvik, J. K., Kvello, A., Ottersen, O. P., Seeburg, P. H., Sprengel, R. and Hvalby, O., 2003. Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. J Neurosci. 23,10791-10799.
    Komatsu, Y, Nakajima, S. and Toyama, K., 1991. Induction of long-term potentiation without participation of N-methyl-D-aspartate receptors in kitten visual cortex. J Neurophysiol. 65, 20-32.
    Kullmann, D. M., 1994. Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron. 12,1111-1120.
    Kutsuwada, T., Sakimura, K., Manabe, T., Takayama, C, Katakura, N., Kushiya, E., Natsume, R., Watanabe, M., Inoue, Y, Yagi, T., Aizawa, S., Arakawa, M., Takahashi, T., Nakamura, Y, Mori, H. and Mishina, M., 1996. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron. 16,333-344.
    Leonard, A. S., Lim, I. A., Hemsworth, D. E., Horne, M. C. and Hell, J. W., 1999. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 96, 3239-3244.
    
    Liao, D., Hessler, N. A. and Malinow, R., 1995. Activation of postsynaptically silent synapses during pairing-induced LTP in CAl region of hippocampal slice. Nature. 375,400-404.
    Liao, D., Zhang, X., O'Brien, R., Ehlers, M. D. and Huganir, R. L., 1999. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci. 2, 37-43.
    Lin, C. H., Yeh, S. H., Lin, C. H., Lu, K. T., Leu, T. H., Chang, W. C. and Gean, P. W., 2001. A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron. 31, 841-851.
    Liu, L., Wong, T. P., Pozza, M. F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y. P. and Wang, Y. T., 2004. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 304, 1021-1024.
    Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. and Schottler, E, 1983. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature. 305,719-721.
    Lynch, M. A., 2004. Long-term potentiation and memory. Physiol Rev. 84, 87-136.
    Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A. and Waxham, M. N., 1989. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature. 340, 554-557.
    Malenka, R. C, Kauer, J. A., Zucker, R. S. and Nicoll, R. A., 1988. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science. 242, 81-84.
    Malinow, R., Schulman, H. and Tsien, R. W., 1989. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science. 245, 862-866.
    Martin, K. C, Michael, D., Rose, J. C, Barad, M., Casadio, A., Zhu, H. and Kandel, E. R., 1997. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron. 18, 899-912.
    Matsuzaki, M., Ellis-Davies, G. C., Nemoto, T., Miyashita, Y, Iino, M. and Kasai, H., 2001. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CAl pyramidal neurons. Nat Neurosci. 4, 1086-1092.
    Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. and Kasai, H., 2004. Structural basis of long-term potentiation in single dendritic spines. Nature. 429,761-766.
    McGahon, B., Maguire, C, Kelly, A. and Lynch, M. A., 1999. Activation of p42 mitogen-activated protein kinase by arachidonic acid and trans-1-amino-cyclopentyl-1,3- dicarboxylate impacts on long-term potentiation in the dentate gyrus in the rat: analysis of age-related changes. Neuroscience. 90, 1167-1175.
    Morris, R., 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 11,47-60.
    Mulkey, R. M. and Malenka, R. C, 1992. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron. 9,967-975.
    Mullany, P. M. and Lynch, M. A., 1998. Evidence for a role for synaptophysin in expression of long-term potentiation in rat dentate gyrus. Neuroreport. 9, 2489-2494.
    Murphy, D. D. and Segal, M., 1997. Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci U S A. 94, 1482-1487.
    Nguyen, P. V. and Kandel, E. R., 1996. A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J Neurosci. 16, 3189-3198.
    O'Dell, T. J., Kandel, E. R. and Grant, S. G, 1991. Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature. 353, 558-560.
    Platenik, J., Kuramoto, N. and Yoneda, Y., 2000. Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci. 67, 335-364.
    Puzzo, D., Vitolo, O., Trinchese, F., Jacob, J. P., Palmeri, A. and Arancio, O., 2005. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci. 25,6887-6897.
    Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C, Kushiya, E., Yagi, T., Aizawa, S., Inoue, Y, Sugiyama, H. and et al., 1995. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature. 373, 151-155.
    Sanna, P. P., Cammalleri, M., Berton, F., Simpson, C, Lutjens, R., Bloom, F. E. and Francesconi, W., 2002. Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci. 22, 3359-3365.
    Schoch, S., Castillo, P. E., Jo, T., Mukherjee, K., Geppert, M., Wang, Y, Schmitz, F., Malenka, R. C. and Sudhof, T. C, 2002. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature. 415,321-326.
