用户名: 密码: 验证码:
基于自适应UKF及位速测量辅助的大椭圆轨道卫星自主导航
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星在大椭圆轨道上运行,不仅其轨道动力学变化剧烈,而且要经历各种严酷的空间环境。因此实现大椭圆轨道卫星自主天文导航面临两个新的问题:1)由空间环境带来的不确定测量噪声导致导航精度降低;2)由大椭圆轨道动力学特点引起的近地点导航滤波精度波动。本文以实现大椭圆轨道卫星自主导航为目的,针对以上两大问题,进行了如下几个方面的研究:
     研究了强跟踪UKF滤波算法。针对标准UKF算法对不确定测量噪声适应能力差的问题,将强跟踪滤波的思想推广到UKF滤波过程中,根据正交性原理,通过引入自适应因子,推导得到了强跟踪UKF算法。该方法不仅继承了强跟踪滤波对不确定测量噪声的自适应能力,而且不必计算和存储雅可比矩阵,可达到三阶的滤波精度。
     针对UKF算法由于自适应计算及Unscented变换导致计算量增加的问题,研究进一步减小计算量,提高计算效率的滤波方法。当滤波过程中仅存在短时间不确定测量噪声时,滤波器只需在检测到不确定测量噪声存在时启动自适应运算。基于这一思想,研究了切换自适应UKF算法。通过大数定理及其推论,得到了切换自适应UKF算法的模式切换准则,在滤波中动态判断滤波器的工作模式,并进行相应的切换。Unscented变换通过Sigma采样点逼近非线性函数的概率密度函数,将状态扩展为2n+1维,增加了滤波的计算量。为了解决这一问题,进而研究了超球面变换采样方法,利用超球面变换代替Unscented变换,将采样点的个数缩减为n+2个,从而使计算量得到了极大的降低。与切换自适应UKF相比,基于超球面变换的自适应UKF算法能够绝对减少计算量。
     研究了切换模糊自适应UKF滤波算法。通过在自适应算法中引入模糊推理,进一步调节自适应因子,提高导航滤波精度。为了使模糊自适应滤波器能够适应大范围不确定测量噪声的变化,对滤波器模糊推理系统的论域进行分析和划分,分别建立了正常情况和较大测量噪声下的模糊隶属度函数。在正常情况下的调节,主要是为了使滤波器能够较快的收敛;当测量噪声较大时,主要完成对不确定测量噪声的自适应。为了弥补模糊推理方法存在的学习能力较差,推理过程模糊性大等缺点,引入了BP神经网络处理方法,系统采用串联型结构,通过神经网络对模糊调节自适应因子进行后期处理。
     研究了适合于大椭圆轨道卫星的自主导航方法。针对天文自主导航在近地点导航估计误差波动问题,引入位速测量辅助修正的方法。主要提出了两种具体方案:基于雷达高度计测高的方案和基于GPS测量修正的方案。第一种方案采用雷达高度计在近地点的高度测量,可以作为星光角距观测量的补充。分析了雷达高度计的适用范围及测量原理,建立了雷达高度计测量方程,设计了天文/雷达高度计自主导航方案。第二种方案在分析GPS对大椭圆轨道卫星覆盖范围的基础上,通过充分利用GPS伪距和伪距率的测量,在近地点得到卫星的位置、速度直接测量信息,建立了GPS测量方程并用于导航滤波计算中,通过与天文导航进行信息融合,最终得到高精度的导航输出。
     最后,构建了大椭圆轨道卫星自主导航实验系统,将本文提出的强跟踪自适应UKF算法及切换模糊自适应UKF算法应用于大椭圆轨道卫星自主导航实验中,在不同水平的不确定测量噪声影响下进行了实验验证,实验结果表明,本文提出的自主导航方法是有效和可行的。
In highly elliptical orbits, the satellite orbit dynamics change severely and willexperience a variety of harsh space environment. Therefore, two new issues areraised to highly elliptical orbit satellite autonomous navigation system:1) The lownavigation precision caused by the uncertain measurement noise from the harshspace environment;2) The navigation estimate accuracy is fluctuate due to highlyelliptical orbit dynamic characteristics. To solve the problems, this paper carried outthe follow study in order to achieve highly elliptical orbit satellite autonomousnavigation.
