用户名: 密码: 验证码:
CoPt和NiPt合金纳米催化剂:合成、自组装及其电催化和异常红外性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有不同于常规材料的特殊性质,在科学技术的发展中具有重要地位。纳米材料的合成,尤其是形状和结构控制合成、纳米材料的表征及其特殊性能的研究是纳米材料科学的前沿课题。CoPt和NiPt纳米材料由于其独特的磁学性能、高效的催化性能和特殊的光学性能而备受关注。本论文运用化学还原和电位置换法制备了不同结构的CoPt和NiPt纳米粒子,系统研究了它们的磁学、电催化和特殊红外光学性能。主要研究内容和结果如下:
     (1)一维链状CoPt纳米材料的合成及其性能研究。运用化学还原和电位置换法制备了两种不同结构的一维链状CoPt纳米材料,其一为实心结构(CoPt-a),另一种为空心结构(CoPt-b)。磁性研究指出,CoPt-a和CoPt-b纳米材料均表现出超顺磁性,对应的阻塞温度T_B分别为10.0 K和9.0 K。5 K时测得矫顽力分别为520 Oe和740 Oe;电化学循环伏安结果给出,CoPt-a/GC和CoPt-b/GC纳米粒子电极对CO的氧化都具有较好的电催化活性。与本体Pt电极相比,CO氧化峰电位分别提前了140 mV和160 mV。还测得CoPt-b纳米粒子对甲醇氧化具有很高的电催化活性,其氧化电流密度是商业Pt/C催化剂的1.9倍,稳定性与商业Pt/C催化剂相当。根据实验结果,CoPt-b纳米粒子对甲醇氧化有较好的催化活性可归因于Co元素的协同作用和其特殊的空心结构。原位红外光谱结果表明,当CoPt-a和CoPt-b纳米粒子负载在中等反射率的GC基底或高反射率的Au基底上时,无论是在固/液界面还是固/气界面,吸附态CO均给出异常红外效应(AIREs)的光谱特征。不同反射率的基底会影响增强红外吸收强度、半峰宽、Stark系数等参数,但不会改变AIREs光谱特征。进一步证明AIREs是一维CoPt纳米材料本身的特性,与基底无关。首次观察到一维纳米材料同样具有异常红外效应。研究结果有助于深入认识低维纳米材料异常红外性能的本质。
     (2)单分散NiPt纳米粒子合成及其性能研究。首次将电位置换法成功地应用到较难合成的NiPt体系,制备了单分散的NiPt纳米粒子。在实验的基础上,提出了合成机理。结果指出,实验体系的温度、反应物的滴加顺序和反应物比例是决定产物组成和结构的关键因素。NiPt纳米粒子同样表现出超顺磁性行为,测得阻塞温度T_B为7.8 K,5 K时矫顽力为517 Oe;原位红外光谱研究结果给出,在固/液界面和固/气界面、在中等反射率的GC基底和高反射率的Au基底上获得的结果光谱和单光束光谱中,吸附在NiPt纳米粒子上的CO均给出类Fano红外效应特征。同时表现出很强的红外增强吸收,测得在GC基底和Au基底上的红外增强因子分别为73和112。本研究首次在化学法合成的单分散NiPt纳米粒子上观察到类Fano红外效应,进一步验证了类Fano红外效应同样是低维纳米材料特殊的红外光学性能,对深入认识低维纳米材料特殊红外性能本质亦具有重要价值。
     (3)空心结构NiPt和CoPt纳米粒子对甲醇电催化氧化性能研究。首次运用电位置换法和共还原法得到空心结构(NiPt-a)和实心结构(NiPt-b)纳米粒子。电化学循环伏安研究结果指出,NiPt-a纳米粒子对甲醇氧化具有很高的电催化活性,其氧化电流密度是商业化Pt/C催化剂的1.9倍,同时具有较好的稳定性。NiPt纳米粒子对甲醇氧化有较好催化活性主要归因于双功能机理,也与纳米粒子的化学效应、电子效应及其特殊的空心结构相关联。运用原位红外光谱在分子水平研究了空心结构CoPt和NiPt纳米粒子上甲醇的电化学氧化过程。在空心结构CoPt纳米粒子上,检测到毒性中间体CO及其给出的异常红外效应光谱特征;而在空心结构NiPt纳米粒子上观察到类Fano红外效应,与直接用CO做为分子探针得到的结果一致。空心结构纳米粒子具有较高的催化活性,同时能提高金属催化剂利用率。因此,研究结果对发展燃料电池新型Pt基纳米催化剂具有指导意义。
     (4)核壳结构CoPt Pt纳米粒子的合成、自组装及其红外光学性能研究。运用改进的化学还原和电位置换法得到了CoPt纳米粒子,以HRTEM、XPS、XRD等方法表征确认制备的纳米粒子为核壳结构。通过液/液界面自组装得到CoPt Pt纳米粒子单层薄膜。透射红外光谱结果指出,吸附态CO在单分散无序堆积的CoPt_d/Si上给出增强红外吸收,而在纳米粒子薄膜CoPt_a/Si上给出类Fano红外效应。在CoPt_a/Si上吸附态CO的谱峰强度比在CoPt_d/Si上增强了约5倍。研究结果为合成核壳结构纳米粒子提供了一种新方法,进一步发展了液/液界面自组装方法。
     本论文研究结果对深入认识CoPt和NiPt纳米粒子的特殊性能,探索低维纳米材料特殊红外性能的本质具有重要意义,同时对研制直接甲醇燃料电池新型电催化剂具有重要应用价值。
Synthesis,especially the controlled synthesis,characterization and properties of nanomaterials are the most important tasks in nanoscience because they have unusual properties that could not possessed by corresponding bulk materials.CoPt and NiPt nanomaterials have attracted multidisciplinary attentions because of their special magnetic, catalytic and optical properties.In this paper,CoPt and NiPt nanomaterials with different structure were prepared by chemical reduction and galvanic displacement reaction,and their magnetic,electrocatalytic and anomalous IR properties were studied.The main experiments and results are given as follow:
     (1) Synthesis and properties of one-dimension(1D) chain-like CoPt nanomaterials.Two kinds of 1D CoPt nanomaterials were prepared by galvanic displacement reaction.One is a solid structure(CoPt-a),the other is a hollow structure(CoPt-b).The results of magnetic measures showed that both CoPt-a and CoPt-b are superparamagnetic.The blocking temperatures of CoPt-a and CoPt-b are 10.0 K and 9.0 K.The coercivities are 520 Oe and 740 Oe obtained at 5 K,respectively.The results of CV demonstrated that the 1D chain-like CoPt-a and CoPt-b nanomaterials exhibit better electrocatalytic properties for CO oxidation than that of bulk Pt does in 0.1 M H_2SO_4.The current peak potentials of CO oxidation are shifted negatively by 140 mV and 160 mV comparison with bulk Pt electrode,respectively.It is clearly that the catalytic activity of the hollow CoPt-b nanoparticles is much higher than that of commercial Pt/C catalyst for electrooxidation of methanol.The oxidation density on CoPt-b nanoparticles is nearly 1.9 times than that on Pt/C catalyst.The remarkably high activity of CoPt-b nanomaterials may come from the effect of the cooperating function of Co element and the special hollow structure.The fact that both CoPt-a and CoPt-b nanomaterials loaded on GC or Au substrates produce abnormal infrared effects(AIREs) has confirmed that the anomalous IR features were generated mainly by the 1D chain-like CoPt nanomaterials, and that the influence of the substrate materials on the IR spectral features may be neglected in the present study.The current study demonstrated that 1D nanomaterials also show AIREs for the first time,and thrown a new insight into understanding the origin of anomalous IR properties observed on low-dimensional nanomaterials.
     (2) Synthesis and properties of monodispersed NiPt nanomaterials.Galvanic displacement reaction was introduced to synthesize monodispersed NiPt nanoparticles successfully for the first time.The size,composition and morphology can be well controlled by varying reaction temperature and ratio of the reactants.A probable mechanism for the formation of the NiPt nanoparticles was proposed based on a series of assistant experiments. The obtained NiPt nanopaeticles are superparamagnetic too.The blocking temperature is 7.8 K with a coercivity of 517 Oe at 5 K.In situ electrochemical FTIRS employing CO adsorption as probe reaction demonstrated that NiPt/GC or NiPt/Au electrodes exhibit characteristics of Fano-like infrared effects either in result spectra or single spectra.The substrate materials do not affect significantly the anomalous IR features,as illustrated by the similar anomalous IR features observed for CO adsorbed on both NiPt/GC and NiPt/Au electrodes.The results demonstrated that dispersed NiPt nanomaterials obtained by chemical method display characteristics of Fano-like infrared effects for the first time,and are of significant academic importance in understanding the origin of anomalous IR properties observed on low-dimensional nanomaterials.
     (3) Properties of methanol electrooxidation of CoPt and NiPt nanomaterials with a hollow structure.Two kinds of NiPt nanomaterials were prepared by galvanic displacement reaction.One is a hollow structure(NiPt-a),the other is a solid structure(NiPt-b).The results of CV demonstrated that the electrocatalytic activity of NiPt-a nanoparticles is much higher than that of commercial Pt/C catalyst for the electrooxidation of methanol.The oxidation density on NiPt-a nanoparticles is nearly 1.9 times than that on Pt/C catalyst.The remarkably high activity of the NiPt nanomaterials for oxidation of methanol may come from the bifunctional mechanism,electron effect,chemical effect and the special hollow structure of the nanomaterials.The electrooxidation of methanol on CoPt-b and NiPt-a nanoparticles was studied on the molecular level by in situ FTIR.The poisonous intermediates CO observed on CoPt-b/GC electrode displays AIREs while shows Fano-like infrared effects on NiPt-a/GC electrode.The results are of significant academic importance in developing catalysts of fuel cell.
     (4) Synthesis,self-assembly and IR optical properties of core-shell CoPt nanomaterials. We have synthesized spherical CoPt nanoparticles by modified galvanic displacement reaction,successfully.The results of HRTEM,XPS,XRD indicated that product has a core-shell structure,and can be signed as CoPt@Pt.An ordered monolayer film of CoPt nanoparticles was obtained on the Si wafer by a L/L interface technique.In situ FTIR transmission spectrum study indicated that the ordered self-assembled monolayer film of CoPt nanoparticles(CoPt_a) shown Fano-like infrared effects while the multilayer disordered CoPt nanoparticles(CoPt_d) give an enhanced IR adsorption.The results afford a new method to synthesize nanomaterials with a core-shell structure,and develop the Liquid/Liquid self-assembly technology.
     The results in the current paper have contributed to understand deeply the special properties of CoPt,NiPt nanomaterials,and are of significant academic importance in understanding the origin of the anomalous IR properties of low-dimensional nanomaterials,as well as developing of new type DMFC electrocatalysts.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001.