    Schuman, E. M. and Madison, D. V., 1991. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science. 254,1503-1506.
    Thomson, S., Mahadevan, L. C. and Clayton, A. L., 1999. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin Cell Dev Biol. 10, 205-214.
    Tigaret, C. M., Thalhammer, A., Rast, G. F., Specht, C. G, Auberson, Y. P., Stewart, M. G. and Schoepfer, R., 2006. Subunit dependencies of N-methyl-D-aspartate (NMDA) receptor-induced alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. Mol Pharmacol. 69,1251-1259.
    Yin, Y., Edelman, G. M. and Vanderklish, P. W., 2002. The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc Natl Acad Sci U S A. 99,2368-2373.
    Yokoi, M., Kobayashi, K., Manabe, T., Takahashi, T., Sakaguchi, I., Katsuura, G., Shigemoto, R., Ohishi, H., Nomura, S., Nakamura, K., Nakao, K., Katsuki, M. and Nakanishi, S., 1996. Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science. 273,645-647.
    Yu, A. C., Lee, Y. L., Fu, W. Y. and Eng, L. F., 1995. Gene expression in astrocytes during and after ischemia. Prog Brain Res. 105,245-253.
    Zhou, Q., Homma, K. J. and Poo, M. M., 2004. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron. 44, 749-757.
    阮迪云等,2008.神经生物学.合肥:中国科学技术大学出版社.
    程明and朱熊兆,2005.学习记忆的行为学研究方法.中国行为医学科学.14,65-66.
    Angelides, K. J., Elmer, L. W., Loftus, D. and Elson, E., 1988. Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J Cell Biol. 106,1911-1925.
    Armstrong, C. M., 1981. Sodium channels and gating currents. Physiol Rev. 61, 644-683.
    Baker, M. D. and Wood, J. N., 2001. Involvement of Na+ channels in pain pathways. Trends Pharmacol Sci. 22, 27-31.
    Catterall, W. A., 1995. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 64,493-531.
    Catterall, W. A., 2000. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 26,13-25.
    Catterall, W. A., Goldin, A. L. and Waxman, S. G, 2005. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 57, 397-409.
    Catterall, W. A., Seagar, M. J. and Takahashi, M., 1988. Molecular properties of dihydropyridine-sensitive calcium channels in skeletal muscle. J Biol Chem. 263, 3535-3538.
    Denac, H., Mevissen, M. and Scholtysik, G, 2000. Structure, function and pharmacology of voltage-gated sodium channels. Naunyn Schmiedebergs Arch Pharmacol. 362, 453-479.
    Eaholtz, G, Scheuer, T. and Catterall, W. A., 1994. Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Neuron. 12, 1041-1048.
    Fache, M. P., Moussif, A., Fernandes, F., Giraud, P., Garrido, J. J. and Dargent, B., 2004. Endocytotic elimination and domain-selective tethering constitute a potential mechanism of protein segregation at the axonal initial segment. J Cell Biol. 166, 571-578.
    Garrido, J. J., Fernandes, F., Moussif, A., Fache, M. P., Giraud, P. and Dargent, B., 2003a. Dynamic compartmentalization of the voltage-gated sodium channels in axons. Biol Cell. 95, 437-445.
    Garrido, J. J., Giraud, P., Carlier, E., Fernandes, F., Moussif, A., Fache, M. P., Debanne, D. and Dargent, B., 2003b. A targeting motif involved in sodium channel clustering at the axonal initial segment. Science. 300, 2091-2094.
    Goldin, A. L., Barchi, R. L., Caldwell, J. H., Hofmann, F., Howe, J. R., Hunter, J. C, Kallen, R. G, Mandel, G., Meisler, M. H., Netter, Y. B., Noda, M., Tamkun, M. M., Waxman, S. G, Wood, J. N. and Catterall, W. A., 2000. Nomenclature of voltage-gated sodium channels. Neuron. 28, 365-368.
    Heinemann, S. H., Terlau, H., Stuhmer, W., Imoto, K. and Numa, S., 1992. Calcium channel characteristics conferred on the sodium channel by sbgle mutations. Nature. 356,441-443.
    Hodgkin, A. L. and Huxley, A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117, 500-544.
    Isom, L. L., De Jongh, K. S., Patton, D. E., Reber, B. F., Offord, J., Charbonneau, H., Walsh, K., Goldin, A. L. and Catterall, W. A., 1992. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science. 256,839-842.
    Johnson, C. P., Fujimoto, I., Perrin-Tricaud, C, Rutishauser, U. and Leckband, D., 2004a. Mechanism of homophilic adhesion by the neural cell adhesion molecule: use of multiple domains and flexibility. Proc Natl Acad Sci U S A. 101, 6963-6968.
    Johnson, D., Montpetit, M. L., Stocker, P. J. and Bennett, E. S., 2004b. The sialic acid component of the beta1 subunit modulates voltage-gated sodium channel function. J Biol Chem. 279, 44303-44310.
    Kellenberger, S., Scheuer, T. and Catterall, W. A., 1996. Movement of the Na+ channel inactivation gate during inactivation. J Biol Chem. 271, 30971-30979.
    Kobayashi, H., Shiraishi, S., Yanagita, T., Yokoo, H., Yamamoto, R., Minami, S., Saitoh, T. and Wada, A., 2002. Regulation of voltage-dependent sodium channel expression in adrenal chromaffin cells: involvement of multiple calcium signaling pathways. Ann N Y Acad Sci. 971,127-134.