     Strong tracking adaptive UKF filter is studied. As the standard UKF algorithmis invalid to uncertain measurement noise, promote the idea of strong trackingadaptive filter to UKF filter. According to orthogonality principle, the strongtracking adaptive UKF is deduced through introducing adaptive factor. Thisalgorithm inherits the adaptive ability to uncertain noise of strong tracking adaptivefilter, omittes the calculation of Jacobin and achieves three order precision.
     As the calculation of UKF is increased due to adaptive computing andUnscented Transformation, further methods to cut down calculation and improvecomputational efficiency are studied. If the uncertain measurement noise exists onlya short period of time, the filter need not perform adaptive calculation, but startadaptive calculation only when uncertain noise is detected. Based on this idea,switch adaptive UKF is studied. Through the switching law based on large numberstheorem, the filter mode is judged and switched. The Unscented Transformation isthe key point of UKF algorithm. The estimate precision is improved using Sigmapoint directly which approaches the probability density of nonlinear functioninstead of linearization. However, the dimension of system through UnscentedTransformation is2n+1which increased calculation. Therefore, the hypersphericaltransformation method instead of Unscented Transformation is studied. Thedimension of Sigma point is reduced to n+2using this method and the calculation iscut down significantly. Compared with switch adaptive UKF, this method reducedcalculation absolutely.
     Switch fuzzy adaptive UKF is studied. The adaptive factor is further regulatedand the adaptive estimate precision is improved further more by fuzzy logic. Inorder to improve the adaptive ability of fuzzy adaptive UKF to overcome high leveluncertain noise, fuzzy membership functions are established in two modes: thenormal filter mode and the filter mode under high level noise. The purpose ofadaptive filter in normal mode is to get faster convergence and overcome theuncertain noise in the mode under high level noise. In order to deal with the disadvantages of learning ability and fuzzy inference, BP Neural Networks isintroduced to the filter process. The Neural Networks is connected with the fuzzysystem in series in order to improve the fuzzy adaptive factor.
     Autonomous navigation methods suitable for highly elliptical orbit satellite arestudied. In order to overcome the filtering problem at perigee using celestialnavigation, the position/velocity measurements auxiliary correction method isintroduced. Two proposals are maily studied: autonomous navigation method basedon radar altimeter measurement and the auxiliary correction method using GPS. Inthe first proposal, the radar altimeter measurement is used as supplement tostar-earth angular observations. The radar altimeter application range andmeasurement principle is presented, the measurement equation is established, andthen the autonomous navigation method based on celestial&radar altimeter isproposed. In the second proposal, the coverage of GPS to highly elliptical orbitsatellite is analysised. According to the GPS position/velocity measurements, theGPS measurement equation is established and applied to navigation filter. Throughinformation fusion with celestial navigation, the high navigation output is achieved.
     Finally, autonomous navigation experiment system is established, the strongtracking adaptive UKF algorithm and the switch fuzzy adaptive UKF algorithm areapplied to highly elliptical orbit satellite autonomous navigation experiment. Theexperiment is performed under different uncertain measurement noise levels. Theresults of the experiment show that the autonomous navigation methods put forwardby this thesis is effective and feasible.
引文
[1] M. A. Chory, D. P. Hoffman, LeMay JL. Satellite Autonomous Navigaiton-Status and History[C]. IEEE Position Location and Navigation Symposium.Las Vegas, NV.1986:110-121.
    [2]潘科炎.航天器自主导航技术[J].航天控制.1994(2):18-27.
    [3]吴勤.透视俄罗斯军用卫星发展现状[J].太空探索.2008(12):46-49.
    [4]魏晨曦.俄罗斯的空间目标监视、识别、探测与跟踪系统[J].中国航天.2006(8):39-41.
    [5]冯如.美国电子侦察卫星的发展概况[J].国际太空.2000(10):6-8.
    [6]庞之浩.太空之耳_美国的电子侦察卫星[J].现代军事.2002(2):29-30.
    [7]鲁红权,冯晓晖.天基红外卫星系统研制进展[J].核武器与高技术.2001(2):36-54.