    [2]R.Birringer,H.Gleiter,H.P.Klein,P.Marquardt,Synthesis of n-metals[J],Phys.Lett.,1984,102A(8):365-369.
    [3]张志焜,崔作林,纳米技术与纳米材料[M],国防工业出版社,2000.
    [4]白春礼,纳米科学与技术[M],云南科技出版社,1999.
    [5]A.Henglein,Small-particle research:Physicochemical properties of extremely small colloidal metal and semiconductor particles[J],Chem.Rev.,1989,89:1861-1873.
    [6]R.Kubo,Electric properties of metallic fine particles[J],J.Phys.Soc.Jpn.,1962,17(5):975-986.
    [7]P.Ball,L.Garwin,Science at the atomic scale[J],Nature,1992,355:761-766.
    [8]张立德,纳米材料[M],化学工业出版社,2000.
    [9]P.E.Cavucchi,R.H.Silsbee,Coulomb suppression of tunneling rate from small metal particles[J],Phys Rev.Lett.,1984,52:1453-1456.
    [10]刘吉平,廖丽玲,无机纳米材料[M],科学出版社,2003.
    [11]黄德欢,纳米技术与应用[M],中国纺织大学出版社,2001.
    [12]杨祥良,纳米药物[M],清华大学出版社,2007.
    [13]李晓俊,刘丰,刘小兰,纳米材料的制备及应用研究[M],山东大学出版社,2006.
    [14]曾令可,李秀艳,纳米陶瓷技术[M],华南理工大学出版社,2006.
    [15]J.J.Gooding,F.Mearns,W.Yang,J.Liu,Self-assembled monolayer into the 21th century:Recent advances and application[J],Electroanalysis,2003,15(2):81-96.
    [16]C.W.Kuo,J.Y.Shiu,P.Chen,G.A.Somorjai,Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10-nm resolution[J],J.Phys.Chem.B,2003,107:9950-9953.
    [17]P.C.Ohara,D.V.Leff,J.R.Heath,W.M.Gelbart,Crystallization of opals from polydisperse nanoparticles[J],Phys.Rev.Lett.,1995,75,3466-3470.
    [18]M.Trau,D.A.Saville,Ⅰ.A.Aksay,Assembly of colloidal crystals at electrode interface[J],Langmuir,1997,13:6375-6381.
    [19]O.D.Velev,P.M.Tessier,A.M.Lenhoff,E.W.Kaler,Materials:A class of porous metallic nanostructures[J],Nature,1999,401:548-548.
    [20]Z.Chen,P.Zhan,Z.Wang,J.Zhang,W.Zhang,N.Ming,C.T.Chan,P.Sheng,Two- and three-dimensional orderd structures of hollow silver spheres prepared by colloidal crystal templating[J],Adv.Mater.,2004,16(5):417-421.
    [21]M.H.Kim,S.H.Im,O.O.Park,Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly[J],Adv.Funct.Mater.,2005,15:1329-1335.
    [22]P.N.Bartlett,P.R.Birkin,M.A.Ghanem,Electrochemical deposition of macroporous platinum,palladium and cobalt films using polystyrene latex sphere templates[J],Chem.Commun.,2000,1671-1672.
    [23]Q.Luo,Z.Liu,L.Li,S.Xie,J.Kong,D.Zhao,Creating highly orderd metal,alloy,and semicondertor macrostructures by electrodeposition,ion spraying,and laser spraying[J],Adv.Mater.,2001,13(4):286-289.
    [24]C.N.Rao,G.U.Kulkarni,P.J.Thomas,V.V.Agrawal,P.Saravanan,Films of metal nanocrystai formed at aqueous-organic interfaces[J],J.Phys.Chem.B,2003,107:7391-7395.
    [25]K.M.Gatt(?)s-Asfura,C.A.Constantine,M.J.Lynn,D.A.Thimann,X.Ji,R.M.Leblanc,Characterization and 2D self-assembly of CdSe quantum dots at the air-water interface[J],J.Am.Chem.Soc.,2005,127:14640-14646.
    [26]李永军,厦门大学博士后研究工作报告[D],2005.
    [27]黄伟瑶,厦门大学硕士学位论文[D],2006.
    [28]B.O.Dabbousi,C.B.Murray,M.F.Rubner,M.G.Bawendi,Langmuir-Blodgett manipulation of size-selected CdSe nanocrystals[J],Chem.Mater.,1994,6:216-219.
    [29]S.W.Chen,Electrochemical studies of Langmuir-Blodgett thin films of electroactive nanoparticles[J],Langmuir,2001,17:6664-6668.
    [30]A.Swami,A.Kumar,P.R.Selvakanan,S.Mandal,M.Sastry,Langmuir-Blodgett films of laurylamine-modified hydrophobic gold nanoparticles organized at the air-water interface[J],J.Colloid.Interface.Sci.,2003,260:367-373.
    [31]J.Ⅰ.Park,W.R.Lee,S.S.Bae,Y.J.Kim,K.H.Yoo,J.Cheon,S.Kim,Langmuir monolayer of Co nanoparticles and their patterning by microcontact printing[J],J.Phys.Chem.B,2005,109:13119-13123.
    [32]T.Taranishi,M.Hosoe,T.Tanaka,M.Miyake,Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition[J],J.Phys.Chem.B,1999,103:3818-3827.
    [33]H.A.Santos,M.Chirea,V.Garcia-Morales,F.Silva,J.A.Manzanares,K.Kontturi,Electrochemical study of interfacial composite nanostructures:Polyelectrolyte/Gold nanoparticles multilayers assembled on phospholipids/deatran sulfate monolayer at a liquid-liquid interface[J],J.Phys.Chem.B,2005,109:20105-20114.
    [34]R.Zirbs,F.Kienberger,P.Hinterdorfer,W.H.Binder,Directly assembly of Au nanoparticles on to planar surface via multiple hydrogen bonds[J],Langmuir,2005,21:8414-8421.
    [35]Ⅰ.Motte,F.Billoudet,E.Lacaze,J.Douin,P.M.Pileni,Self-organization into 2D and 3D superlattices of nanosized particles differing by their size[J],J.Phys.Chem.B,1997,!01:138-144.
    [36]D.Yogev,S.Efrima,Novel silver metal liquidlike films[J],J.Phys.Chem.,1988,92:5754-5760.
    [37]M.Sastry,V.Patil,K.S.Mayya,D.V.Paranjape,P.Singh,S.R.Sainkar,Organization of polymer-capped platinum colloidal particles at the air-water interface[J],Thin Solid Film,1998,324:239-244.
    [38]C.J.Kiely,J.Fink,M.Brust,D.Bethell,D.J.Schiffrin,Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters[J],Nature,1998,396:444-446.
    [39]M.P.Pileni,Nanocrystal self-assembly:Fabrication and collective properties[J],J.Phys.Chem.B,2001,105:3358-3371.
    [40]D.V.Talapin,E.V.Shevchenko,A.Kornowski,N.Gaponik,M.Haase,A.L.Rogach,H.Weller,A new appproch to crystallization of CdSe nanoparticles into orderd three-dimensional superlattice[J],Adv.Mater.,2001,13(24):1868-1871.
    [41]J.W.Hu,G.B.Han,B.Ren,S.G.Sun,Z.Q.Tian,Theoretical consideration on preparing silver particles films by adsorbing nanoparticles from bulk colloids to an air-water interface[J],Langmuir,2004,20:8831-8838.
    [42]H.Duan,D.Wang,D.G.Kurth,H.M(o∣¨)hwald,Directing self-assembly of nanoparticles at water/oil interface[J],Angew.Chem.Int.Ed.,2004,43:5639-5642.
    [43]F.Reincke,S.G.Hickey,W.K.Kegel,D.Vanmaekelbergh,Spontaneous assembly of a monolayer charged gold nanocrystal at the water/oil interface[J],Angew.Chem.Int.Ed.,2004,43:458-462.
    [44]Y.J.Li,W.J.Huang,S.G.Sun,A universal approach for the self-assembly of hydrophilic nanoparticles into orderd monolayer films at a toluene/water interface[J],Angew.Chem.Int.Ed.,2006,45:2537-2539.
    [45]U.Jeong,X.Teng,Y.Wang,H.Yang,Y.Xia,Superparamagnetic colloids:controlled synthesis and niche application[J].Adv.Mater.,2007,19:33-60.
    [46]A.H.Lu,E.L.Salabas,F.Sch(u∣¨)th,Magnetic nanoparticles:synthesis,protection,functionalization and application[J].Angew.Chem.Int.Ed.,2007,46:1222-1224.
    [47]任静,顾正飞,成钢,王仲民,周怀营,Fe-Pt纳米晶永磁材料的研究进展[J],金属功能材料,2004,11(6):23-28.
    [48]杨治军,于振涛,李争显,胡涛,Fe/Pt磁性薄膜的研究进展[J],稀有金属快报,2007,26(2):7-11.
    [49]S.Sun,C.B.Murray,D.Weller,L.Folks,A.Moser,Monodisperse FePt nanoparticles and ferromagnetic nanocrystal superlattices[J],Science,2000,287:1989-1992.
    [50]E.Shevcheko,D.Talapin,A.Kornowski,F.Wiekhorst,J.K(o∣¨)tzler,M.Haase,A.Rogach,H.Weller,Colloidal crystals of monodisperse FePt nanoparticles grown by a three-layer technique of controlled oversaturation[J],Adv.Mater.,2002,14(4):287-289.
    [51]L.E.M.Howard,H.L.Nguyen,S.R.Giblin,B.K.Tanner,L.Terry,A.K.Hughes,J.S.O Evans,A synthetic route to size-controlled fcc and fct FePt nanoparticles[J],J.Am.Chem.Soc.,2005,127:10140-10141.
    [52]A.K.Sra,T.D.Ewers,Q.Xu,H.Zandbergen,R.E.Schaak,One-pot synthesis of bi-disperse FePt nanoparticles and size-selective self-assembly into AB_2,AB_5,and AB_(13) superlattices[J],Chem.Commun.,2006:750-752.
    [53]A.Asthana,Y.K.Takahashi,Y.Matsui,K.Hono,Effect of base pressure on the structure and magnetic properties of FePt thin films[J],Journal of Magnetism and Magnetic Materials,2008,320(3-4):250-256.
    [54]A.C.Cheng,J.H.Hwa,P.C.Kuo,H.L.Huang,Onset of hard magnetic L1_0 FePt phase with(001)texture[J],Thin Solid Films,2008,516(6):1155-1159.
    [55]L.H.Lewisa,J.Kimb,K.Barmak,The CoPt system:A nature exchange spring[J],Physica B.2003:327-329.
    [56]J.Maclaren,R.Victor.Theoretical predictions of interface anisotropy in the presence of interdiffusion [J],Appl.Phys.,1994,76:6069-6071.
    [57]许小红,段静芳,杨治广,武海顺,Co_(1-x)Pt_x薄膜的结构与磁学性能[J],稀有金属材料与工程,2005,34(9):1365-1368.
    [58]韩庆艳,顾正飞,成钢,赵家成,黄治峰,高宝杰,Co-Pt永磁合金薄膜的研究进展[J],电工材料,2007,3:30-35.
    [59]Y.Vasquez,A.K.Sra,R.E.Schaak,One-pot synthesis of hollow superparamagnetic CoPt nanospheres[J],J.Am.Chem.Soc.,2005,127,12504-12505.
    [60] Z. Zhang, D. A. Blom, Z. Gal, J. R. Thompson, J. Shen, S. Dai, High-yield solvothermal formation of magnetic CoPt alloy nanowires [J], J. Am. Chem. Soc, 2003, 125: 7528-7529.
    