    Lai, H. C. and Jan, L. Y., 2006. The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci. 7, 548-562.
    Lemaillet, G, Walker, B. and Lambert, S., 2003. Identification of a conserved ankyrin-binding motif in the family of sodium channel alpha subunits. J Biol Chem. 278,27333-27339.
    Liu, C. J., Dib-Hajj, S. D., Black, J. A., Greenwood, J., Lian, Z. and Waxman, S. G, 2001. Direct interaction with contactin targets voltage-gated sodium channel Na(v)1.9/NaN to the cell membrane. J Biol Chem. 276,46553-46561.
    Malhotra, J. D., Kazen-Gillespie, K., Hortsch, M. and Isom, L. L., 2000. Sodium channel beta subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell-cell contact. J Biol Chem. 275,11383-11388.
    McEwen, D. P. and Isom, L. L., 2004. Heterophilic interactions of sodium channel betal subunits with axonal and glial cell adhesion molecules. J Biol Chem. 279, 52744-52752.
    Messner, D. J. and Catterall, W. A., 1986. The sodium channel from rat brain. Role of the beta 1 and beta 2 subunits in saxitoxin binding. J Biol Chem. 261,211-215.
    Morgan, K., Stevens, E. B., Shah, B., Cox, P. J., Dixon, A. K., Lee, K., Pinnock, R. D., Hughes, J., Richardson, P. J., Mizuguchi, K. and Jackson, A. P., 2000. beta 3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci U S A. 97, 2308-2313.
    Noda, M., Ikeda, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M. and Numa, S., 1986. Expression of functional sodium channels from cloned cDNA. Nature. 322, 826-828.
    Noda, M, Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N. and et al., 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 312,121-127.
    Noda, M., Suzuki, H., Numa, S. and Stuhmer, W., 1989. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett. 259, 213-216.
    Novakovic, S. D., Eglen, R. M. and Hunter, J. C, 2001. Regulation of Na+ channel distribution in the nervous system. Trends Neurosci. 24, 473-478.
    Okuse, K., Malik-Hall, M., Baker, M. D., Poon, W. Y, Kong, H., Chao, M. V. and Wood, J. N., 2002. Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature. 417, 653-656.
    Ratcliffe, C. F., Westenbroek, R. E., Curtis, R. and Catterall, W. A., 2001. Sodium channel beta1 and beta3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain. J Cell Biol. 154,427-434.
    Roberts, R. H. and Barchi, R. L., 1987. The voltage-sensitive sodium channel from rabbit skeletal muscle. Chemical characterization of subunits. J Biol Chem. 262,2298-2303.
    Satin, J., Kyle, J. W., Chen, M., Rogart, R. B. and Fozzard, H. A., 1992. The cloned cardiac Na channel alpha-subunit expressed in Xenopus oocytes show gating and blocking properties of native channels. J Membr Biol. 130,11-22.
    Schlief, T., Schonherr, R., Imoto, K. and Heinemann, S. H., 1996. Pore properties of rat brain II sodium channels mutated in the selectivity filter domain. Eur Biophys J. 25, 75-91.
    Schmidt, J. W. and Catterall, W. A., 1986. Biosynthesis and processing of the alpha subunit of the voltage-sensitive sodium channel in rat brain neurons. Cell. 46,437-444.
    Shah, B. S., Rush, A. M., Liu, S., Tyrrell, L., Black, J. A., Dib-Hajj, S. D. and Waxman, S. G, 2004. Contactin associates with sodium channel Nav1.3 in native tissues and increases channel density at the cell surface. J Neurosci. 24, 7387-7399.
    Stuhmer, W., Conti, F., Suzuki, H., Wang, X. D., Noda, M., Yahagi, N., Kubo, H. and Numa, S., 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature. 339, 597-603.
    Vassilev, P., Scheuer, T. and Catterall, W. A., 1989. Inhibition of inactivation of single sodium channels by a site-directed antibody. Proc Natl Acad Sci U S A. 86, 8147-8151.
    Wada, A., Yanagita, T., Yokoo, H. and Kobayashi, H., 2004. Regulation of cell surface expression of voltage-dependent Nav1.7 sodium channels: mRNA stability and posttranscriptional control in adrenal chromaffin cells. Front Biosci. 9,1954-1966.
    Yang, N. and Horn, R., 1995. Evidence for voltage-dependent S4 movement in sodium channels. Neuron. 15,213-218.
    Yu, F. H., Westenbroek, R. E., Silos-Santiago, I., McCormick, K. A., Lawson, D., Ge, P., Ferriera, H., Lilly, J., DiStefano, P. S., Catterall, W. A., Scheuer, T. and Curtis, R., 2003. Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci. 23, 7577-7585.
    Zhou, D., Lambert, S., Malen, P. L., Carpenter, S., Boland, L. M. and Bennett, V., 1998. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol. 143,1295-1304.
    Branchi, I., Alleva, E. and Costa, L. G, 2002. Effects of perinatal exposure to a polybrominated diphenyl ether (PBDE 99) on mouse neurobehavioural development. Neurotoxicology. 23, 375-384.
    