    [8]都亨.实践四号_实践哪些项目[J].太空探索.1994(3):5-6.
    [9]刘仕君.中国启动地球空间双星探测计划[J].中国航天.2011(5):29.
    [10]张永维,袁仕耿.中国的地球空间双星探测计划[J].中国航天.2008(5):12-17.
    [11]秦振华.美国80年代的航天测控网[J].无线电工程.1989(2):14-21.
    [12]许东.实践四号卫星的跟踪、测量和控制[J].航天器工程.1995(3):36-39.
    [13] R. Wertz J. Implementing Autonomous Orbit Control[C]. Proceedings of theAnnual AAS Guidance and Control Conference. Breckenridge,Colorado.2007:57-68.
    [14] Jackson R. F. Autonomous Navigation of USAF Spacecraft[D]. Austin: TheUniversity of Texas,1983:20-25.
    [15] Mikelson Dale. Design and Laboratory Testing of Self-Contained HighAltitude Navigation System,Phase1-the Space Sextant AutonomousNavigation Attitude Reference System(SS-ANARS)[R]: Defense TechnicalInformation Center,1977:1-8.
    [16] Garcia H. A, Owen W. J. Design and Analysis of a Space Sextant for HighAltitude Navigation[J]. Journal of Spacecraft and Rockets.1976.13(12):705-711.
    [17] R. L. White, R. B. Gounley. Satellite Autonomous Navigation with SHAD[R]:The Charles Stark Draper Laboratory,1987:5-10.
    [18] P. Riant. Analysis of a Satellite Navigation System by Stellar Refraction[C].36th Congress of the International Astronautical Federation Stockholm.Sweden.1986:1-8.
    [19] W. Hosken R, R. Wertz J. Microcosm Autonomous Navigation Systemon-Orbit Operation[C]. Proc. of the18th Annual AAS Guidance and ControlConference. Keystone, Colorado.1995:491-506.
    [20]李捷,陈义庆.航天器自主导航技术的新进展[J].航天控制.1997(02):76-81.
    [21] J. R. Guinn, B. G. Williams,Et Al. Taos Orbit Determination Results[J].Advances in the Astronautical Sciences.1995.89(1):185-195.
    [22]杨博,房建成,伍小洁.一种航天器天文自主定轨方法[J].中国惯性技术学报.2002.8(3):33-36.
    [23]李琳琳,孙先辉.基于星敏感器的星光折射卫星自主导航方法研究[J].系统工程与电子技术.2004.26(3):353-357.
    [24]张瑜,房建成.基于Unsented卡尔曼滤波器的卫星自主天文导航研究[J].宇航学报.2003.24(6):646-650.
    [25]宁晓琳,房建成.一种基于信息融合的卫星自主天文导航新方法[J].宇航学报.2003.24(6):579-583.
    [26] Xiaolin Ning,Jiancheng Fang. An Autonomous Celestial Navigation Methodfor Leo Satellite Based on Unscented Kalman Filter and Information Fusion[J].Aerospace Science and Technology.2007.11(2-3):222-228.
    [27]黄琳,荆武兴,李应波,等.利用雷达高度计的卫星自主导航[J].上海航天.2005(3):42-46.
    [28]韩潮,章仁为.利用雷达测高仪的卫星自主定轨[J].宇航学报.1999.20(3):13-20.
    [29]王融,刘建业,熊智,等.地形对雷达高度计卫星自主导航精度影响分析[J].传感器与微系统.2008.27(3):43-45.
    [30]张丽敏,熊智,乔黎,等.基于雷达高度计-星敏感器的卫星自主导航精度分析[J].传感器与微系统.2008(4):30-33.
    [31] Wiegand, Matthias. Autonomous Satellite Navigation Via Kalman Filtering ofMagnetometer Data[J]. Acta Astronautica.1996.38(1):395-403.
    [32] Mark L. Psiaki, H. Lejin,S. F. Fox. Ground Test of Magnetometer-BasedAutonomous Navigation for Low-Earth-Orbit Spacecraft[J]. Journal ofGuidance, Control and Dynamics.1993.16(1):206-214.