    [61] J. I. Park, J. Cheon, Synthesis of "solid solution" and "core-shell" type cobalt-platinum magnetic nanoparticles via transmetalation reaction [J], J. Am. Chem. Soc, 2001,123, 5743-5746.
    
    [62] J. Choi, S. J. Oh, H. Ju, J. Cheon, Massive Fabrication of free-standing one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect [J], Nano Lett.,2005, 5(11): 2179-2183.
    
    [63] E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Colloidal synthesis and self-assembly of CoPt_3 nanocrystals [J],J. Am. Chem. Soc, 2002, 124: 11480-11485.
    
    [64] P. Beecher, E. V. Shevchenko, H. Weller, A. J. Quinn, G. Redmond, Magnetic-field-directed growth of CoPt_3 nanocrystal microwires [J],Adv. Mater., 2005, 17(8): 1080-1083.
    
    [65] C. H. Jun, Y. J. Park, Y. R. Yeon, J. Choi, W. Lee, S. Ko, J. Cheon, Demonstration of a magnetic and catalytic Co@Pt nanoparticles as a dual-function nanoplatform [J], Chem. Commun., 2006: 1619-1621.
    
    [66] M. Yamada, M. Maesaka, M. Kurihara, M. Sakamoto, M. Miyake, Novel synthetic approach to creating PtCo alloy nanoparticles by reduction of metal coordination nano-polymers [J], Chem. Commun.,2005:4851-4853.
    
    [67] V. Tzitaios, D. Niarchos, G. Margariti, J. Fidler, D. Petridis, Synthesis of CoPt nanoparticles by a modified polyol method: Characterization and magnetic properties [J], Nanotechnology, 2005, 16: 287-261.
    
    [68] J. Penuelas, C. A. Vignolle, P. Aadrazza, A. Ouerghi, N. Bouet. Temperature effect on the ordering and morphology of CoPt nanoparticles [J], Surf. Sci., 2008, 602(2): 545-551.
    
    [69] Y. Peng, T. Cullis, G. Moebus, X. Xu, B. Inkson, Nanoscale characterization of CoPt/Pt multilayer nanowires [J], Nanotechnology, 2007, 18(48): 485704-485711.
    
    [70] Y. Wang, H. Yang, Synthesis of CoPt nanorods in ionic liquid [J], J .Am. Chem. Soc, 2005, 127:5316-5317.
    
    [71] A. Hannour, L. B. Ardotti, B. Prevel, E. Bernstein, P. Melinon, A. Perez, J. Gierak, E. Bourhis, D.Mailly, 2D arrays of CoPt nanocluster assemblies [J], Surf. Sci., 2005, 594: 1 -11.
    
    [72] J. C. Ododo, W. Howarth, Magnetic inhomogeneity of platinum-nickel alloys [J], Solid State Communications, 1978, 26(1): 39-42.
    
    [73] G N. Glavee, K. J. Klabunde, C. M. Sorensen, G. C. Hadjipanayis, Sodium borohydride reduction of cobalt ions in nonaqueous media. Formation of ultrafine particles (nanoscale) of cobalt metal [J], Inorg. Chem.,1993,32:474-477.
    [74]M.Mandal,S.Kundu,T.K.Sau,S.M.Yusuf,T.Pal,Synthesis and characterization of superparamagnetic Ni-Pt nanoalloy[J],Chem.Mater.,2003,15:3710-3715.
    [75]K.Ahrenstorf,O.Albrecht,H.Heller,A.Kornowski,D.G(o|¨)rlitz,H.Weller,Colloidal synthesis of Ni_xPt_(1-x) nanoparticles with tuneable composition and size[J],Small,2007,3(2):271-274.
    [76]孙兆林,催化重整[M],中国石化出版社,2006.
    [77]A.Roucoux,J.Schulz,H.Patin,Reduced transition metal colloids:A novel family of reusable catalysts?[J].Chem.Rev.,2002,102(10):3757-3778.
    [78]M.Besson,P.Gallezot,Selective oxidation of alcohols and aldehydes on metal catalysts[J].Catalysis.Today,2000,57(1-2):127-141.
    [79]R.M.Heck,R.J.Farauto,Automobile exhaust catalysts[J],Appl.Catal.A-Gen.,2001,221:443-457.
    [80]S.Wasmus,A.Kuver,Methanol oxidation and direct methanol fuel cell:A selective review[J].J.Electroanal.Chem.,1999,461:14-31.
    [81]J.Greeley,T.F.Jaramillo,J.Bonde,I.Chorkendorff,J.K.Norskov,Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J].Nature Mater.,2006,5:909-913.
    [82]陈卫,厦门大学博士学位论文[D],2003.
    [83]李君涛,厦门大学硕士学位论文[D],2005.
    [84]田娜,厦门大学博士学位论文[D],2007.
    [85]史鹏飞,化学电源工艺学[M],哈尔滨工业大学出版社,2006.
    [86]陆天虹,张玲玲,唐亚文,高颖,各种燃料电池产业化概况[J],电池工业,2007,12(2):119-121.
    [87]C.Burda,X.B.Chen,R.Narayanan,M.A.E1-Sayed,Chemistry and properties of nanocrystals of different shapes[J],Chem.Rev.,2005,105:1025-1102.
    [88]R.Narayanan,M.A.E1-Sayed,Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes:Electro-transfer reaction[J],J.Am.Chem.Soc.,2004,126(23):7149-7195.
    [89]M.A.E1-Sayed,Some interesting properties of metals confined in time and nanometer space of different shapes[J],Acc.Chem.Rev.,2001,34(4):257-264.
    [90]J.Solla-Gullon,F.J.Vidal-Iglesias,P.Rodriguez,E.Herrero,J.M.Feliu,J.Clavilier,A.Aldaz,In situ surface characterization of preferentially oriented platinum nanoparticles by using electrochemical structure seneitive adsorption reaction[J],J.Phys.Chem.B,2004,108:13573-13575.
    [91]F.J.Vidal-Iglesias,N.Garcia-Araez,V.Montiel,J.M.Feliu,A.Aldaz,Selective electrocatalysis of ammonia oxidation on Pt(lOO) sites in alkaline medium [J], Electrochem. Commun., 2003, 5: 22-26.
    
    [92] I. Balint, A. M. B. Akane, K. Aika, Investigation of the morphjology-catalytic reactivity relationship for Pt nanoparticles supported on alumina by using the reduction of NO with CH_4 as a model reaction [J],Chem. Commun., 2002, 10: 1044-1045.
    
    [93] K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G. A. Somorjai, Platinum nanoparticle shape effects on benzene hydrogenation selectivity [J], Nano. Lett., 2007, 7(10): 3097-3101.
    
    [94] J. L. Zubimendi, G. Andreasen, W. E. Triaca, The influence of Pt crystalline surface morphology on oxygen electroreduction [J], Electrochim. Acta, 1995,40: 1305-1314.
    
    [95] S. G. Sun, D. F. Yang, S. J. Wu, J. Ociepa, J. Lipkowski, Electrochemical auger spectroscopy and low energy electron diffraction studies of the stability of the Au (210) electrode in the presence of adsorbed pyridine [J], J. Electroanal. Chem., 1993, 349: 211-222.
    
    [96] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity [J], Science, 2007, 316: 762-735.
    
    [97] S. Maksimuk, S. Yang, Z. Peng, H. Yang, Synthesis and characterization of orderd intermatallic PtPb nanorods [J], J. Am. Chem. Soc, 2007, 129: 8684-8685.
    
    [98] J. Ren, R. Tilley, Shape-controlled growth of platinum nanoparticles [J], Small, 2007, 3(9): 1508-1512.
    
    [99] H. Song, F. Kim, S. Connor, G. A. Somorjai, P. Yang, Pt nanocrystal: Shape control and Langmuir-Blodgett monolayer formation [J], J. Phys. Chem. B, 2005, 109: 188-193.
    
    [100] J. Chen, T. Herricks, M. Geissler, Y. Xia, Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polypol process [J], J. Am. Chem. Soc, 2004, 126: 10854-10855.
    
    [101] S. Mahima, R. Kannan, I. Komath, M. Aslam, V. K. Pillai, Synthesis of platinum Y-Junction nanostructures using hierarchically designed alumina templates and their enhanced electrocatalytic activity for fuel cell applications [J], Chem. Mater., 2008, 20(3): 601-603.
    
    [102] A. Hamnett, B. J. Kennedy, Bimetallic carbon supported anodes for the direct methanol air fuel-cell [J],Electrochim. Acta, 1988,33(11): 1613-1618.
    
    [103] A. B. Anderson, E. Grantscharora, S. Seong, Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance [J], J. Electrochem. Soc, 1996,43(6): 2075-2081.
    
    [104] Y. Ishikawa, M. S. Liao, C. R. Cabrera, Oxidation of methanol on platinum, ruthenium and mixed Pt/M metals (M = Ru, Sn): A theoretical study [J], Surf. Sci., 2000, 463(1): 66-80.
    