    Branchi, I., Capone, F., Alleva, E. and Costa, L. G, 2003. Polybrominated diphenyl ethers: neurobehavioral effects following developmental exposure. Neurotoxicology. 24, 449-462.
    
    BSEF, 2000. An introduction to Brominated Flame Retardants. Bromine Science and Environmental Forum. Web Site, http://www.bsef.com.
    
    Dingledine, R., Borges, K., Bowie, D. and Traynelis, S. F., 1999. The glutamate receptor ion channels. Pharmacol Rev. 51,7-61.
    
    Dufault, C, Poles, G. and Driscoll, L. L., 2005. Brief postnatal PBDE exposure alters learning and the cholinergic modulation of attention in rats. Toxicol Sci. 88, 172-180.
    
    EEC, 2003. Directive 2003/11/EC of the European Parliament and of the Council of 6 February 2003 amending for the 24th time Council directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (pentabromodiphenyl ether and octabromodiphenyl ether). Official Journal of the European Union. L 42.
    
    Eriksson, P., Jakobsson, E. and Fredriksson, A., 2001. Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ Health Perspect. 109, 903-908.
    
    Eslami, B., Koizumi, A., Ohta, S., Inoue, K., Aozasa, O., Harada, K., Yoshinaga, T., Date, C, Fujii, S., Fujimine, Y., Hachiya, N., Hirosawa, I., Koda, S., Kusaka, Y., Murata, K., Nakatsuka, H., Omae, K., Saito, N., Shimbo, S., Takenaka, K., Takeshita, T., Todoriki, H., Wada, Y, Watanabe, T. and Ikeda, M., 2006. Large-scale evaluation of the current level of polybrominated diphenyl ethers (PBDEs) in breast milk from 13 regions of Japan. Chemosphere. 63, 554-561.
    
    Fangstrom, B., Hovander, L., Bignert, A., Athanassiadis, I., Linderholm, L., Grandjean, P., Weihe, P. and Bergman, A., 2005. Concentrations of polybrominated diphenyl ethers, polychlonnated biphenyls, and polychlorobiphenylols in serum from pregnant Faroese women and their children 7 years later. Environ Sci Technol. 39, 9457-9463.
    
    Fischer, D., Hooper, K., Athanasiadou, M., Athanassiadis, I. and Bergman, A., 2006. Children show highest levels of polybrominated diphenyl ethers in a California family of four: a case study. Environ Health Perspect. 114, 1581-1584.
    
    Fowles, J. R., Fairbrother, A., Baecher-Steppan, L. and Kerkvliet, N. I., 1994. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice. Toxicology. 86,49-61.
    