    [33] Mark L. Psiaki. Autonomous Orbit and Magnetic Field Determination UsingMagnetometer and Star Sensor Data[J]. Journal of Guidance, Control andDynamics.1995.18(3):584-592.
    [34] Mark L. Psiaki. Test of Magnetometer/Sun-Sensor Orbit Determinatin UsingFlight Data[J]. Journal of Guidance, Control and Dynamics.2002.25(3):582-590.
    [35] Gil Shorshi, Irzhack Y. Bar-Itzhack. Satellite Autonomous Navigation Basedon Magnetic Field Measurements[J]. Journal of Guidance, Control andDynamics.1995.18(4):843-850.
    [36] Deutschmann, Y. B. J. K. Itzhack. Evaluation of Attitude and Orbit EstimationUsing Actual Earth Magnetic Field Data[J]. Journal of Guidance, Control, andDynamics.2001.24(3):616-623.
    [37] N. Nagarajan. M. Seetharama Bhat, K. Kasturirangan. A Novel AutonomousOrbit Determination System Using Earth Sensors[J]. Acta Astronautica.1991.25:77-84.
    [38]冯来平,毛悦,孙中苗. X射线脉冲星导航定位技术研究[J].测绘科学.2009.34(3):19-21.
    [39]帅平,李明,陈绍龙,等.基于X射线脉冲星的导航卫星自主导航[J].中国空间科学技术.2008(2):1-7.
    [40]熊凯,魏春岭,刘良栋.基于脉冲星的卫星星座自主导航技术研究[J].宇航学报.2008.29(2):545-549.
    [41]熊凯,魏春岭,刘良栋.基于脉冲星的空间飞行器自主导航技术研究[J].航天控制.2007.25(4):36-45.
    [42] Xiong Kai,Wei Chunling,Liu Liangdong. The Use of X-Ray Pulsars for AidingNavigation of Satellites in Constellations[J]. Acta Astronautica.2009.64(4):427-436.
    [43]帅平,陈忠贵,曲广吉.关于X射线脉冲星导航的轨道力学问题[J].中国科学(E辑:技术科学).2009.39(3):311-317.
    [44]郭星灿,杨博.一种求解X射线脉冲星导航周期模糊数的新方法[J].航天控制.2009.27(4):14-18.
    [45]魏二虎,李冠,刘经南,等.脉冲星用于深空探测器导航定位及授时的探讨[J].测绘信息与工程.2009.34(3):1-3.
    [46]刘强,姚宜斌,张瑞,等.航天器利用脉冲星进行自主导航定位和授时初探[J].全球定位系统.2009(2):24-26.
    [47]毛悦,宋小勇,冯来平. X射线脉冲星导航可见性分析[J].武汉大学学报(信息科学版).2009.34(2):222-225.
    [48]郑广楼,刘建业,乔黎,等.单脉冲星自主导航系统可观测性分析[J].应用科学学报.2008.26(5):506-510.
    [49]费保俊,孙维瑾,季诚响,等.单脉冲星自主导航的可行性分析[J].装甲兵工程学院学报.2007.21(3):82-88.
    [50]李勇,魏春岭.卫星自主导航技术发展综述[J].航天控制.2002(2):70-74.
    [51] F. H. Bauer, K. Hartman, E. G. Lightsey. Spaceborne GPS Current Status andFuture Visions[C]. Aerospace Conference,1998IEEE.1998:195-208.
    [52] S. C. Wu, T. P. Yunck, S. M. Lichten,et al. GPS-Based Precise Tracking ofEarth Satellites From Very Low to Geosynchronous Orbits[C]. TelesystemsConference,1992. NTC-92., National.1992:1-8.
    [53] S. Khoomboon, T. Kasetkasem, R. Keinprasit, et al. Increase a Standalone GPSPositioning Accuracy by Using a Proximity Sensor[C]. ElectricalEngineering/Electronics Computer Telecommunications and InformationTechnology (ECTI-CON),2010International Conference on.2010:584-587.
    [54] S. A. Dale, P. Daly. The Soviet Union's GLONASS Navigation Satellites[J].Aerospace and Electronic Systems Magazine, IEEE.1987.2(5):13-17.