    [105] P. Strasser, Combinatorial optimization of ternary Pt alloy catalysts for the electrooxidation of methanol[J],Journal of Combinatorial Chemistry,2008,10(2):216-224.
    [106]T.J.Schmidt,H.A.Gasteiger,R.J.Behm,Methanol electrooxidation on a colloidal PtRu alloy fuel cell catalyst[J],Electrochem.Commun.,1999,1(1):1-4.
    [107]X.Zhang,K.Y.Chan,Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles,their characterization and electrocatalytic properties[J],Chem.Mater.,2003,15:451-459.
    [108]J.Huang,Z.Liu,C.He,L.M.Gan,Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell[J],J.Phys.Chem.,2005,109:16644-16649.
    [109]Z.Chen,X.Qiu,B.Lu,S.Zhang,W.Zhu,L.Chen,Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells[J],Electrochem.Commun.,2005,7:593-596.
    [110]X.Xue,T.Lu,C.Liu,W.Xing,Simple and controllable synthesis of highly dispersed Pt-Ru/C catalysts by a two-step spray pyrolysis process[J],Chem.Commun.,2005,1601-1603.
    [111]L.Cao,F.Scheiba,C.Roth,F.Schweiger,C.Cremers,U.Stimming,H.Fuess,L.Chen,W.Zhu,X.Qiu,Novel nanocomposite Pt/RuO_2·xH_2O/carbon nanotube catalysts for direct methanol fuel cells[J],Angew.Chem.Int.Ed.,2006,45:1-5.
    [112]S.H.Liu,W.Y.Yu,C.H.Chen,A.Y.Lo,B.J.Hwang,S.H.Chien,S.B.Liu,Fabrication and characterization of well-dispersed and highly stable PtRu nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell[J],Chem.Mater.,2008,20(4):1622-1628.
    [113]魏子栋,三木敦史,大森唯义,大泽雅俊,甲醇在欠电位沉积Sn/Pt电极上催化氧化[J],物理化学学报,2002,18(12):1120-1124.
    [114]Y.G.Guo,J.S.Hu,H.M.Zhang,H.P.Liang,L.J.Wan,C.L.Bai,Tin/platinum bimetallic nanotube array and its electrocatalytic activity for methanol oxidation[J],Adv.Mater.,2005,17(6):746-750.
    [115]S.A.Lee,K.W.Park,J.H.Chio,B.K.Kwon,Y.E.Sung,Nanoparticles synthesis and electrocatalytic activity of Pt alloys for methanol fuel cells[J],J.Electrochem.Soc.,2002,149(10):A 1299-A 1304.
    [116]T.C.Deivaraj,W.Chen,J.Y.Lee,Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol[J],J.Mater.Chem.,2003,13:2555-2560.
    [117]F.Liu,J.Y.Lee,W.Zhou,Template preparation of multisegment PtNi nanorods as methanol electro-oxidation catalysts with adjustable bimetallic pair sites[J],J.Phys.Chem.B,2004,108,17959-17963.
    [118]T.C.Deivaraj,J.Y.Lee,Preparation of carbon-supported PtNi nanoparticles via single source molecular precursor approach[J],J.Electrochem.Soc.,2004,151(11):A 1832-A 1835.
    [119]F.Liu,J.Y.Lee,W.J.Zhou,Segmented Pt/Ru,Pt/Ni,and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation[J],Small,2006,2(1):121-128.
    [120]Z.B.Wang,G.P.Yin,Y.Y.Shao,B.Q.Yang,P.F.Shi,P.X.Feng,Electrochemical impedance studies on carbon supported PtRuNi and PtRu anode catalysts in acid medium for direct methanol fuel cell [J],J.Power.Source,2007,165(1):9-15.
    [121]K.L.Ley,R.X.Liu,C.Pu,Q.B.Fan,N.Leyarovska,C.Seqre,E.S.Smotkin,Methanol oxidation on single-phase Pt-Ru-Os ternary alloys[J],J.Electrochem.Soc.,1997,144(5):1543-1548.
    [122]L.Liu,R.Viswanathan,R.X.Liu,E.S.Smotkin,Methanol oxidation on nation spin-coated polycrystalline platinum and platinum alloys[J],Electrochem.Solid.State.Lett.,1998,1(3):123-125.
    [123]J.F.Whitacre,T.I.Valdez,S.R.Narayanan,A high-throughput study of PtNiZr catalysts for application in PEM fuel cells[J],Electrochimica.Acta,2008,53(10):3680-3689.
    [124]张云河,李新海,吴显明,许名飞,邓凌峰,PEMFC用Pt-Co/C催化剂的制备与性能[J],贵金属,2004,25(1):19-23.
    [125]L.Xiong,A.M.Kannan,A.Manthiram,Pt-M(M=Fe,Co,Ni,and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells[J],Electrochem.Commun.,2002,4:898-903.
    [126]J.N.Soderberg,A.H.C.Sirk,S.A.Campbell,V.I.Birss,Oxygen reduction by sol-derived Pt/Co-based alloys for PEM fuel cells[J],J.Electrochem.Soc.,2005,152(10):A2017-A2022.
    [127]L.Xiong,A.Manthiram,Effect of atomic ordering on the catalytic activity of carbon supported PtM(M=Fe,Co,Ni,and Cu) alloys for oxygen reduction in PEMFCs[J],J.Electrochem.Soc.,2005,152(4):A697-A703.]
    [128]P.Yu,M.Pemberton,P.Plasse,PtCo/C cathode catalyst for improved durability in PEMFCS[J],J.Power.Source,2005,144:11-20.
    [129]张萍,巩英鹏,潘牧,袁润章,质子交换膜燃料电池Fe-Pt/C催化剂合成及性能[J],电源技术,2004,28(5):291-294.
    [130]A.J.Wang,Y.P.Lu,R.X.Sun,Recent progress on the fabrication of hollow microspheres[J],Materials Science and Engineering A,2007,460-461:1-6.
    [131]H.P.Liang,H.M.Zhang,J.S.Hu,Y.G.Guo,L.J.Wan,C.L.Bai,Pt hollow nanoparticles:Facile synthesis and enhanced electrocatalysts[J],Angew.Chem.Int.Ed.,2004,43:1540-1543.
    [132]J.Ge,W.Xing,X.Xue,C.Liu,T.Lu,J.Liao,Controllable synthesis of Pd nanocatalysts for direct formic acid fuel cell (DFADC) application: From Pd hollow nanospheres to Pd nanoparticles [J], J. Phys.Chem. C, 2007, 111, 17305-17310.
    
    [133] G. Chen, D. Xia, Z. Nie, Z. Wang, L. Wang, L. Zhang, J. Zhang, Facile synthesis of CoPt hollow sphere electrocatalyst [J], Chem. Mater., 2007, 19: 1840-1844.
    
    [134] R. Yang, H. Li, X. Qiu, L. Chen, A spontaneous combustion reaction for synthesis Pt hollow capsules using colloidal carbon sphere as template [J], Chem. Eur. J. 2006, 12: 4083-4090.
    
    [135] F. Cheng, H. Ma, Y. Li, J. Chen, Ni_(1-x)Pt_x (x= 0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane [J], Inorg. Chem., 2007,46(3): 788-794.
    
    [136] A. Pozio, M. D. Francesco, A. Cemmi, F. Cardellini, L. Giorgi, Comparision of high surface Pt/C catalysts by cyclic voltammetry [J], J. Power. Source, 2002, 105: 13-19.
    
    [137] M. Chen, Y. Xing, Polymer-mediated synthesis of highly dispersed Pt nanoparticles on carbon black [J], Langmuir, 2005, 21: 9334-9338.
    
    [138] C. L. Sun, L. C. Chen, M. C. Su, L. S. Hong, O. Chyan, C. Y. Hsu, K. H. Chen, T. F. Chang, L. Chang,Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotube with high electrochemical activity [J], Chem. Mater., 2005, 17: 3749-3753.
    
    [139] Y. Lin, X. Cui, C. Yen, C. M. Wai, Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells [J], J. Phys. Chem. B, 2005, 109:14410-14415.
    
    [140] T. Q. Tian, S. P. Jiang, Y. M. Liang, P. K. Shen, Synthesis and characterization of Platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell application [J], J. Phys.Chem. B, 2006, 110: 5343-5350.
    
    [141] J. Chen, M. Wang, B. Liu, Z. Fan, K. Cui, Y. Kuang, Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation [J], J. Phys. Chem.5,2006,110: 11775-11779.
    
    [142] A. M. Rocco, C. A. Silva, M. I. F. Macedo, L. F. Maestro, M. H. Herbst, G. Solorzano, A. L. Xavier,Purification of catalytically produced carbon nanotubes for use as support for fuel cell cathode Pt catalyst [J], J. Mater. Sci., 2008, 43(2): 557-567.
    