    Gomara, B., Herrero, L., Ramos, J. J., Mateo, J. R., Fernandez, M. A., Garcia, J. F. and Gonzalez, M. J., 2007. Distribution of polybrominated diphenyl ethers in human umbilical cord serum, paternal serum, maternal serum, placentas, and breast milk from Madrid population, Spain. Environ Sci Technol. 41,6961-6968. Hallgren, S., Sinjari, T., Hakansson, H. and Darnerud, P. O., 2001. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Arch Toxicol. 75,200-208.
    Harju, M., Hamers, T., Kamstra, J. H., Sonneveld, E., Boon, J. P., Tysklind, M. and Andersson, P. L., 2007. Quantitative structure-activity relationship modeling on in vitro endocrine effects and metabolic stability involving 26 selected brominated flame retardants. Environ Toxicol Chem. 26, 816-826.
    Hu, X. Z., Xu, Y., Hu, D. C., Hui, Y. and Yang, F. X., 2007. Apoptosis induction on human hepatoma cells Hep G2 of decabrominated diphenyl ether (PBDE-209). Toxicol Lett. 171, 19-28.
    Hultzinger, O., Sundstrom, G. and Safe, S., 1976. Environmental chemistry of flame retardants. Part I. Introduction and principles. Chemosphere. 5,3-10.
    Hultzinger, O. and Thoma, H., 1987. Polybrominated dibenzo-p-dioxins and dibenzofurans: the flame retardant issue Chemosphere. 16,1877-1880.
    Inoue, K., Harada, K., Takenaka, K., Uehara, S., Kono, M., Shimizu, T., Takasuga, T., Senthilkumar, K., Yamashita, F. and Koizumi, A., 2006. Levels and concentration ratios of polychlorinated biphenyls and polybrominated diphenyl ethers in serum and breast milk in Japanese mothers. Environ Health Perspect. 114, 1179-1185.
    Kodavanti, P. R. and Ward, T. R., 2005. Differential effects of commercial polybrominated diphenyl ether and polychlorinated biphenyl mixtures on intracellular signaling in rat brain in vitro. Toxicol Sci. 85, 952-962.
    Madia, F., Giordano, G., Fattori, V., Vitalone, A., Branchi, I., Capone, F. and Costa, L. G., 2004. Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicol Lett. 154,11-21.
    Morck, A., Hakk, H., Orn, U. and Klasson Wehler, E., 2003. Decabromodiphenyl ether in the rat: absorption, distribution, metabolism, and excretion. Drug Metab Dispos. 31,900-907.
    Morris, R., 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 11,47-60.
    Noren, K. and Meironyte, D., 2000. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years. Chemosphere. 40, 1111-1123.
    Norstrom, R. J., Simon, M., Moisey, J., Wakeford, B. and Weseloh, D. V., 2002. Geographical distribution (2000) and temporal trends (1981-2000) of brominated diphenyl ethers in Great Lakes hewing gull eggs. Environ Sci Technol. 36,4783-4789.
    Nylund, K., Asplund, L., Janssen, B., Jonsson, P., Litzen, K. and Sellstrom, U., 1992. Analysis of some polyhalogenated organic pollutants in sediment and sewage sludge Chemosphere. 24, 1721-1730.
    Reistad, T., Fonnum, F. and Mariussen, E., 2006. Neurotoxicity of the pentabrominated diphenyl ether mixture, DE-71, and hexabromocyclododecane (HBCD) in rat cerebellar granule cells in vitro. Arch Toxicol. 80, 785-796.
    Sandholm, A., Emanuelsson, B. M. and Wehler, E. K., 2003. Bioavailability and half-life of decabromodiphenyl ether (BDE-209) in rat. Xenobiotica. 33,1149-1158.
    Sellstroma, U., Janssona, B., Kierkegaarda, A., de Wita, C, Odsjob, T. and M., O., 1993. Polybrominated diphenyl ethers (PBDE) in biological samples from the Swedish environment Chemosphere. 26, 1703-1718.
    Shao, J., White, C. C, Dabrowski, M. J., Kavanagh, T. J., Eckert, M. L. and Gallagher, E. P., 2008. The Role of Mitochondrial and Oxidative Injury in BDE 47 Toxicity to Human Fetal Liver Hematopoietic Stem Cells. Toxicol Sci. 101, 81-90.
    Sjodin, A., Hagmar, L., Klasson-Wehler, E., Kronholm-Diab, K., Jakobsson, E. and Bergman, A.,1999. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers. Environ Health Perspect. 107,643-648.
    Tseng, L. H., Li, M. H., Tsai, S. S., Lee, C. W., Pan, M. H., Yao, W. J. and Hsu, P. C, 2008. Developmental exposure to decabromodiphenyl ether (PBDE 209): Effects on thyroid hormone and hepatic enzyme activity in male mouse offspring. Chemosphere. 70,640-647.
    Upchurch, M. and Wehner, J. M., 1988. Differences between inbred strains of mice in Morris water maze performance. Behav Genet. 18, 55-68.
    Van den Steen, E., Covaci, A., Jaspers, V. L., Dauwe, T, Voorspoels, S., Eens, M. and Pinxten, R., 2007. Accumulation, tissue-specific distribution and debromination of decabromodiphenyl ether (BDE 209) in European starlings (Sturnus vulgaris). Environ Pollut. 148,648-653.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2002. Neonatal exposure to the brominated flame retardant 2,2',4,4',5-pentabromodiphenyl ether causes altered susceptibility in the cholinergic transmitter system in the adult mouse. Toxicol Sci. 67, 104-107.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2003a. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol. 192, 95-106.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2004. Investigations of strain and/or gender differences in developmental neurotoxic effects of polybrominated diphenyl ethers in mice. Toxicol Sci. 81,344-353.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2007. Changes in spontaneous behaviour and altered response to nicotine in the adult rat, after neonatal exposure to the brominated flame retardant, decabrominated diphenyl ether (PBDE 209). Neurotoxicology. 28,136-142.
    Viberg, H., Fredriksson, A., Jakobsson, E., Orn, U. and Eriksson, P., 2003b. Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicol Sci. 76, 112-120.
    Viberg, H., Johansson, N., Fredriksson, A., Eriksson, J., Marsh, G. and Eriksson, P., 2006. Neonatal exposure to higher brominated diphenyl ethers, hepta-, octa-, or nonabromodiphenyl ether, impairs spontaneous behavior and learning and memory functions of adult mice. Toxicol Sci. 92,211 -218.
    Viberg, H., Mundy, W. and Eriksson, P., 2008. Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. Neurotoxicology. 29,152-159.
    Watanabe, I., Kashimoto, T. and Tatsukawa, R., 1983. Identification of the flame retardant tetrabromobisphenol-A in the river sediment and the mussel collected in Osaka. Bull Environ Contam Toxicol. 31,48-52.
    WHO, 1994. Brominated Diphenyl Ethers. IPCS Environ Health Criteria 162 Geneva, World Health Organization.
    Zegers, B. N., Lewis, W. E., Booij, K., Smittenberg, R. H., Boer, W., de Boer, J. and Boon, J. P., 2003. Levels of polybrominated diphenyl ether flame retardants in sediment cores from Western Europe. Environ Sci Technol. 37, 3803-3807.
    Zhou, T., Taylor, M. ML, DeVito, M. J. and Crofton, K. M., 2002. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption. Toxicol Sci. 66,105-116.
    Abe, K., Nakata, A., Mizutani, A. and Saito, H., 1994. Facilitatory but nonessential role of the muscarinic cholinergic system in the generation of long-term potentiation of population spikes in the dentate gyrus in vivo. Neuropharmacology. 33, 847-852.
    Bayer, S. A. and Altman, J., 1974. Hippocampal development in the rat: cytogenesis and morphogenesis examined with autoradiography and low-level X-irradiation. J Comp Neurol. 158,55-79.
    Bekenstein, J. W. and Lothman, E. W., 1991. A comparison of the ontogeny of excitatory and inhibitory neurotransmission in the CA1 region and dentate gyrus of the rat hippocampal formation. Brain Res Dev Brain Res. 63, 237-243.
    Bliss, T. V. and Collingridge, G. L., 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 361, 31-39.
    Bliss, T. V. and Lomo, T., 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 232, 331-356.
    Blitzer, R. D., Gil, O. and Landau, E. M., 1990. Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus. Neurosci Lett. 119, 207-210.
    Branchi, I., Alleva, E. and Costa, L. G, 2002. Effects of perinatal exposure to a polybrominated diphenyl ether (PBDE 99) on mouse neurobehavioural development. Neurotoxicology. 23, 375-384.
    Burgard, E. C, Decker, G. and Sarvey, J. M., 1989. NMDA receptor antagonists block norepinephrine-induced long-lasting potentiation and long-term potentiation in rat dentate gyrus. Brain Res. 482, 351-355.
    Creager, R., Dunwiddie, T. and Lynch, G, 1980. Paired-pulse and fr equency facilitation in theCA1 region of the in vitro rat hippocampus. J Physiol. 299,409-424.
    Darnerud, P. O. and Risberg, S., 2006. Tissue localisation of tetra- and pentabromodiphenyl ether congeners (BDE-47, -85 and -99) in perinatal and adult C57BL mice. Chemosphere. 62, 485-493.
    Dingemans, M. M., Ramakers, G. M., Gardoni, F., van Kleef, R. G., Bergman, A., Di Luca, M, van den Berg, M., Westerink, R. H. and Vijverberg, H. P., 2007. Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus. Environ Health Perspect. 115, 865-870.
    Dobbing, J. and Sands, J., 1979. Comparative aspects of the brain growth spurt. Early Hum Dev. 3, 79-83.
    