    [55] P. Daly. Navstar GPS and GLONASS: Global Satellite Navigation Systems[J].Electronics&Communication Engineering Journal.1993.5(6):349-357.
    [56] O. Bogdanov, A. Cepe. Precise Orbit Determination for GPS and GLONASSSatellites on the Basis of IGS Data[C]. Recent Advances in SpaceTechnologies (RAST),20115th International Conference on.2011:915-919.
    [57] Chen Zhao, Tang Tianhao. The Usage of Turbo Code in the Signal of GalileoSystem[C]. Telecommunications,2007. ITST'07.7th International Conferenceon ITS.2007:1-5.
    [58] P. Berglez. Development of a GPS, Galileo and SBAS Receiver[C]. ELMAR,2008.50th International Symposium.2008:573-576.
    [59] X. Kova, P. R,P. Kacmarik, et al. Interoperable GPS, GLONASS and GalileoSoftware Receiver[J]. Aerospace and Electronic Systems Magazine, IEEE.2011.26(4):24-30.
    [60]谭述森.北斗卫星导航系统的发展与思考[J].宇航学报.2008(2):391-396.
    [61]吕伟,朱建军.北斗卫星导航系统发展综述[J].地矿测绘.2007(3):29-32.
    [62]范一大,张宝军.中国北斗卫星导航系统减灾应用概述与展望[J].中国航天.2010(2):7-9.
    [63] Mehra R. K. On the Identification of Variances and Adaptive KalmanFiltering[J]. IEEE Transactions on Automatic Control.1970.15(2):175-184.
    [64] Mehra R. K. Approaches to Adaptive Filtering[J]. IEEE Transactions onAutomatic Control.1972.17(5):693-698.
    [65]史忠科.最优估计的计算方法[M].北京:科学出版社,2001:159-168.
    [66]高宁,周跃庆,杨晔,等.抗野值自适应卡尔曼滤波方法的研究[J].惯性技术学报.2003.11(6):25-28.
    [67]符拯,王书满,刘丙杰.自适应卡尔曼滤波的最新进展[J].战术导弹技术.2009(6):62-66.
    [68] Song Hong Truong. A Robust and Self-Stunning Kalman Filter forAutonomous Spacecraft Navigation[D]. Washington: Washington University,2001.
    [69] Chen Guanrong. A Modified Adaptive Kalman Filter for Real-TimeApplications[J]. IEEE Transaction on Aerospace and Electronics System.1991.27(1):149-154.
    [70] Lin Chai, Jianping Yuan. Neural Network Aided Adaptive Kalman Filter forMulti-Sensors Integrated Navigation[M]. Berlin Heidelberg: SpringerVerlag,2004:85-101.
    [71] AbhikMukherjee, Partha Pratim Adhikari, K. Nandi P. Feature Identificationfor Fuzzy Logic Based Adaptive Kalman Filtering[M]. Berlin eidelberg:Springer-Verlag,2002:113-126.
    [72]祝转民,杨宜康,李济生,等. Kalman滤波工程应用问题分析及改进方法研究[J].宇航学报.2002.23(3):44-47.
    [73]王洁,韩崇昭,李晓榕.多模型估计方法[J].火力与指挥控制.2001.26(4):1-5.
    [74] Rong X. Li. Model-Set Design for Multipe-Model Method[C]. Proceedings ofthe5th International Conf. Information Fusion Annapolis. MD, USA.2002:26-33.
    [75]白羽俊,徐晓苏,刘国燕.神经网络辅助卡尔曼滤波技术在组合导航系统中的应用研究[J].中国惯性技术学报.2003.11(2):40-43.
    [76] Qi SONG, Jian-Da HAN. An Adaptive UKF Algorithm for the State andParameter Estimations of a Mobile Robot[J]. Acta Automatica Sinica.2008.34(1):72-79.
    [77] Sage A, Husa G. W. Adaptive Filtering with Unknown Prior Statistics[C].Proceedings of Joint Automatic Control Conference. Boulder, USA.1969:760-769.
    [78] Fengchun Sun, Xiaosong Hu, Yuan Zou, et al. Adaptive Unscented KalmanFiltering for State of Charge Estimation of a Lithium-Ion Battery for ElectricVehicles[J]. Energy.2011.36(5):3531-3540.