    [143] V. Selvaraj, M. Alagar, Ethylene glycol oxidation on Pt and Pt-Ru nanoparticles decorated polythiophene/multiwalled carbon nanotube composites for fuel cell application [J], Nanotechnology, 2008,19(4): 045504.
    [144]G.Wu,D.Li,C.Dai,D.Wang,N,Li,Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostruetured carbon for methanol eleetrooxidation[J],Langmuir,2008,24:3566-3575.
    [145]M.L.Lin,C.C.Huang,M.Y.Lo,C.Y.Mou,Well-ordered mesoporous carbon thin film with perpendicular channels:Application to direct methanol fuel cell[J],J.Phys.Chem.C,2008,112(3):867-873.
    [146]S.H.Liu,W.Y.Yu,C.H.Chen,A.Y.Lo,B.J.Hwang,S.H.Chien,S.B.Liu,Fabrication and characterization of well-dispersed and highly stable PtRu nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell[J],Chem.Mater.,2008,20(4):1622-1628.
    [147]H.Pang,J.Chen,L.Yang,B.Liu,X.Zhong,X.Wei,Ethanol electrooxidation on Pt/ZSM-5zeolite-C catalyst[J],J.Solid.State.Electrochem.,2008,12(3):237-243.
    [148]H.Song,X.P.Qiu,X.X.Li,F.S.Li,W.T.Zhu,L.Q.Chen,TiO_2 nanotubes promoting Pt/C catalysts for ethanol electro-oxidation in acidic media[J],J.Power.Source,2007,170(1):50-54.
    [149]E.J.Mcleod,V.I.Birss,Sol-gel derived Wo_x and Wo_x/Pt films for direct methanol fuel cell catalyst application[J],Electrochim.Acta,2005,51(4):684-693.
    [150]H.Xu,X.Hou,Synergistic effect of CeO_2 modified Pt/C electrocatalysts on the performance of PEM fuel cells[J],International Journal of Hydrogen Energy,2007,32(17):4397-4401.
    [151]C.D.Urso,L.Morales,B.A.Di,V.Baglio,R.Omelas,G.Orozco,L.G.Arriaga,V.Antonucci,A.S.Arico,Preparation and application of Pt-IrO_2 electrocatalysts for regenerative fuel cells[J],ECS Transactions,2007,11(1):191-196.
    [152]彭程,程璇,张颖,陈羚,范钦柏,直接甲醇燃料电池阳极催化剂的研究进展[J],电源技术,2003,27(5):470-474.
    [153]S.Ye,A.K.Vijh,L.H.Dao,A new fuel electrocatalyst based on highly porous carbonized polyacylonitrile foam with very low platinum loading[J],J.Electeochem.Soc.,1996,143(1):L7-L9.
    [154]G.Qiz,P.G.Pickup,Novel supported catalyst:platinum and platinum oxide nanoparticles dispersed on polypyrrole/polystyrene sulfonate particles[J],Chem.Commun.,1998:15-16.
    [155]M.C.Lefebure,G.Qiz,P.G.Pickup,Electrochemically conducting proton exchange polyers as catalyst supports for proton exchange membrance fuel cell[J],J.Electrochem.Soc.,1999,146(6):2054-2058.
    [156]S.Han,Y.Yun,K.W.Park,Y.E.Sung,T.Hyeon,Simple solid-phase synthesis of hollow graphitie nanoparticles and their application to direvt methanol fuel cell electrodes[J],Adv.Mater.,2003,15(22): 1922-1925.
    [157]Y.Y.Song,Y.Li,X.H.Xia,One-step pyrolysis process to synthesize dispersed Pt/carbon hollow nanospheres catalysts for electrocatalysis[J],Electrochem.Commun.,2007,9:201-205.
    [158]B.Fang,J.H.Kim,C.Lee,J.S.Yu,Hollow macroporous core/mesoporous shell carbon with a tailored structure as a cathode electrocatalyst support for proton exchange membrane fuel cells[J],J.Phys.Chem.C,2008,112(2):639-645.
    [159]J.Kua,W.A.Goddard,Oxidation of methanol on 2nd and 3rd row group transition metals(Pt,Ir,Os,Pd,Rh,and Ru):Application to direct methanol fuel cells[J],J.Am.Chem.Soc.,1999,121:10928-10941.
    [160]李金峰,宋焕巧,邱新平,直接甲醇燃料电池阳极催化剂的研究进展[J],电源技术,2007,31(2):167-170.
    [161]孙世刚,固/液界面现场光谱电化学[J],大学化学,1993,8(6):1-4.
    [162]J.Feinleib,Electroreflectance in metals[J].Phys.Rev.Lett.,1966,16(26):1200-1202.
    [163]M.Fleichman,P.J.Hendra,A.J.Mcquilla,Raman-spectra of pyridine adsorbed at a silver electrode [J],Chem.Phys.Lett.,1974,26(2):163-166.
    [164]A.Bewick,K.Kunimatsu,B.S.Pons,Infrared-spectroscopy of the electrode-electrolyte interface[J],Electrochim.Acta,1980,25(4):465-468.
    [165]G.Kataby,Y.Koltypin,J.Rothe,J.Hormes,I.Felner,X.Cao,A.Gedanken,The adsorption of monolayer coatings on iron Nanoparticles:M(o|¨)ssbauer spectroscopy and XANES results[J],Thin Solid Film,1998,333:41-49.
    [166]Y.Alan,E.J.Choi,S.Kim,H.N.Ok,Magnetization and m(o|¨)ssbauer study of cobalt ferrite particles from nanophase cobalt iron carbonate[J],Mater.Lett.,2001,50(1):47-52.
    [167]Y.Ito,S.Takamura,M.Kobiyama,Nano-crystalline gold studied by positron annihilation[J],Phys.Staus.Solidi.,2000,A179(2):297-303.
    [168]B.Guan,W.Lu,J.Fang,R.B.Cole,Characterization of synthesized titanium oxide nanoclusters by MALDI-TOF mass spectrometry,Journal of the American Society for Mass Spectrometry,2007,18(3):517-524.
    [169]C.I.Ratcliffe,K.Yu,J.A.Ripmeester,M.B.Zaman,C.Badarau,S.Singh,Solid state NMR studies of photoluminescent cadmium chalcogenide nanoparticles[J],Phys.Chem.Chem.Phys.,2006,30:3510-3519.
    [170]L.Zhou,S.Y.Zhang,J.C.Cheng L.D.Zhang,Z.Zeng,Optical absorptions of nanoscaled CoTiO_3 and NiTiO_3[J],Mater.Sci.Engineering.B,1997,49:117-122.
    [171]A.Hartstein,J.R.Kirtley,J.C.Tsang,Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers[J],Phys.Rev.Lett.,1980,45:201-204.
    [172]A.Hatta,T.Ohshima,W.Suetaka,Observation of the enhanced infrared-absorption of para-nitrobenzoate on Ag island films with an ATR technique[J],Appl.Phys.A-Mater.,1982,29(2):71-75.
    [173]A.Hatta,T.Ohshima,W.Suetaka,Infrared-absorption enhancement of monolayer species on thin evaporated Ag films by use of Kretschmann congigureation-evidence for 2 types of enhanced surface electric-fields[J],Appl.Phys.A-Mater.,1984,35(3):135-140.
    [174]M.Osawa,Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy[J],Bull.Chem.Soc.Jpn.,1997,70:2861-2880.
    [175]A.Miki,M.Osawa,Surface-enhanced IR absorption on platinum Nanoparticles:an application to real-time monitoring of electrocatalytic reactions[J],Chem.Commun.,2002,1500-1501.
    [176]Y.Nishikawa,T.Nagasawa,K.Fujiwara,M,Osawa,Silver island films for surface-enhanced infrared absorption spectroscopy:effect of island morphology on the absorption molecules[J],Vib.Spectrosc.,1993,6:43-53.
    [177]A.E.Bjerke,P.R.Griffiths,W.Theiss,Surface-enhanced infrared absorption of CO on platinized platinum[J],Anal.Chem.,1999,71:1967-1974.
    [178]Z.Zhang,T.Imae,Study of Surface-enhanced infrared spectroscopy:1.Dependence of the enhancement on thickness of metal island films and structure of chemisorbed molecules[J],J.Colloid.Interface.Sci.,2001,233:99-106.
    [179]M.Osawa,K.Ataka,K.Yoshii,Y.Nishikawa,Surface-enhanced infrared spectroscopy:The origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles[J],Appl.Spectrosc.,1993,47(9):1497-1502.
    [180]S.Badilescu,P.V.Ashrit,V.V.Truong,Enhanced infrared attenuated-total-reflection spectra of p-nitrobenzoic acid with Ag films[J],Appl.Phys.Lett.,1988,52:1551-1553.
    [181]S.Badilescu,P.V.Ashrit,V.V.Truong,I.I.Badilescu,Enhanced infrared ATR spectra of o-niteobenzoic,m-niteobenzoic,and p-niteobenzoic acid with Ag films[J],Appl.Spectrosc.,1989,43(3):549-552.
    [182]Y.G.Yan,Q.X.Li,S.J.Huo,M.Ma,W.B.Cai,Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal electrolyte interface[J],J.Phys.Chem.B, 2005,109:7900-7906.
    [183]Y.G.Yan,B.B.Huang,J.Y.Wang,H.F.Wang,W.B.Cai,In situ surface-enhanced IR absorption spectroscopy on the adsorption and reduction of nitric oxide at ruthenium electrode[J],J.Catal.,2007,249(2):311-317.
    [184]严彦刚,复旦大学博士学位论文[D],2007.
    [185]霍胜娟,复旦大学博士学位论文[D],2007.
    [186]D.A.Heaps,P.R.Griffiths,Band shapes in the infrared spectra of thin organic films on metal nanoparticles[J],Vib.Spectrosc.,2006,42:45-50
    [187]G.Q.Lu,S.G.Sun,S.P.Chen,N.H.Li,Y.Y.Yang,Z.W.Tian,In Electrode Processes Ⅵ[M]A Wieckowski and K Itaya(Eds),The Electrochemical Society,Inc.,PV 96-8,1996,136.
    [188]G.Q.Lu,S.G.Sun,L.R.Cai,S.P.Chen,Z.W.Tian,K.K.Shiu,In situ FTIR spectroscopic studies of adsorption of CO,SCN~- and Poly(o- phenylenediamine) on electrodes of nanometer thin films of Pt,Pd and Rh:The abnormal infrared effects(AIREs)[J].Langmuir,2000,16(2):778-786.
    [189]陈友江,孙世刚,贡辉,陈声培,周志有,李君涛,纳米结构Pt膜方波电位法制备及其特殊红外性能[J],物理化学学报,2004,20(2):129-133.Y
    [190]Y.J.Chen,S.G.Sun,S.P.Chen,J.T.Li,H.Gong,Anomalous IR properties of nanostructured films created by square wave potential on an array of Pt microelectrodes:An in situ microscope FTIRS study of CO adsorption[J],Langmuir,2004,20:9920-9925.
    [191]蔡丽蓉,孙世刚,夏盛清,陈芳,郑明森,陈声培,卢国强,纳米钯膜电极的制备、结构表征和特殊反应性能[J],物理化学学报,1999,15(11):1023-1029.
    [192]李君涛,陈友江,苏章菲,周志有,陈声培,孙世刚,Pd微电极阵列表面纳米薄膜的方波电位制备及其特殊红外性能[J],高等学校化学学报,2005,26(4):710-714.
    [193]郑明森,陈声培,孙世刚,碱性介质中纳米薄膜Ru电极上CO吸附的异常红外效应[J],光谱学与光谱分析,2000,20(6)755-757.
    [194]M.S.Zheng,S.G.Sun,In situ FTIR spectroscopic studies of CO adsorption on electrode of nanometer thin film of ruthenium in sulfuric acid solutions[J],J.Electroanal.Chem.,2001,500(1-2):223-232.
    [195]H.Gong,S.G.Sun,J.T.Li,Y.J.Chen,S.P.Chen.Surface combinatorial studies of IR properties of nanostructured Ru film electrodes towards CO adsorption[J].Electrochim.Acta,2003,48(20-22),2933-29421.
    [196]W.G.Lin,S.G.Sun,Z.Y.Zhou,S.P.Chen,H.C.Wang,Abnormal Infrared Effects of nanostructed thin film material of Rhodium for CO adsorption at solid/gas interfaces[J],J.Phys.Chem.B,2002,106(45):11778-11783.
    [197]G.Orozco,C.Gutierrez,Adsorption and electro-oxidation of carbon monoxide,methoanol,rthanol and formic acid on osmium electrodeposited on glassy carbon[J],J.Electroanal.Chem.,2000,484(1):64-72.
    [198]R.Ortiz,A.Cuesta,O.P.Marquez,C.Gutierrez,Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates[J],J.Electroanal.Chem.,1999,465(2):234-238.
    [199]卢国强,蔡丽蓉,孙世刚,何俊翔,纳米薄层Pt-Ru及Pt-Pd表面合金电极上CO吸附的原位FTIR研究[J],科学通报,1999,44(11),1165-1168.
    [200]Z.Chen,S.G.Sun,N.Ding,Zhiyou Zhou,Abnormal infrared effects of nanometer scale thin film material of PtPd alloy in CO adsorption[J],Chinese Science B,2001,46(17):1439-1442.
    [201]卢国强,蔡丽蓉,孙世刚,何俊翔,表面合金电极上CO吸附的红外光谱研究[J],光谱学与光谱分析,1998,18(4):19-20.
    [202]M.S.Zheng,S.G.Sun,S.P.Chen,Abnormal infrared effects and electroeatalytic properties of nanometer scale thin film of PtRu aoolys for CO adsorption and oxidation[J],J.Appl.Electrochem.,2001,31:749-757.
    [203]甄春花,厦门大学硕士学位论文[D],2007.
    [204]王汉春,周志有,汤薇,孙世刚,纳米Ni薄膜的电化学制备及其异常红外效应研究[J].科学通报,2004,49(1):57-60.
    [205]H.C.Wang,S.G.Sun,J.W.Yan,H.Z.Yang,Z.Y.Zhou,In situ STM Studies of electrochemical growth of nanostructured Ni films and their anomalous IR properties[J],J.Phys.Chem.B,2005,109:4309-4316.
    [206]陈青松,李君涛,周志有,颜佳伟,孙世刚,纳米结构钴薄膜电极的制备及其异常红外性能研究[J],高等学校化学学报,2006,27(8):1500-1504.
    [207]Q.S.Chen,S.G.Sun,J.W.Yan,J.T.Li,Z.Y.Zhou.Electrochemical preparation and structural characterization of Co thin films and their anomalous IR properties[J].Langmuir,2006,22(25):10575-10583.
    [208]姜艳霞,陈卫,廖宏刚,金兰英,孙世刚,钯纳米粒子及其团聚体特殊红外性能的CO分子探 针红外光谱[J],科学通报,2004,49(14):1363-1367.
    [209]W.Chen,S.G.Sun,Z.Y.Zhou,S.R Chen,IR optical properties of Pt nanoparticles and their agglomerates investigated by in situ FTIRS using CO as the probe molecule[J],J.Phys.Chem.B,2003,107:9808-9812.
    [210]C.X.Wu,H.Lin,Y.J.Chen,W.X.Li,S.G.Sun.Abnormal IR effects of Pt nanostructured surfaces upon CO chemisorption due to interaction and electron-hole damping[J].J.Chem.Phys.,2004,121:1553-1556.
    [211]黄晓菁,吴晨旭,陈友江,林海,姜冬华,孙世刚,纳米结构Pt膜上CO吸附的异常红外效应机理研究[J],物理学报,2005,54(1):429-433.
    [212]Z.F.Su,S.G.Sun,C.X.Wu,Z.P.Cai,Study of anomalous infrared properties of nanomaterials through effective medium theory[J],J.Chem.Phys.,2008,129:44707.
    [213]陈友江,厦门大学硕士学位论文[D],2004.
    [214]U.Fano,Effects of configuration interaction on intensities and phase shifts[J],Phys.Rev.,1961,6:1886-1878.
    [215]Y.Zhou,H.Uchida,M.Watanabe,Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated reflection technique[J],Langrnuir,1999,15:8757-8764.
    [216]M.Kroner,A.O.Govorov,S.Remi,B.Biedermarm,S.Seidl,A.Badolato,P.M.Petroff,W.Zhang,R.Barbour,B.D.Gerardot,R.J.Warburton,K.Karrai,The nonlinear Fano effect[J],Nature,2008,451(17):311-314.
    [217]O.Krauth,G.Fahsold,A.Pucci,IR-spectroscopy of CO on iron ultrathin films[J],J.MoL Struct.,1999,482-483:237-240.
    [218]O.Krauth,G.Fahsold,A.Pucci,Asymmetric line shape and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001)[J],J.Chem.Phys.,1999,110(6):3113-3117.
    [219]O.Krauth,G.Fahsold,N.Magg,A.Pucci,Anomalous infrared transmission of adsorbates on ultrathin metal films:Fano effect near the percolation threshold[J],J.Chem.Phys.,2000,113(15):6330-6333.
    [220]A.E.Bjerke,P.R.Griffiths,W.Theiss,Surface-enhanced infrared absorption of CO on platinized platinum[J],Anal.Chem.,1999,71:1359-1368.
    [1]李永军,厦门大学博士后研究工作报告[D],2005.
    [2]Y.J.Li,W.J.Huang,S.G.Sun,A universal approach for the self-assembly of hydmphilic nanoparticles into orderd monolayer films at a toluene/water interface[J],Angew.Chem.Int.Ed.,2006,45:2537-2539.
    [3]黄伟珺,厦门大学硕士学位论文[D],2006.
    [4]王中林主编,曹茂盛,李金刚 译,纳米材料表征[M],化学工业出版社,2005.
    [5]黄惠忠 等著 纳米材料分析[M],化学工业出版社,2003.
    [6]左演声 等著,材料现代分析方法[M],北京工业大学出版社,2000.
    [7]梁栋材 著,X射线晶体学基础[M],科学出版社,1991.
    [8]刘世宏 等著,X-射线光电子能谱分析[M],科学出版社,1988.
    [9]周文生,磁性测量原理[M],电子工业出版社,1998.
    [10]陈海英,精密磁强记的发展现状及应用[J],现代仪器,2006,6:5-7.
    [11]陈卫,厦门大学博士学位论文[D],厦门,2003.
    [12]A.Bewick,K.Kunimatsu,Infrared-spectroscopy of the electrode-electtrolyte interphase[J],Surf Sci.,1980,101(1-3):131-138.
    [13]D.S.Corrign,L.W.H.Legung,M.J.Weaver,Single potential-alteration surface infrared spectroscopy:examination of absorbed species involved in irreversible electrode reactions[J],Anal.Chem.,1987,59:2252-2256.
    [14]W.F.Lin,S.G.Sun,In situ FTIRs investigation of surface processes of Rh electrode-novel observation of twin adsorbates of carbon monoxide on rhodium electrode in acid solution[J],Electrochimica.Acta,1996,41(6):803-809.
    [1]A.Hartstein,J.R.Kirtley,J.C.Tsang,Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers[J],Phys.Rev.Lett.,1980,45:201-204.
    [2]M.Osawa,Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy[J],Bull.Chem.Soc.Jpn.,1997,70:2861-2880.
    [3]G.Q.Lu,S.G.Sun,L.R.Cai,S.P.Chen,Z.W.Tian,K.K.Shiu,In situ FTIR spectroscopic studies of adsorption of CO,SCN~- and Poly(o-phenylenediamine) on electrodes of nanometer thin films of Pt,Pd and Rh:The abnormal infrared effects(AIREs)[J].Langmuir,2000,16(2):778-786.
    [4]G.Orozco,C.Gutierrez,Adsorption and electro-oxidation of carbon monoxide,methanol,rthanol and formic acid on osmium electrodeposited on glassy carbon[J],J.Electroanal.Chem.,2000,484(1):64-72.
    [5]A.E.Bjerke,P.R.Griffiths,W.Theiss,Surface-enhanced infrared absorption of CO on platinized platinum[J],Anal.Chem.,1999,71:1359-1368.
    [6]Y.Zhou,H.Uchida,M.Watanabe,Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated reflection technique[J],Langmuir,1999,15:8757-8764.
    [7]M.Kroner,A.O.Govorov,S.Remi,B.Biedermann,S.Seidl,A.Badolato,P.M.Petroff,W.Zhang,R.Barbour,B.D.Gerardot,R.J.Warburton,K.Karrai,The nonlinear Fano effect[J],Nature,2008,451(17):311-314.
    [8]W.Chen,S.G.Sun,Z.Y.Zhou,S.P.Chen,IR optical properties of Pt nanoparticles and their agglomerates investigated by in situ FTIRS using CO as the probe molecule[J],J.Phys.Chem.B,2003,107:9808-9812.
    [9]姜艳霞,陈卫,廖宏刚,金兰英,孙世刚,钯纳米粒子及其团聚体特殊红外性能的CO分子探针红外光谱,科学通报,2004,49(14):1363-1367.
    [10]韩庆艳,顾正飞,成钢,赵家成,黄治峰,高宝杰,Co-Pt永磁合金薄膜的研究进展[J],电工材料,2007,3:30-35.
    [11]M.Yamada,M.Maesaka,M.Kurihara,M.Sakamoto,M.Miyake,Novel synthetic approach to creating PtCo alloy nanoparticles by reduction of metal coordination nano-polymers[J],Chem.Commun.,2005:4851-4853.
    [12]G.Chen,D.Xia,Z.Nie,Z.Wang,L.Wang,L.Zhang,J.Zhang,Facile synthesis of CoPt hollow sphere electrocatalyst [J], Chem. Mater., 2007, 19: 1840-1844.
    
