用户名: 密码: 验证码:
RGD多肽表面修饰同种异体骨的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1.探讨应用紫外辐射与化学耦和的方法,将含ROD序列的多肽共价接枝到同种异体骨表面,以提高材料对细胞的粘附能力,2.采用正交试验方案,选择将含RGD序列的多肽共价结合于同种异体骨片上最佳的试验因素及水平的组合。
     方法:采用紫外辐射活化同种异体骨表面的羧基,EDC作为耦和剂,将人工合成的含RGD序列的八肽(谷氨酸-脯氨酸-精氨酸-甘氨酸-天冬氨酸-天冬酰胺-酪氨酸-精氨酸,Glu-Pro-Arg-Gly-Asp-Asn-Tyr-Arg,EPRGDNYR)共价接枝在骨片表面。以空白骨片为对照,用环境扫描电子显微镜观察骨片表面形貌变化,通过X线光电子能谱分析修饰表面的元素含量变化检测RGD多肽接枝情况。采取正交试验拟定RGD浓度为0.1mg/ml、0.5mg/ml和1mg/ml,紫外辐射时间为30、60和90分钟,EDC浓度为1%、2%和3%3个水平,进行正交试验。以氮元素含量为考核指标,对9次试验结果进行直观分析,确定试验因素对结果影响的主次关系以及每个因素的最佳水平,找出最佳组合。
     结果:经环境扫描电子显微镜观察发现固定RGD多肽后的骨片表面粗糙程度较空白骨片均有不同程度降低,骨盐支架结构稀疏,孔隙内被大量基质成分所充填,孔隙密度减小。接枝多肽后的骨片表面形貌均有所改变。X线光电子能谱分析仪(XPS)检测表明接枝多肽后的骨片其氮原子含量均较空白骨片有不同程度地增加,骨片上的酰胺键增强,证明多肽成功地固定于同种异体骨片表面。正交实验结果为:A因素中1、2、3水平和分别为12、16.7、10.3,极差为6.4,水平2较优;B因素中1、2、3水平和分别为12.5、14.8、11.7,极差为3.1,水平2较优:C因素中1、2、3水平和分别为11.7、10.6、16.7,极差为6.1,水平3较优。由此得出RGD浓度在三者中影响最重要,EDC浓度其次,紫外辐射时间再次之,最佳组合为A_2B_2C_3。
     结论:经紫外辐射活化羧基,EDC耦合接枝RGD的方法,可成功将RGD多肽共价结合于同种异体骨片表面。由正交分析可知影响本实验因素的主次关系依次为RGD浓度,EDC浓度,紫外辐射时间。最佳试验方案为RGD浓度为0.5mg/ml,紫外辐射60分钟,EDC浓度为3%。
Objective: 1. To investigate the method with application ofultraviolet radiation and the chemical coupling to graftpolypeptide containing ROD series on allograft bone throughcovalent bond in order to enhance the adhesion ability of thematerial. 2. To choose the best combination of experimentalfactor and level to affect the graft the polypeptide containingROD series on allograft bone fragment by orthogonal experimentdesign.
     Methods: The carboxyl group on the surface of allograft bonewas activated by ultraviolet radiation. Using EDC as thecoupling agent, the synthetic RGD containing octapeptide(Glu-Pro-irg-Gly-isp-Asn-Tyr-Arg, EPRGDNYR) was bonded to thesurface of allograft bone through covalent bond. Blank bonefragment was used as control, morphological change on theallograft bone surface was observed by the environmentalscanning electronic microscope. The grafting of RGDpolypeptide was inspected by the change of element content onthe surface analyzed by X-ray photoelectronspectroscopy(XPS). By orthogonal tests, the concentration ofRGD was subjected to be 0.1mg/ml, 0.5mg/ml and 1.0mg/ml, theduration for ultraviolet radiation, 30, 60 and 90 minutes, andthe concentration of EDC, 1%, 2%and 3%respectively, and theorthogonal experiment was conducted using above factors. Theresults of 9 experiments were analyzed, using the content of nitrogen as the assessment indicator so as to determine theeffect of experimental factors to the results and the optimumlevels of each factorsto find out the best combination of thesefactors.