    [79] Jang-Sub Kim, Dong-Ryeol Shin, Erchin Serpedin. Adaptive MultiuserReceiver with Joint Channel and Time Delay Estimation of CDMA SignalsBased on the Square-Root Unscented Filter[J]. Digital Signal Processing.2009.19(3):504-520.
    [80]周峰,孟秀云.基于自适应UKF算法的机载INS/GPS空中对准研究[J].系统工程与电子技术.2010(2):367-371.
    [81]赵琳,王小旭,孙明,等.基于极大后验估计和指数加权的自适应UKF滤波算法[J].自动化学报.2010(7):1007-1019.
    [82]石勇,韩崇昭.自适应UKF算法在目标跟踪中的应用[J].自动化学报.2011(6):755-759.
    [83]齐俊桐,韩建达.基于MIT规则的自适应Unscented卡尔曼滤波及其在旋翼飞行机器人容错控制的应用[J].机械工程学报.45(4):115-124.
    [84]李丹,刘建业,熊智,等.应用联邦自适应UKF的卫星多传感器数据融合[J].应用科学学报.2009.27(4):359-364.
    [85] Cao Yuping, Tian Xuemin. An Adaptive UKF Algorithm for Process FaultPrognostics[C]. Intelligent Computation Technology and Automation,2009.ICICTA'09. Second International Conference on. Changsha, Hunan.2009:487-490.
    [86]郝钢,叶秀芬.多传感器加权观测融合自适应UKF滤波器[J].宇航学报.2011(6):1400-1408.
    [87] Lichao Ma, Zaozhen Liu, Xiuyun Meng. Autonomous Optical NavigationBased on Adaptive SR-UKF for Deep Space Probes[C]. Control Conference(CCC),201029th Chinese.2010:321-325.
    [88] Xiaojun Tang, Jie Yan, Dudu Zhong. Square-Root Sigma-Point KalmanFiltering for Spacecraft Relative Navigation[J]. Acta Astronautica.2010.66(5-6):704-713.
    [89]于金霞,汤永利,刘文静.粒子滤波自适应机制研究综述[J].计算机应用研究.2010.27(2):417-428.
    [90] D. KOLLER, R. FRATKINA. Using Learning for Approximation in StochasticProcesses[C]. Proc of the15th International Conference on Machine Learning.San Francisco.1998:287-295.
    [91] D. FOX. Kld~Sampling: Adaptive Particle Filters[J]. Advances in NeuralInformation Processing Systems.2001.14(1):713-720.
    [92] R. KARLSSON, F. GUSTAFSSON. Monte Carlo Data Association forMultiple Target Tracking[C]. Proc of IEEE Colloquium on Target Tracking:Algorithms and Applications.2001:1-5.
    [93]段琢华,蔡自兴,于金霞.移动机器人软故障检测与补偿的自适应粒子滤波算法[J].中国科学E辑:信息科学.2008.38(4):565-578.
    [94] GRISETTIG, STACHNISSC, BURGARD W. Improving Grid-Based Slamwith Rao-Blackwellized Particle Filters by Adaptive Proposals and SelectiveResampling[C]. Proc of IEEE International Conference on Robotics andAutomation. Barcelona, Spain.2005:2443-2448.
    [95] S. LENSER, M. VELOSO. Sensor Resetting Localization for Poorly ModelledMobile Robots[C]. Proc of IEEE International Conference on Robotics andAutomation. San Francisco.2000:1225-1232.
    [96]梁志伟,马旭东,戴先中.分布式感知协作的扩展Monte Carlo定位算法[J].机器人.2008.30(3):210-216.
    [97] Westm. Mixture Models, Monte Carlo, Bayesian Updating and DynamicModels[J]. Computing Science and Statistics.1993(24):325-333.
    [98] P. Beeson, A. Murarka, B. Kuipers. Adapting Proposal Distributions forAccurate, Efficient Mobile Robot Localization[C]. Proc of IEEE InternationalConference on Robotics and Automation. Orlando.2006:49-55.