    Doyere, V. and Laroche, S., 1992. Linear relationship between the maintenance of hippocampal long-term potentiation and retention of an associative memory. Hippocampus. 2,39-48.
    Driscoll, L. L., Gibson, A. M. and Hieb, A., 2009. Chronic postnatal DE-71 exposure: Effects on learning, attention and thyroxine levels. Neurotoxicol Teratol. 31, 76-84.
    Dufault, C, Poles, G. and Driscoll, L. L., 2005. Brief postnatal PBDE exposure alters learning and the cholinergic modulation of attention in rats. Toxicol Sci. 88,172-180.
    Eriksson, P., Jakobsson, E. and Fredriksson, A., 2001. Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ Health Perspect. 109,903-908.
    Eriksson, P., Viberg, H., Jakobsson, E., Orn, U. and Fredriksson, A., 2002. A brominated flame retardant, 2,2',4,4',5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of neonatal brain development. Toxicol Sci. 67, 98-103.
    Fischer, C, Fredriksson, A. and Eriksson, P., 2008. Coexposure of Neonatal Mice to a Flame Retardant PBDE 99 (2,2',4,4',5-Pentabromodiphenyl Ether) and Methyl Mercury Enhances Developmental Neurotoxic Defects. Toxicol Sci. 101, 275-285.
    Foster, T. C. and McNaughton, B. L., 1991. Long-term enhancement of CA1 synaptic transmission is due to increased quantal size, not quantal content. Hippocampus. 1,79-91.
    Fowles, J. R., Fairbrother, A., Baecher-Steppan, L. and Kerkvliet, N. I., 1994. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice. Toxicology. 86,49-61.
    Galey, D., Destrade, C. and Jaffard, R., 1994. Relationships between septo-hippocampal cholinergic activation and the improvement of long-term retention produced by medial septal electrical stimulation in two inbred strains of mice. Behav Brain Res. 60,183-189.
    Hallgren, S., Sinjari, T., Hakansson, H. and Darnerud, P. O., 2001. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Arch Toxicol. 75, 200-208.
    Joy, R. M. and Albertson, T. E., 1993. NMDA receptors have a dominant role in population spike-paired pulse facilitation in the dentate gyrus of urethane-anesthetized rats. Brain Res. 604, 273-282.
    Klann, E., Chen, S. J. and Sweatt, J. D., 1991. Persistent protein kinase activation in the maintenance phase of long-term potentiation. J Biol Chem. 266, 24253-24256.
    Kodavanti, P. R. and Ward, T. R., 2005. Differential effects of commercial polybrominated diphenyl ether and polychlorinated biphenyl mixtures on intracellular signaling in rat brain in vitro. Toxicol Sci. 85, 952-962.
    