     Results: By observing under the environmental scanningelectronic microscope, we found out that the surface asperityof allograft bone fragments bonded with RGD polypeptide waslower than the blank ones. The frame structure of bone saltwas also sparse, with the holes filled with numerous groundsubstances. Hole separation density was decreased. Changeswere seen on the morphology of surface of polypeptide bondedbone fragments. Examined by XPS, the content of nitrogen atomsin polypeptide bonded bone fragments was higher than the blankcounterparts in various degrees. The amido bond in the bonefragment was strengthened, showing that polypeptide wassuccessfully bonded to the surface of allograft bone. Theresults of orthogonal tests are: the sum of level 1,2 and 3of factor A are 12,16.7 and 10.3 respectively, with level 2wasbetter. The sum of level 1,2 and 3 of factor B are 12.5,14.8and 11.7 respectively, with level 2 was better. The sum of level1,2 and 3 of factor C are 11.7,10.6 and 16,7 respectively, withlevel 3 was better. From the results, it can be seen that theconcentration of RGD is the most important among the threefactors, seconded by concentration of EDC, with the durationof ultraviolet radiation being the least important. The bestcombination is then A_2B_2C_3.
     Conclusion: By activating the carboxyl group with ultravioletradiation, and coupling EDC and RGD, we successfully adherethe RGD polypeptide onto the surface of allograft bone bycovalent bond. From the orthogonal analyses, it can be seen that the factors affecting this experiment are, ranking fromthe most important one, RGD concentration, EDC concentration,and ultraviolet radiation time. The best experiment solutionwould be: RGD concentration, 0.5mg/ml, EDC concentration, 3%and ultraviolet radiation time, 60 minutes.
引文
[1] Nakahara H, Coldberg VM, Caplan AI, et al. Culture expanded periosteal-derived cells exigbit ostechondeogenic potential in porous calcium phosphate ceramics in vivo[J].Clin Orthop, 1992,276:291-298.
    
    [2] Vacanti CA, Vacanti JP. Bone and cartilage reconstruction with tissue engineering approaches[J]. Otolaryngol Clin North Am, 1994, 27(1) :263.
    [3] Crane GM, Ishaug SL, Mikos AG, et al. Bone tissue engineering[J]. Nat-Med ,1995, 1(12):1322.
    [4] Stock UA , Vacanti JP. Tissue engineering: current state and prospects[J]. Ann Rev Med,2001, 52:443-451.
    [5] Kiberstis P ,Smith 0 , Norman C. Bone health in the balance [J]. Science,2000,289:1497.
    [6] Service RF. Tissue engineering build new bone[J]. Science,2000,289(5484):1498-1500.
    [7] Ikada Y. Surface modification of polymers for medical application[J] . Biomaterials, 1994,15(10) :725-736.
    [8] Lebaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides:functional applications in orthopedic materials[J]. Tissue Eng,2000, 6(2):85-89.
    [9] Okubo Y, Bessho K, Fujimura K, et al. Osteogenesis by recombinant human bone morphogenetic protein-2 at skeletal sites[J]. Clin Orthop, 2000,375(3):295-301.
    [10] Throp BH , Ekman S ,Jakowlew SB , et al. Porcine osteochondrosis: deficiencies in transforming growth factor-beta and insulin-like growth factor-I[J]. Calcif Tissue Int, 1995,56(4) :376-382.
    
    [11] Martin Kantlehner, Dirk Finsinger, Jorg Meyer, et al. Selective RGD-mediated adhesion of osteoblasts at surface of implants[J]. Angew Chem Int Ed, 1999,38(4):560.
    [12] Schaffner P, Meyer J, Dard M, et al. Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies[J]. Mater Sci Mater Med, 1999,10(12):837-839.
    [13] Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering[J]. Biomaterials, 2002,23(22):4315-4323.