    [99] J. Cornebise, E. Moulines, J. Olsson. Adaptive Methods for SequentialImportance Sampling with Application to State Space Models[J]. Statisticsand Computing.2008.18(4):461-480.
    [100]邓小龙,谢剑英,郭为忠.用于状态估计的自适应粒子滤波[J].华南理工大学学报:自然科学版.2006.34(1):57-61.
    [101]K. Pittm, N. Shephard. Filtering Via Simulation: Auxiliary Particle Filters[J].Journal of the American Statistical Association.1999.94(446):590-599.
    [102]厉茂海,洪炳熔,罗荣华.用改进的Rao-Blackwellized粒子滤波器实现移动机器人同时定位和地图创建[J].吉林大学学报:工学版.2007.37(2):401-406.
    [103]DUAN Zuo-hua, CAI Zi-xing. Evolutionary Particle Filter for RobustSimultaneous Localization and Map Building with Laser Range Finder[C].Proc of the4th International Conference on Natural Computation.Washington DC.2008:443-447.
    [104]DUAN Zuo-hua, CAI Zi-xing, YU Jin-xia. Fuzzy Adaptive Particle FilterAlgorithm Formobile Robot Fault Diagnosis[C]. Proc of the13th InternationalConference on Neural Information Processing. Heidelberg.2006:711-720.
    [105]J. Kim Y,H. Won C,JM Park. Fuzzy Adaptive Particle Filter for a PositioningBeacon System[C]. Proc of International Conference on Control, Automationand Systems. Seoul, Korea.2007:1198-1202.
    [106]石旭生,王琛,郭莉,等.自适应模糊粒子滤波在组合导航中的应用[J].计算机仿真.2008.25(4):49-52.
    [107]任之幸.自适应自主卫星导航方法的研究[J].宇航学报.1986(3):40-46.
    [108]张瑜,房建成.航天器天文导航模糊自适应卡尔曼滤波研究[J].北京航空航天大学学报.2004.30(8):735-738.
    [109]Liu Zhide, Chen Jiabin, Wang Yong, et al. An UKF and PSO-Based NeuralNetwork Hybrid Algorithm for Attitude Determination[C]. IndustrialElectronics and Applications,2009. ICIEA2009.4th IEEE Conference on.2009:1231-1235.
    [110]Mu Hua, Wu Meiping, Hu Xiaoping, et al. Geomagnetic Surface NavigationUsing Adaptive EKF[C]. Industrial Electronics and Applications,2007. ICIEA2007.2nd IEEE Conference on.2007:2821-2825.
    [111]W. S. Chare, R. H. Bishop, J. Ghosh. Hierachical Adaptive Kalman Filteringfor Interplanetary Orbit Determination[J]. IEEE Transactions on Aerospaceand Electronic Systems.1998.34(3):883-896.
    [112]王光鼎,张升康,杨汝良.一种基于卡尔曼滤波处理的北斗卫星无源组合导航自适应野值剔除方法[J].电子与信息学报.2008.30(8):1982-1984.
    [113]李强,时荔蕙,梁开莉.自适应渐消EKF方法及其在卫星跟踪中的应用[J].航天电子对抗.2009.25(3):10-15.
    [114]孙永荣,吴玲,赵伟,等.多星座组合导航自适应联合卡尔曼滤波算法研究[J].宇航学报.2009.30(5):1880-1884.
    [115]Jiao Wei-bo, Su Wan-xin, Gao Qiang, et al. Application of Adaptive UKF inInitial Alignment of MINS/GPS Integrated Navigation System[C]. AdvancedComputer Theory and Engineering (ICACTE),20103rd InternationalConference on.2010:224-228.
    [116]胡其正,杨芳.宇航概论[M].北京:中国科学技术出版社,2010:210-215.
    [117]张华达.红外面阵焦平面静态地平仪[J].红外.2004(2):1-9.
    [118]崔维鑫,韩开亮,吕银环,等.非致冷红外焦平面面阵静态地平仪[P].中国:200810042432.3,2009.
    [119]赵晶.空间环境对航天器影响的统计分析[J].航天器环境工程.1998(4):41-53.