    Kodavanti, P. R., Ward, T. R., Ludewig, G, Robertson, L. W. and Birnbaum, L. S., 2005. Polybrominated diphenyl ether (PBDE) effects in rat neuronal cultures: 14C-PBDE accumulation, biological effects, and structure-activity relationships. Toxicol Sci. 88, 181-192.
    Kudryashov, I. E. and Kudryashova, I. V., 2001. Ontogeny of synaptic transmission in the rat hippocampus. Brain Res. 892,263-268.
    Lovinger, D. M., Wong, K. L., Murakami, K. and Routtenberg, A., 1987. Protein kinase C inhibitors eliminate hippocampal long-term potentiation. Brain Res. 436, 177-183.
    Loy, R. and Moore, R. Y., 1979. Ontogeny of the noradrenergic innervation of the rat hippocampal formation. Anat Embryol (Berl). 157, 243-253.
    Madia, F., Giordano, G., Fattori, V., Vitalone, A., Branchi, I., Capone, F. and Costa, L. G., 2004. Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicol Lett. 154, 11-21.
    Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A. and Waxham, M. N., 1989. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature. 340, 554-557.
    Malinow, R., Madison, D. V. and Tsien, R. W., 1988. Persistent protein kinase activity underlying long-term potentiation. Nature. 335, 820-824.
    Michelson, H. B. and Lothman, E. W., 1989. An in vivo electrophysiological study of the ontogeny of excitatory and inhibitory processes in the rat hippocampus. Brain Res Dev Brain Res. 47, 113-122.
    Moriguchi, S., Han, F., Nakagawasai, O., Tadano, T. and Fukunaga, K., 2006. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J Neurochem. 97, 22-29.
    Morris, R. G., Davis, S. and Butcher, S. P., 1990. Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond B Biol Sci. 329,187-204.
    Poncer, J. C., 2003. Hippocampal long term potentiation: silent synapses and beyond. J Physiol Paris. 97,415-422.
    Reistad, T., Fonnum, F. and Mariussen, E., 2006. Neurotoxicity of the pentabrominated diphenyl ether mixture, DE-71, and hexabromocyclododecane (HBCD) in rat cerebellar granule cells in vitro. Arch Toxicol. 80, 785-796.
    Reymann, K. G., Matthies, H. K., Schulzeck, K. and Matthies, H., 1989. N-methyl-D-aspartate receptor activation is required for the induction of both early and late phases of long-term potentiation in rat hippocampal slices. Neurosci Lett. 96,96-101.
    Schulz, P. E., Cook, E. P. and Johnston, D., 1994. Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci. 14,5325-5337.
    Seress, L. and Ribak, C. E., 1988. The development of GABAergic neurons in the rat hippocampal formation. An immunocytochemical study. Brain Res Dev Brain Res. 44,197-209.
    Silva, A. J., Stevens, C. F., Tonegawa, S. and Wang, Y., 1992. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science. 257,201-206.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2003a. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol. 192, 95-106.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2004. Investigations of strain and/or gender differences in developmental neurotoxic effects of polybrominated diphenyl ethers in mice. Toxicol Sci. 81,344-353.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2007. Changes in spontaneous behaviour and altered response to nicotine in the adult rat, after neonatal exposure to the brominated flame retardant, decabrominated diphenyl ether (PBDE 209). Neurotoxicology. 28, 136-142.
    Viberg, H., Fredriksson, A., Jakobsson, E., Orn, U. and Eriksson, P., 2003b. Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicol Sci. 76, 112-120.
    Viberg, H., Johansson, N., Fredriksson, A., Eriksson, J., Marsh, G. and Eriksson, P., 2006. Neonatal exposure to higher brominated diphenyl ethers, hepta-, octa-, or nonabromodiphenyl ether, impairs spontaneous behavior and learning and memory functions of adult mice. Toxicol Sci. 92,211-218.
    Viberg, H., Mundy, W. and Eriksson, P., 2008. Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. Neurotoxicology. 29,152-159.
    Williams, S. and Johnston, D., 1989. Long-term potentiation of hippocampal mossy fiber synapses is blocked by postsynaptic injection of calcium chelators. Neuron. 3, 583-588.
    Zhou, T., Taylor, M. M., DeVito, M. J. and Crofton, K. M., 2002. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption. Toxicol Sci. 66,105-116.
    Armstrong, C. M., 1981. Sodium channels and gating currents. Physiol Rev. 61, 644-683.
    