    [13] J. I. Park, J. Cheon, Synthesis of "solid solution" and "core-shell" type cobalt-platinum magnetic nanoparticles via transmetalation reaction [J], J. Am. Chem. Soc, 2001,123, 5743-5746.
    
    [14] J. Choi, S. J. Oh, H. Ju, J. Cheon, Massive Fabrication of free-standing one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect [J], Nano Lett.,2005, 5(11): 2179-2183.
    
    [15] Y. Peng, T. Cullis, G. Moebus, X. Xu, B. Inkson, Nanoscale characterization of CoPt/Pt multilayer nanowires [J], Nanotechnology, 2007, 18(48): 485704-485711.
    
    [16] Z. Zhang, D. A. Blom, Z. Gal, J. R. Thompson, J. Shen, S. Dai, High-yield solvothermal formation of magnetic CoPt alloy nanowires [J], J. Am. Chem. Soc, 2003, 125: 7528-7529.
    
    [17] Y. Sun, B. Mayers, Y. Xia, Metal nanostructures with hollow interiors [J], Adv. Mater., 2003, 15(7-8):641-646.
    
    [18] H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, C. L. Bai, Pt hollow nanoparticles: facile synthesis and enhanced electrocatalysts [J], Angew. Chem. Int. Ed., 2004,43: 1540-1543.
    
    [20] Y. Vasquez, A. K. Sra, R. E. Schaak, One-pot synthesis of hollow superparamagnetic CoPt nanospheres [J], J. Am. Chem. Soc, 2005, 127, 12504-12505.
    
    [21] J. N. Soderberg, A. H. C. Sirk, S. A. Campbell, V. I. Birs, Oxygen reduction by sol-derived Pt/Co-based alloys for PEM fuel cells [J], J. Electrochem. Soc, 2005, 152(10): A2017-2022.
    
    [22] V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt [J], Science, 2001, 291, 2115-2117.
    
    [23] S. L. Tripp, S. V. Pusztay, A. E. Ribbe, A. Wei, Self-assembly of cobalt nanoparticle rings [J], J. Am.Chem. Soc, 2002, 124, 7914-7915.
    
    [24] A. H. Lu, E. L. Salabas, F. Sch(?)th, Magnetic nanoparticles: synthesis, protection, functionalization and application [J]. Angew. Chem. Int. Ed., 2007,46: 1222-1224.
    
    [25] T. Biegler, R. W. Woods, Limiting oxygen coverage on platinized platinum: Relevance to determination of real platinum area by hydrogen adsorption [J], J. Electroanal. Chem., 1971,29: 269-277.
    
    [26] J. Clavilier, D. Armand, Electrochemical induction of changes in the distribution of the hydrogen adsorption states on Pt(100) and Pt(111) surfaces in contact with sulfuric acid solution [J], J. Electroanal.Chem., 1986, 199(1): 187-200.
    
    [27] L. Xiong, A. M. Kannan, A. Manthiram, Pt-M(M=Fe, Co, Ni, and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells [J], Electrochem. Commun.., 2002,4: 898-903.
    [28] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity [J], Science, 2007, 316: 762-735.
    [29] N. H. Li, S. G. Sun, S. P. Chen, Studies on the role of oxidation states of the platinum surface in electrocatalytic oxidation of small primary alcohols [J], J. Electroanal. Chem., 1997,430: 57-67.
    [30] N. H. Li, S. G. Sun, In situ FTIR spectroscopic studies of the electrooxidation of C-4 alcohols on platinum electrodes in acid solutions- Part I. Reaction mechanism of 1, 3-butanediol oxidation [J], J.Electroanal. Chem., 1997,436: 65-72.
    
    [31] S. G Sun, Y. Y. Yang, Studies of kinetics of HCOOH oxidation on Pt(100), Pt(110), Pt(111), Pt(510) and Pt(911) single crystal electrode [J], J. Electroanal. Chem., 1999,467(1-2): 121-131.
    [32] K. Shirlaine, S. Peter. Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying [J], J. Am. Chem. Soc, 2007, 129, 12646-12625.
    [33] P. H. Nathan, S. Peter. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles [J],Angew. Chem. Int. Ed., 2007,46: 8988-8991.
    [34] M. Prasanna, S. Ratndeep, S. Peter. Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes [J], J. Phys. Chem. C, 2008, 112(7): 2770-2778.
    
    [35] S. Peter, K. Shirlaine, G. Jeff. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis [J], Phys. Chem. Chem. Phys., 2008, 10(25): 3670-3683.
    [36] A. Bewick, In situ infrared spectroscopy of the electrode/electrolyte solution interphase [J], J.Electroanal Chem., 1983, 150:481-493.
    
    [37] J. G. Love, A. J. Mcquillan, Potential dependent FTIR spectra of carbon monoxide adsorbed at the platinum electrode/absolute methanol solution interface [J], J. Electroanal. Chem., 1989, 274: 263-270.
    [38] J. W. Russel, J. Overend, K. Scanlon. M. Severson, A. Bewick, Infrared spectrum of carbon monoxide adsorbed on a platinum electrode [J], J. Phys. Chem., 1983, 87, 293-297.
    
    [39] K. Kunimatsu, H. Seki, W. G. Golden. J. G. Golden. M. R. Philpott, Electrode/electrolyte interphase study using polarization modulated FTIR reflection-absorption spectroscopy [J], Surf. Sci., 1985, 158,596-608.
    