    [120]韩虹,王子玉,钟兴旺.空间环境对飞行器的影响[J].空间电子技术.2011(1):1-6.
    [121]张育林,陈小前,闫野.空间环境及其对航天器的影响[M].中国宇航出版社,2011:15-50.
    [122]赵小虎,沈志刚,邢玉山,等.空间环境分子污染对航天器的影响[J].航空学报.2009.30(1):159-164.
    [123]S. J. Julier, J. K. Uhlmann. Unscented Filtering and Nonlinear Estimation[J].Proceedings of the IEEE.2004.92(3):401-422.
    [124]S. J. Julier, J. K. Uhlmann, H. F. Durrant-Whyte. A New Approach forFiltering Nonlinear Systems[C]. Proceedings of the American ControlConference,1995.1995:1628-1632.
    [125]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2010:86-107.
    [126]K. Xiong, H. Y. Zhang, C. W. Chan. Performance Evaluation of UKF-BasedNonlinear Filtering[J]. Automatica.2006.42(2):261-270.
    [127]Hoon Kim Kwang, Gyu Lee Jang, Gook Park Chan, et al. The StabilityAnalysis of the Adaptive Fading Extended Kalman Filter[C]. ControlApplications,2007. CCA2007. IEEE International Conference on. Singapore.2007:982-987.
    [128]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000:37-92.
    [129]温新,张洪钺,周露.控制系统的故障诊断和容错控制[M].北京:机械工业出版社,1998:89-110.
    [130]S. J. Julier, J. K. Uhlmann. Reduced Sigma Point Filters for the Propagation ofMeans and Covariances through Nonlinear Transformations[C]. AmericanControl Conference,2002. Proceedings of the2002. Anchorage, AK.2002:887-892.
    [131]S. J. Julier, J. K. Uhlmann. A Counter Example to the Theory of SimultaneousLocalization and Map Building[C]. Proceedings of the2001IEEEInternational Conference on Robotics and Automation. Seoul, Korea.2001:4238-4243.
    [132]S. J. Julier. The Spherical Simplex Unscented Transformation[C]. Proceedingsof the American Control Conference,2003.2003:2430-2434.
    [133]张德丰. MATLAB模糊系统设计[M].北京:国防工业出版社,2009:27-45.
    [134]徐田来,游文虎,崔平远.基于模糊自适应卡尔曼滤波的INS/GPS组合导航系统算法研究[J].宇航学报.2005.26(05):572-575.
    [135]岳鹏.基于模糊神经网络自适应Kalman滤波算法的研究[D].哈尔滨:哈尔滨工程大学,2007:36-43.
    [136]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998:87-113.
    [137]王萍.星载雷达高度计自主导航技术[D].长沙:国防科学技术大学,2004:45-62.
    [138]彭嘉雄,张天序.地形统计模型研究[J].宇航学报.1984.3:14-21.
    [139]O. Balbach, B. Eissfeller, G. W. Hein, et al. Tracking GPS Above GPSSatellite Altitude: First Results of the GPS Experiment on the HEO MissionEquator-S[C]. Position Location and Navigation Symposium, IEEE1998.1998:243-249.
    [140]王杰娟,刁华飞,董正宏.32颗GPS卫星星座空间覆盖特性建模与仿真[J].航天控制.2009.32(6):52-55.
    [141]刘会杰,张乃通. GPS星座的空间覆盖特性研究[J].高技术通讯.1999(12):1-5.
    [142]房建成,宁晓琳.深空探测器自主天文导航方法[M].西安:西北工业大学,2010:31-87.
    [143]梁敏敏,秦红磊,李峰.利用GPS实现高轨卫星定位的抗远近效应算法[J].空间科学学报.2010.30(3):255-262.
    [144]A. Long, D. Leung, D. Folta, et al. Autonomous Navigation of High-EarthSatellites Using Celestial Objects and Doppler Measurements[C]. AIAA/AASAstrodynamics Specialist Conference. Denver, Colorado.2000:1-10.
    [145]Li Taohu, Liu Jiansheng, Huang Zhigang, et al. Observability of HEO SatelliteAutonomous Navigation System Using GPS[C]. Multimedia Technology(ICMT),2010International Conference on.2010:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700