    [14] 李长文,郑启新,郭晓东,等.RGD多肽修饰的改性PLGA仿生支架材料对骨髓间充质干细胞粘附、增殖及分化影响的研究[J].中国生物医学工程学报,2006,25(2):142-146.
    [15] 张丽红,吕凯歌,潘可风,等.RGD-PLGA/HA膜材料的细胞亲和性实验研究[J].口腔颌面外科杂志,2007,17(1):17-20.
    [16] Shin H, Zygourakis K, Farach—Carson MC, et al. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide[J]. Biomaterials, 2004, 25 (5):895-902.
    [17] 张春华,严云良。医药数理统计[M],北京:科学出版社,2001:261.
    [18] 赵强,万昌秀,刘建伟,等.生物活性短肽RGD在PET表面接枝方法的研究[J].生物医学工程学杂志,2003:20(3):384-387.
    [19] 朱敦皖,葛泉波,柏金根,等.RGD肽表面修饰聚苯乙烯及其细胞相容性研究[J].国际生物医学工程杂志,2007,30(1):5-9.
    [20] Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering[J]. Trends Biotechnol, 1998,16(5):224-233.
    [21] Dina M, Basalyga A. Adsorption Enthalpy Between Charged Peptidyl Residues and SAM Surfaces of Varying Functionality [A]. Sixth World Biomaterials Congress Transactions, Hawaii, U.S.A, 2000: 1496.
    [22] 马婷婷,王春梅.骨组织工程研究进展及对其临床应用的展望[J].整形再造外科杂志,2006,3(6):114-118.
    [23] 龚泰芳.成骨细胞和组织工程化生物活性骨[J].中国矫形外科杂志,2002,9(1):69.
    [24] 丁金勇,靳安民.生物支架材料在骨组织工程中的研究进展[J].中国矫形外科杂志,2006,14(1):56-58.
    [25] 金丹,裴国献,王前.骨髓基质细胞与生物活性玻璃陶瓷和聚乳酸生物相容性的实验研究[J].中国修复重建外科杂志,2000,14:39-43.
    [26] 张阳德,顾红,李晓莉.骨组织工程中的支架材料[J].中国医学工程,2005,13(2):199—202.
    [27] Zhang Q, Cornu Q, Delloye C. Ethylene oxide does not extinguish the osteoinductive capacity of demineralized bone[J], A reappraisal in rats. Acta Orthp Scand, 1997:68:104.
    [28] Wojciech J, Frank A, Robey, A, et al. Incorporation of RGD-containing peptides into bone grafts improve bone augumentation[A]. Sixth World Biomaterials Congress Transactions, Hawaii, U.S.A, 2000:1408.
    [29] Elbert DL, Hubbell JA. Conjugate addition reactions combined with Free-radical cross-linking for the design of materials for tissue engineering[J]. Biomacromolecules, 2001, 2:430-441.
    [30] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond[J]. Biomaterials, 2003,24:4385-4415.
    [31] Pierschbacher MD, Nuoslahti E. Cell Attachment Activity of Fibronectin Can Be Duplicated by Small Synthetic Fragments of the Molecule[J]. Nature, 1984,309:30-33.
    [32] Anselme K. Osteoblast adhesion on biomaterials[J]. Biomaterials, 2000, 21(7): 667-681.
    [33] Crarg SW, Johnson RP. Assembly of focal adhension: Progress, paradigms and portents[J]. Curr Opin Cell Biol, 1997,7:74-81.
    [34] Gronthos S, Stewart SE, Graves S, et al. Integrin expression and function on human osteoblast-like cell[J]. J Bone Mine Res, 1997, 12,1189-1193.
    [35] Susan J, McCarthy A, Kaplan L, et al. Functionalized silk protein biomaterials for bone regeneration[A]. Sixth World Biomaterials Congress Transactions, Hawaii, U.S.A, 2000:1206.