    [40] S. G. Sun, A. C. Chen, In situ FTIRS features during oxygen adsorption and carbon monoxide oxidation at a platinum electrode in alkaline solution [J], J. Electroanal. Chem., 1992, 323: 319-328.
    [41] S. G. Sun, Y. Lin, Kinetics aspects of oxidation of isopropanol on Pt electrode investigated by in situ time-resolved FTIR spectroscopy[J],J.Electroanal.Chem.,1994,375:401-404.
    [42]R.Oritz,A.Cuesta,O.P.Márquez,J.Márquez,J.A.Mendez,C.Gutierrez,Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates[J],J.Electroanal.Chem.,1999,465:234-238.
    [43]C.Pecharromán,A.Cuesta,C.Gutiérrez,Calculation of adsorption-induced differential external reflectance infrared spectra of particulate metals deposited on a substrate[J],J.Electroanal.Chem.,2004,563:91-109.
    [44]Y.X.Jiang,W.Z.Weng,D.Si,S.G.Sun,FTIR studies of zeolite matrix effects on the properties of palladium clusters confined in the supercages of NaX and NaY[J],J.Phys.Chem.B,2005,109:7637-7342.
    [45]陈卫,厦门大学博士学位论文[D],2003.
    [1]H.P.Liang,Y.G.Guo,J.S.Hu,C.F.Zhu,L.J.Wan,C.L.Bai,Ni-Pt multilayered nanowire arrays with enhanced coercivity and high remanence ration[J],Inorg.Chem.,2005,44(9):3013-3015.
    [2]K.W.Park,J.H.Choi,B.K.Kwon,S.A.Lee,Y.E.Sung,H.Y.Ha,S.A.Hong,H.Kim,A.Wieckowski,Chemical and electronic effects of Ni and Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation[J],J.Phys.Chem.B.,2002,106:1869-1877.
    [3]T.C.Deivarai,W.Chen,Y.J Lee,Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol[J],J.Mater.Chem.,2003,13(10):2555-2560.
    [4]F.Liu,J.Y.Lee,W.J.Zhou,Segmented Pt/Ru,Pt/Ni,and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation[J],Small,2006,2(1):121-128.
    [5]N.Travitsky,T.Ripenbein,D.Golodnitsky,Y.Rosenberg,L.Burshtein,E.Peled,Pt-,PtNi- and PtCo-supported catalyst for oxygen reduction in PEM fuel cells[J],J.Power.Sources,2006,161(2):782-789.
    [6]T.Toda,H.Igarashi,N.Watanabe,Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen[J],J.Electrochem.Soc.,1998,145(12):4185-4188.
    [7]J.F.Drillet,A.Ee,J.Friedemann,R.K(o|¨)tz,B.Schnyder,V.M.Schmidt,Oxygen reduction at Pt and Pt_(70)Ni_(30) in H_2SO_4/CH_3OH solution[J],Electrochimica.Acta,2002,47:1983-1988.
    [8]H.Yang,W.Vogel,C.Lamy,N.Alonso-Vante,Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction[J],J.Phys.Chem.B,2004,108:11024-11034.
    [9]H.Yang,C.Coutanceau,J.M.Leger,N.Alonso-Vante,C Lamy,Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles[J],J.Electroanal.Chem.,2005,576:305-313.
    [10]F.H.B.Lima,J.R.C.Salgado,E.R.Gorlzalez,E.A.Ticianelli,Electrocatalytic properties of PtCo/C and PtNi/C alloys for the oxygen reduction in alkaline solution[J],J.Electrochem.Soc.,2007,154(4):A369-A375.
    [11]F.Cheng,H.Ma,Y.Li,J.Chen,Ni_(1-x)Pt_x(x=0-0.12) hollow spheres as catalysts for hydrogen generation from ammozia borane[J],Inorg.Chem.,2007,46:788-794.
    [12]M.Mandal,S.Kundu,T.K.Sau,S.M.Yusuf,T.Pal,Synthesis and characterization of superparamagnetic Ni-Pt nanoalloy[J],Chem.Mater.,2003,15:3710-3715.
    [13]K.Ahrenstorf,O.Albrecht,H.Heller,A.Kornowski,D.G(o|¨)rlitz,H.Weller,Colloidal synthesis of Ni_xPt_(1-x) nanoparticles with tuneable composition and size[J],Small,2007,3(2):271-274.
    [14]G.N.Glavee,K.J.Klabunde,C.M.Sorensen,G.C.Hadjipanayis,Sodium borohydride reduction of cobalt ions in nonaqueous media.Formation of ultrafine particles(nanoscale) of cobalt metal[J],Inorg.Chem.,1993,32:474-477.
    [15]O.Krauth,G.Fahsold,A.Pucci,IR-spectroscopy of CO on iron ultrathin films[J],J.Mol.Struct.,1999,482-483:237-240.
    [16]M.S.Zheng,S.G.Sun,In situ FTIR spectroscopic studies of CO adsorption on electrode of nanometer thin film of ruthenium in sulfuric acid solutions[J],J.Electroanal.Chem.,2001,500(1-2):223-232.
    [17]H.Gong,S.G Sun,J.T.Li,Y.J.Chen,S.P.Chen.Surface combinatorial studies of IR properties of nanostructured Ru film electrodes towards CO adsorption[J].Electrochim.Acta,2003,48(20-22),2933-29421.
    [18]H.C.Wang,S.G.Sun,J.W.Yan,H.Z.Yang,Z.Y.Zhou,In situ STM Studies of electrochemical growth of nanostructured Ni films and their anomalous IR properties[J],J.Phys.Chem.B,2005,109:4309-4316.
    [19]O.Krauth,G.Fahsold,A.Pucci,Asymmetric line shape and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001)[J],J.Chem.Phys.,1999,110(6):3113-3117.
    [20]O.Krauth,G Fahsold,N.Magg,A.Pucci,Anomalous infrared transmission of adsorbates on ultrathin metal films:Fano effect near the percolation threshold[J],J.Chem.Phys.,2000,113(15):6330-6333.
    [21]A.E.Bjerke,P.R.Griffiths,W.Theiss,Surface-enhanced infrared absorption of CO on platinized platinum[J],Anal,Chem.,1999,71:1359-1368.
    [22]王汉春,厦门大学硕士学位论文[D],2004.
    [23]A.R.Denton,N.W.Ashcroft,Vegrad' law[J],Phys.Rev.A 1991,43(6):3161-3164.
    [24]X.Zhang,K.Y.Chan,Water-in oil microemulsion synthesis of platinum-ruthenium nanoparticles,their characterization and electrocatalytic properties[J],Chem.Mater.,2003,15:451-459.
    [25]I.G Casella,M.R.Guascito,M.G.Sannazzaro,Voltammetric and XPS investigation of nickel hydroxide electrochemically dispersed on gold surface electrodes[J],J.Electroanal.Chem.,1999,462:202-210.
    [26]D.J.Jeong,W.S.Kim,Y.K.Choi,Y.E.Sung,Intercalation/delintercalation characteristics of electrodeposited and anodized nickel thin film on ITO electrode in aqueous and nonaqueous electrolytes[J],J.Electroanal.Chem.,2001,511:79-87.
    [27]W.Yu,W.Tu,H.Liu,Synthesis of nanoscale platinum colloids by microwave dielectric heating[J],Langmuir,1999,15:6-9.
    [28]H.P.Liang,H.M.Zhang,J.S.Hu,Y.G.Guo,L.J.Wan,C.L.Bai,Pt hollow nanoparticles:facile synthesis and enhanced electrocatalysts[J],Angew.Chem.Int.Ed.,2004,43:1540-1543.
    [29]H.P.Liang,L.J.Wan,C.L.Bai,L.Jiang,Gold hollow nanospheres:tunable surface plasmon resonance controlled by interior-cavity size[J],J.Phys.Chem.B,2005,109:7795-7800.
    [30]Y.Sun,B.Mayers,Y.Xia,Metal nanostructures with hollow interiors[J],Adv.Mater.,2003,15(7-8):641-646.
    [31]K.J.克莱邦德主编,陈建峰,邵磊,刘晓林等译,纳米材料化学[M],化学工业出版社,2004.
    [32]J.Huang,Z.Liu,C.He,L.M.Gan,Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell[J],J Phys.Chem.,2005,109:16644-16649.
    [33]S.H.Liu,W.Y.Yu,C.H.Chen,A.Y.Lo,B.J.Hwang,S.H.Chien,S.B.Liu,Fabrication and characterization of well-dispersed and highly stable PtRu nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell[J],Chem.Mater.,2008,20(4):1622-1628.
    [34]Y.Zhou,H.Uchida,M.Watanabe,Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated reflection technique[J],Langmuir,1999,15:8757-8764.
    [35]田娜,厦门大学博士学位论文[D],2007.
    [36]贡辉,厦门大学博士学位论文[D],2003.
    [37]A.E.Bjerke,P.R.Griffiths,Surface-enhanced infrared absorption spectroscopy of p-nitrothiophenol on vaper-deposited platinum films[J],Appli.Spectrosc.,2002,56(10) 1275-1280.
    [38]陈友江,厦门大学硕士学位论文[D],2003.
    [39]R.Oritz,A.Cuesta,O.P.Márquez,J.Márquez,J.A.Méndez,C.Gutiérrez,Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates[J],J.Electroanal.Chem.,1999,465:234-238.
    [40]C.Pecharromán,A.Cuesta,C.Gutierrez,Calculation of adsorption-induced differential external reflectance infrared spectra of particulate metals deposited on a substrate[J],J.Electroanal.Chem.,2004,563:91-109.
    [1]S.Wasmus,A.Kuver,Methanol oxidation and direct methanol fuel cell:A selective review[J].J.Electroanal.Chem.,1999,461:14-31.
    [2]陆天虹,张玲玲,唐亚文,高颖,各种燃料电池产业化概况[J],电池工业,2007,12(2):119-121.
    [3]Barbir,S.Yazici,Status and development of PEM fuel cell technology[J],Intenational Journal of Energy Research,2008,32(5):369-378.
    [4]Z.B.Wang,P.J.Zuo,G.J.Wang,C.Y.Du,G.P.Yin,Effect of Ni on PtRu/C catalyst performance for ethanol electrooxidation in acidic medium[J],J.Phys.Chem.C,2008,112(16):6582-6587.
    [5]Q.F.Yi,J.J.Zhang,A.C.Cheng,X.P.Liu,G.R.Xu,Z.H.Zhou,Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol [J],J.Appl.Electrochem.,2008,38(5):695-701.
    [6]F.Matsumoto,C.Roychowdhury,Electrocatalytic activity of orderd intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation[J],J.Electrochem.Soc.,2008,155(2):B148-B154.
    [7]F.Liu,J.Y.Lee,W.J.Zhou,Segmented Pt/Ru,Pt/Ru,and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation[J],Small,2006,2(1):121-128.
    [8]T.J.Schmidt,H.A.Gasteiger,R.J.Behm,Methanol electrooxidation on a colloidal PtRu alloy fuel-fuel catalyst[J],Electrochem.Commun.,1999,1(1):1-4.
    [9]M.Watanabe,M.Uchida,S.Motoo,Preparation of highly dispersed PtRu alloy clusters and the activity for the electrooxidation of methanol[J],J.Electroanal.Chem.,1987,229(1-2):395-406.
    [10]M.Krausa,W.Vielstich,Study of the electrocatalytic influence of Pt:Ru and Ru on the oxidation of residues of small organic molecules[J],J.Electroanal.Chem.,1994,379(1-2):307-314.
    [11]J.Mcbreen,S.Mukerjee,In situ X-ray absorption studies of a Pt-Ru electrocatalyst[J],J.Electrochem.Sot.,1995,142(10):3399-3403.
    [12]K.A.Friedrich,K.P.Geyzers,U.Links,U.Stimming,J.Stumper,CO adsorption and oxidation on a Pt(111) electrode modified by ruthenium deposition:IR spectroscopic study[J],J.Electroanal.Chem.,1996,402:123-128.
    [13]K.Y.Park,J.H.Chio,B.K.Kwon,S.A.Lee,Y.E.Sung,Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation[J],J.Phys.Chem.B,2002,106, 1869-1877.
    