    Bi, G. Q. and Poo, M. M, 1998. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 18, 10464-10472.
    Bliss, T. V. and Collingridge, G. L., 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 361, 31-39.
    Catterall, W. A., 2000. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 26,13-25.
    Cieslak, D. and Lazou, A., 2007. Regulation of BAD protein by PKA, PKCdelta and phosphatases in adult rat cardiac myocytes subjected to oxidative stress. Mol Cells. 24, 224-231.
    Cooper, E. C. and Jan, L. Y., 1999. Ion channel genes and human neurological disease: recent progress, prospects, and challenges. Proc Natl Acad Sci U S A. 96, 4759-4766.
    Fischer, C, Fredriksson, A. and Eriksson, P., 2008. Coexposure of Neonatal Mice to a Flame Retardant PBDE 99 (2,2',4,4',5-Pentabromodiphenyl Ether) and Methyl Mercury Enhances Developmental Neurotoxic Defects. Toxicol Sci. 101, 275-285.
    Gershon, E., Weigl, L., Lotan, I., Schreibmayer, W. and Dascal, N., 1992. Protein kinase A reduces voltage-dependent Na+ current in Xenopus oocytes. J Neurosci. 12, 3743-3752.
    Goldin, A. L., Barchi, R. L., Caldwell, J. H., Hofmann, F., Howe, J. R., Hunter, J. C, Kallen, R. G., Mandel, G, Meisler, M. H., Netter, Y. B., Noda, M., Tamkun, M. M., Waxman, S. G, Wood, J. N. and Catterall, W. A., 2000. Nomenclature of voltage-gated sodium channels. Neuron. 28, 365-368.
    
    Hille, B., 1992. Ionic Channels of Excitable Membranes. 2nd ed Sunderland: Sinauer Press.
    Hodgkin, A. L. and Huxley, A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117, 500-544.
    Hu, X. Z., Xu, Y, Hu, D. C, Hui, Y. and Yang, F. X., 2007. Apoptosis induction on human hepatoma cells Hep G2 of decabrominated diphenyl ether (PBDE-209). Toxicol Lett. 171, 19-28.
    Kuiper, R. V., Bergman, A., Vos, J. G. and van den Berg, M., 2004. Some polybrominated diphenyl ether (PBDE) flame retardants with wide environmental distribution inhibit TCDD-induced EROD activity in primary cultured carp (Cyprinus carpio) hepatocytes. Aquat Toxicol. 68, 129-139.
    Li, M., West, J. W., Numann, R., Murphy, B. J., Scheuer, T. and Catterall, W. A., 1993. Convergent egulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. Science. 261,1439-1442.
    Madia, F., Giordano, G., Fattori, V., Vitalone, A., Branchi, I., Capone, F. and Costa, L. G., 2004. Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicol Lett. 154,11-21.
    Marban, E., Yamagishi, T. and Tomaselli, G. F., 1998. Structure and function of voltage-gated sodium channels. J Physiol. 508 (Pt 3), 647-657.
    Murase, K., Randic, M., Shirasaki, T., Nakagawa, T. and Akaike, N., 1990. Serotonin suppresses N-methyl-D-aspartate responses in acutely isolated spinal dorsal horn neurons of the rat. Brain Res. 525, 84-91.
    Ogata, N. and Ohishi, Y., 2002. Molecular diversity of structure and function of the voltage-gated Na+ channels. Jpn J Pharmacol. 88, 365-377.
    Perez, L. M., Milkiewicz, P., Ahmed-Choudhury, J., Elias, E., Ochoa, J. E., Sanchez Pozzi, E. J., Coleman, R. and Roma, M. G, 2006. Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+ -dependent, PKC-mediated mechanism: protective effect of PKA. Free Radic Biol Med. 40,2005-2017.
    Rola, R., Szulczyk, B., Szulczyk, P. and Witkowski, G, 2002. Expression and kinetic properties of Na(+) currents in rat cardiac dorsal root ganglion neurons. Brain Res. 947,67-77.
    Shao, J., White, C. C, Dabrowski, M. J., Kavanagh, T. J., Eckert, M. L. and Gallagher, E. P., 2008. The Role of Mitochondrial and Oxidative Injury in BDE 47 Toxicity to Human Fetal Liver Hematopoietic Stem Cells. Toxicol Sci. 101, 81-90.
    Stuhmer, W., Conti, F., Suzuki, H., Wang, X. D., Noda, M., Yahagi, N., Kubo, H. and Numa, S., 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature. 339,597-603.
    Thuresson, K., Bergman, A. and Jakobsson, K., 2005. Occupational exposure to commercial decabromodiphenyl ether in workers manufacturing or handling flame-retarded rubber. Environ Sci Technol. 39,1980-1986.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2003a. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol. 192, 95-106.
    Viberg, H., Fredriksson, A. and Eriksson, P., 2007. Changes in spontaneous behaviour and altered response to nicotine in the adult rat, after neonatal exposure to the brominated flame retardant, decabrominated diphenyl ether (PBDE 209). Neurotoxicology. 28, 136-142.
    Viberg, H., Fredriksson, A., Jakobsson, E., Orn, U. and Eriksson, P., 2003b. Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicol Sci. 76,112-120.
    
    Welker, E., Wedemeyer, W. J., Narayan, M. and Scheraga, H. A., 2001. Coupling of conformational folding and disulfide-bond reactions in oxidative folding of proteins. Biochemistry. 40, 9059-9064.
    
    Wong-Ekkabut, J., Xu, Z., Triampo, W., Tang, I. M., Tieleman, D. P. and Monticelli, L., 2007. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J. 93,4225-4236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700