    [36] 左斌海,付清泉,李天全,等.含精氨酰-甘氨酰-天冬氨酰序列短肽的合成及应用研究进展[J].航天医学与医学工程,2002,15:152-156.
    [37] 武忠,万昌秀,赵强.结合RGD肽的聚酯材料表面黏附内皮细胞的抗剪切力研究[J].北京生物医学工程,2004,23:37-39.
    [38] 李赛,罗祥林,姚红卫,等.光偶联法在生物材料表面改性中的应用[J].北京生物医学工程,2001,20(2):155-158.
    [39] Murphy WL, Moony DJ. Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata[y]. J Am Chem Soc, 2002, 124(9):1910-1917.
    [40] Mullikcn JB, Glowacki J. Induced osteogenesis for repair and construction in the craniofacial region[y]. Plast Reconstr Surg, 1990, 65:553-559.
    [41] Martin JY, Schwartz Z, Hummert TW, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells(MG63) [J]. J Bone Mater Res, 1995, 29 (3):389-401.
    [42] Lange R, Luthen F, Beck U, et al. Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material[J]. Biomolecular Engineering, 2002, 19:255-261.
    [43] Linez-Bataillon P, Monchau F, Bigerelle M, et al. In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6A14V substrates[J]. Biomolecular Engineering, 2002, 19:133-141.
    [44] 姚菊明,祝永强,李媛,等.桑蚕丝素-RGD融合蛋白的固态结构及其细胞粘附性分析[J].化学学报,2006,64(12):1273-1278.
    [45] Ferris DM, Moodie GD, Dimond PM, et al. RGD-coated titanium implants stimulate increased bone formation in vivo[J]. Biomaterials, 1999, 20(23-24): 2323-2331.
    [1] Elbert DL, Hubbell JA. Conjugate addition reactions combined with Free-radical cross-linking for the design of materials for tissue engineering[J].Biomacromolecules,2001,2:430-441.
    [2] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond[J]. Biomaterials, 2003,24:4385-4415.
    [3] Pierschbacher MD, Ruoslahti E. Cell Attachment Activity of Fibronectin Can Be Duplicated by Small Synthetic Fragments of the Molecule[J]. Nature, 1984,309:30-33.
    [4] Anselme K. Osteoblast adhesion on biomaterials[J]. Biomaterials, 2000, 21(7): 667-681.
    [5] Susan J, McCarthy A, Kaplan L, et al. Functionalized silk protein biomaterials for bone regeneration[A]. Sixth World Biomaterials Congress Transactions,Hawaii,U. S. A,2000:1206.
    [6] Porte-Durrieu MC, Labrugere C, Villars F, et al. Development of RGD peptides grafted onto silica surfaces: XPS characterization and human endothelial cell interactions[J]. J Biomed Mater Res. 1999, 46 (3): 368 -375.
    [7] Verrier S, Pallu S, Bareille R, et al. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cell adhesion process[J]. Biomaterials,2002,23 (2):585-596.
    [8] 黄宜兵,吴胜男,徐力,等.4种含RGD的短肽对细胞粘附作用的影响[J].吉林大学学报(理学版),2007,45(1):128-134.
    [9] Gilbert M, Giachelli C, Stayton A. Design of synthetic peptides to bind to hydroxyapatite and mediate cell signaling events[A]. Sixth World Biomaterials Congress Transactions, Hawaii,U.S.A,2000:496
    [10] Hasenbein ME, Andersen TT, Bizios R. Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts[J]. Biomaterials,2002,23 (19):3937-3942.
    [11] Lateef SS, Boateng S, Hartman TJ, et al. GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion[J]. Biomaterials, 2002, 23(15):3159-3168.
    [12] Jeschke B, Meyer J, Jonczyk A, et al. RGD-peptides for tissue engineering of articular cartilage[J]. Biomaterials, 2002, 23 (16): 3455-3463.
    [13] Rezania A. The effect of peptide surface density on mineralization of matrix deposited by osteogenic cells[A]. Sixth World Biomaterials Congress Transactions, Hawaii, U. S. A, 2000: 240.