    [14] H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, C. L. Bai, Pt hollow nanoparticles: Facile synthesis and enhanced electrocatalysts [J], Angew. Chem. Int. Ed., 2004,43: 1540-1543.
    [15] J. Ge, W. Xing, X. Xue, C. Liu, T. Lu, J. Liao, Controllable synthesis of Pd nanocatalysts for direct formic acid fuel cell (DFADC) application: From Pd hollow nanospheres to Pd nanoparticles [J], J. Phys.Chem. C,2007, 111, 17305-17310.
    
    [16] R. Yang, H. Li, X. Qiu, L. Chen, A spontaneous combustion reaction for synthesis Pt hollow capsules using colloidal carbon sphere as template [J], Chem. Eur. J. 2006, 12: 4083-4090.
    
    [17] F. Cheng, H. Ma, Y. Li, J. Chen, Ni_(1-x)Pt_x (x= 0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane [J], Inorg. Chem., 2007,46(3): 788-794.
    
    [18] G. Chen, D. Xia, Z. Nie, Z. Wang, L. Wang, L. Zhang, J. Zhang, Facile synthesis of CoPt hollow sphere electrocatalyst [J], Chem. Mater, 2007, 19: 1840-1844.
    [19] A. R. Denton, N. W. Ashcroft, Vegrad' law [J], Phys. Rev. A. 1991,43: 3161-3164.
    [20] K. Ahrenstorf, O. Albrecht, H. Heller, A. Kornowski, D. Gorlitz, H. Weller, Colloidal synthesis of Ni_xPt_(1-x) nanoparticles with tuneable composition and size [J], Small, 2007, 3(2): 271-274.
    [21] T. C. Deivaraj, W. Chen, J. Y. Lee, Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol [J], J. Mater. Chem., 2003,13: 2555-2560.
    
    [22] N. H. Li, S. G. Sun, S. P. Chen, Studies on the role of oxidation states of the platinum surface in electrocatalytic oxidation of small primary alcohols [J], J. Electroanal. Chem., 1997,430: 57-67.
    [23] J. F. Drillet, A. Ee, J. Friedemann, R. Kotz, B. Schnyder, V. M. Schmidt, Oxygen reduction at Pt and Pt_(70)Ni_(30) in H_2SO_4/CH_3OH solution [J], Electrochim. Acta, 2002,47: 1983-1988.
    
    [24] H. Yang, W. Vogel, C. Lamy, N. A. Vante, Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction [J], J. Phys. Chem. B, 2004, 108:11024-11034.
    
    [25] H. Yang, C. Coutanceau, J. M. Leger, N. A. Vante, C. Lamy, Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles [J], J. Electroanal. Chem., 2005, 576: 305-313.
    [26] K. L. Ley, R. Liu, C. Pu, Q, Fu, N. Leyarovska, C. Segre, E. S. Smotkin, Methanol oxidation on single-phase Pt-Ru-OS ternary alloys [J], J. Electrochem. Soc., 1997, 144: 1543-1549.
    [27] B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza,B. C. Chan, T. E. Mallouk, S. Sarangapani, Structural and electrochemical characterization of binary, ternary,and quaternary platinum alloy catalysts for methanol electro-oxidation[J],J.Phys.Chem.B,1998,102,9997-10003.
    [28]王振波,尹鸽平,史鹏飞,DMFC阳极多元合金催化剂的研究进展[J],工业催化,2005,13(2):1-6.
    [29]陈卫,厦门大学博士学位论文[M],2003.
    [30]李君涛,厦门大学硕士学位论文[M],2005.
    [31]J.T.Li,Q.S.Chen,S.G.Sun,In situ microscope FTIR studies of methanol adsorption and oxidation on an individually addressable array of nanostructureed Pt microelectrodes[J],Electrochim,Acta,2007,52:5725-5732.
    [32]I.Tkach,A.Panchenko,T.Kaz,V.Gogel,K.A.Friedrich,E.Roduner,In situ study of methanol oxidation on Pt and Pt/Ru-mixed with Nafion anodes in direct methanol fuel cell by means of FTIR spectroscopy[J],Phys.Chem.Chem.Phys.,2004,6:5419-5426.
    [1]Y.Xiong,Y.Xia,Shape-controlled synthesis of metal nanostructures:The case of Palladium[J],Adv.Mater.,2007,19(20):3385-3391.
    [2]S.Rohart,C.Raufast,L.Favre,E.Berntein,E.Bonet,W.Wernsdorfer,V.Dupuis,Interface effect on the magnetic anisotropy of CoPt clusters[J],Journal of Magnetism and Magnetic Materials,2007,316(2):E355-E359.
    [3]V.Tzitaios,D.Niarchos,G.Margariti,J.Fidler,D.Petridis,Synthesis of CoPt nanoparticles by a modified polyol method:Characterization and magnetic properties[J],Nanotechnology,2005,16:287-261.
    [4]Z.Y.Zhang,H.Wang,H.B.Wang,Q.Mo,Y.Chen,C.Zhang,Synthesis and magnetic properties of CoPt nanoparticles[J],Rare Metals,2006,25:613-616.
    [5]Z.Zhang,D.A.Blom,Z.Gai,J.R.Thompson,J.Shen,S.Dai,High-yield solvothermal formation of magnetic CoPt nanowires[J],J.Am.Chem.Soc.,2003,125:7528-7529.
    [6]J.Choi,S.J.Oh,H.Ju,J.Cheon,Massive Fabrication of free-standing one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect[J],Nano Lett.,2005,5(11):2179-2183.
    [7]C.H.Jun,Y.J.Park,Y.R.Yeon,J.R.Choi,W.R.Lee,S.J.Ko,J.Cheon,Demonstration of a magnetic and catalytic Co@Pt nanoparticles as dual-function nanoplatform[J],Chem.Commun.,2006:1619-1621.
    [8]J.I.Park,J.Cheon,Synthesis of "solid solution" and "core-shell" type cobalt-platinum magnetic nanoparticles via transmetalation reaction[J],J.Am.Chem.Soc.,2001,123,5743-5746.
    [9]Y.J.Li,W.J.Huang,S.G.Sun,A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface[J],Angew.Chem.Int.Ed.,2006,45:2537-2539.
    [10]A.P.Alivisatos,Perspective on the physical chemistry of semiconductor nanocrystals[J],J.Phys.Chem.,1996,100:13326-13329.
    [11]Z.Chen,P.Zhan,Z.Wang,J.Zhang,W.Zhang,N.Ming,C.T.Chan,P.Sheng,Two- and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating[J],Adv.Mater.,2004,16(5):417-421.
    [12]M.J.Hostetler,R.J.Murray,Colloids and self-assembled monolayers[J],Curr.Opin.Colloid Interface Sci.,1997,2:42-50.
    [13]M.H.Kim,S.H.Im,O.O.Park,Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly[J],Adv.Funct.Mater.,2005,15:1329-1335.
    [14]H.Duan,D.Wang,D.G.Kurth,H.M(o|¨)hwald,Directing self-assembly of nanoparticles at water/oil interface[J],Angew.Chem.Int.Ed.,2004,43:5639-5642.
    [15]F.Reincke,S.G.Hickey,W.K.Kegel,D.Vanmaekelbergh,Spontaneous assembly of a monolayer charged gold nanocrystal at the water/oil interface[J],Angew.Chem.Int.Ed.,2004,43:458-462.
    [16]Y.Sun,Y.Xia,Shape-controlled synthesis of gold and silver nanopartciles[J],Science,2002,298:2176-2179.
    [17]C.C.Huang,Z.Yang,H.T.Chang,Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed mediated growth under alkaline conditions[J],Langmuir,2004,20:6089-6092.
    [18]X.Sun,Y.Li,Ag@C core/shell structured nanoparticles:Controlled synthesis,characterization,and assembly[J],Langmuir,2005,21:6019-6024.
    [19]H.Song,F.Kim,S.Connor,G.A.Aomorjai,P.Yang,Pt nanocrystal:Shape control and Langmuir-Blodgett monolayer formation[J],J.Phys.Chem.B,2005,109(1):188-193.
    [20]H.P.Liang,H.M.Zhang,J.S.Hu,Y.G.Guo,L.J.Wan,C.L.Bai,Pt hollow nanospheres:Facile synthesis and enhanced electrocatalyst[J],Angew.Chem.Int.Ed.,2004,43:1540-1543.
    [21]G.Chen,D.Xia,Z.Nie,Z.Wang,L.Wang,L.Zhang,J.Zhang,Facile synthesis of Co-Pt hollow sphere electrocatalyst[J],Chem.Mater.,2007,19:1840-1844.
    [22]B.J.Tan,K.J.Klabunde,P.M.Sherwood,XPS studies of solvated metal atom dispersed catalysts evidence for layered cobalt-manganese particles on alumina and silica[J],J.Am.Chem.Soc.,1991,113:855-861.
    [23]A.Foelske,J.Kunze,H.H.Strehblow,Initial stages of hydroxide formation and its reduction on Co(0001) studied by in situ STM and XPS in 0.1 M NaOH[J],Surf Sci.,2004,554:10-24.
    [24]H.Lin,W.Teng,A.Kleiman-Shwarsctein,E.W.McFarland,Oxygen electroreduction on Gold-Cobalt oxide binary nanocluster catalysts[J],J.Electrochem.Soc.,2008,155(2):B200-B206.
    [25]X.Zhang,K.Y.Chan,Water-in oil microemulsion synthesis of platinum-ruthenium nanoparticles,their characterization and electrocatalytic properties[J],Chem.Mater.,2003,15:451-459.
    [26]K.W.Park,J.H.Choi,B.K.Kwon,S.A.Lee,Y.E.Sung,H.Y.Ha,S.A.Hong,H.Kim,A.Wieckowski,Chemical and electronic effects of Ni and Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation[J],J.Phys.Chem.B,2002,106:1869-1877.
    [27]H.Gong,S.G.Sun,J.T.Li,Y.J.Chen,S.P.Chen.Surface combinatorial studies of IR properties of nanostructured Ru film electrodes towards CO adsorption[J].Electrochim.Acta,2003,48(20-22),2933-29421.
    [28]A.E.Bjerke,P.R.Griffiths,W.Theiss,Surface-enhanced infrared absorption of CO on platinized platinum[J],Anal.Chem.,1999,71:1359-1368.
    [29]陈卫,厦门大学博士学位论文[D],2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700