    [14] Quirk RA, Chan WC, Davies MC,et al. Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly (lactic acid) [J]. Biomaterials, 2001,22(8):865-872.
    [15] Massia SP, Hubbell JA. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation[J].J Cell Biol, 1991, 114(5):1089-1100.
    [16] Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing[J]. J Biomed Mater Res,1998,39(2):266-276.
    [17] 潘海涛,郑启新,郭晓东,等.含RGD肽基因导入系统介导TGF-β1基因转染对兔骨髓基质干细胞增殖和体外诱导成骨的影响[J].中国生物医学工程学报,2006,25(5):596-601.
    [18] Mikos AG, Lyman MD, Freed LE, et al. Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture[J]. Biomaterials, 1994,15 (1):55-58.
    [19] Martin JY, Schwartz Z, Hummert TW, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells(MG63) [J]. J Bone Mater Res, 1995,29 (3):389-401.
    [20]Lange R, Luthen F, Beck U, et al. Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material[J]. Biomolecular Engineering, 2002, 19:255-261.
    [21] Linez-Bataillon P, Monchau F, Bigerelle M, et al. In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6A14V substrates[J]. Biomolecular Engineering, 2002,19:133-141.
    [22] Price RL , Waid MC, Haberstroh KM , et al. Selective bone cell adhesion on formulatons containing carbon nanofibers[J]. Biomaterials, 2003, 24(11): 1877-1887.
    [23] Breitbart AS, Grande DA, Kessler R, et al. Tissue engineered bone repair of calvarial defects using cultured periosteal cells[J]. Plast Reconstr Surg , 1998,101(3):567-574.
    [24] Devin JE, Attawia MA, Laurencin CT. Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair[J]. J Biomater Sci Polym Ed,1996,7(8):661-669.
    
    [25] Li X, Feng Q, Wang W, et al. Chemical characteristics and cytocompatibility of collagen-based scaffold reinforced by chitin fibers for bone tissue engineering[J]. J Biomed Mater Res B Appl Biomater,2006,77(2):219-226.
    
    [26] Li X, Feng Q, Liu X, et al.Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model[J].Biomaterials.2006,27(9):1917-1923
    [27] Lam CW, James JT, McCluskey R, et al.Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation[J]. Toxicol Sci. 2004, 77 (1): 126-34.
    [28]Kim BS,Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering[J]. Trends Biotechnol,1998,16 (5):224-233.
    [29] Wojciech J, Frank A, Robey, A, et al. Incorporation of RGD-containing peptides into bone grafts improve bone augumentation[A]. Sixth World Biomaterials Congress Transactions, Hawaii, U.S.A, 2000:1408.
    [30] Martin Kantlehner, Dirk Finsinger, Jorg Meyer, et al. Selective RGD-mediated adhesion of osteoblasts at surface of implants[J]. Angew Chem Int Ed, 1999,38(4):560.
    [31] Schaffner P, Meyer J, Dard M, et al. Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies[J]. Mater Sci Mater Med, 1999, 10(12):837-839.
    [32] Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering[J]. Biomaterials,2002,23(22):4315-4323.
    [33] 李长文,郑启新,郭晓东,等.RGD多肽修饰的改性PLGA仿生支架材料对骨髓间充质干细胞粘附、增殖及分化影响的研究[J].中国生物医学工程学报,2006,25(2):142-146.
    [34] 张丽红,吕凯歌,潘可风,等.RGD-PLGA/HA膜材料的细胞亲和性实验研究[J].口腔颌面外科杂志,2007,17(1):17-20.
    [35] 姚菊明,祝永强,李媛,等.桑蚕丝素-RGD融合蛋白的固态结构及其细胞粘附性分析[J].化学学报,2006,64(12):1273-1278.
    [36] Ferris DM, Moodie GD, Dimond PM, et al. RGD-coated titanium implants stimulate increased bone formation in vivo[J]. Biomaterials, 1999, 20(23-24): 2323-2331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700