用户名: 密码: 验证码:
壳聚糖—磷酸甘油凝胶系统应用于内耳局部给药的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     壳聚糖-磷酸甘油-地塞米松凝胶内耳局部给药的研究研究目的:目前临床上,糖皮质激素已应用于多种内耳疾病的治疗,然而由于血-迷路屏障的存在,全身给药途径造成其在内耳中的吸收与分布受到限制,为达到内耳组织间隙中的有效药物浓度,需使用较大的治疗剂量,易引发药物对全身的毒副作用。因此学者们一直在寻求内耳局部给药的解决方案。经鼓膜注射的方法虽然显现出一定的优越性,但这种给药方法的治疗效果不确定,存在很大的个体差异。所以开发一种新的内耳局部给药系统,使其能够可控、持续且有效地释放治疗因子至内耳已成为耳鼻咽喉科领域的一项前沿课题。当前研究探索可生物降解的壳聚糖-磷酸甘油凝胶系统携带及释放地塞米松进入内耳的特性,及其治疗内耳疾病的可行性。
     实验方法:本研究包括体外实验与动物体内实验两部分。体外实验:探讨体外环境中,壳聚糖-磷酸甘油-地塞米松凝胶在7天的期间内释放地塞米松曲线及其与凝胶分解之间的关系。动物体内实验:地塞米松凝胶直接注射于小鼠圆窗龛,术后定期采集外淋巴液及血浆样本,并通过液相色谱-串联质谱法测定样本中的地塞米松含量,以评价药物的释放曲线。同时,我们还采用听觉脑干反应评估了该凝胶系统以及注射凝胶的手术过程是否会对模型小鼠的听觉功能产生影响。
     实验结果:该研究建立的壳聚糖-磷酸甘油-地塞米松凝胶在室温环境下配制后为可注射的液态,在37℃的体温环境下,经过15-20分钟后,即转变为不可流动的半固态,非常适宜于内耳局部给药。体外实验:地塞米松凝胶在7天中,释放了接近一半的地塞米松总药量。最初的24小时中,地塞米松的释放量较多,达到总药量的35.17%,在接下来的几天内,药物逐渐呈缓慢释放趋势,并且药物的释放与凝胶的降解保持一致。动物体内实验:地塞米松凝胶圆窗龛局部注射后,在外淋巴液中可以持续7天检测到高药物浓度水平,其浓度远大于血浆中的药物浓度,具有统计学意义。小鼠模型的听力在术后第2天,受到一定程度的影响,以低频为主;而在术后第10天时,听力即恢复正常,与术前的听力闽值相比没有统计学差异。
     研究结论:该研究建立的壳聚糖—磷酸甘油-地塞米松凝胶系统证实能够在圆窗龛单次注射后超过7天的期间内,持续可控地释放地塞米松至小鼠内耳,并形成显著的高外淋巴液药物浓度。地塞米松的释放与凝胶的分解具有直接的关系。圆窗龛的开放过程是安全的微创手术操作,对内耳功能没有显著影响。这些结果均强有力地说明壳聚糖-磷酸甘油凝胶系统适用于作为一种创新性的缓释可控内耳局部给药载体,提出了一种内耳局部给药的新思路,对改进传统给药方法,提高内耳疾病的治疗效果做出了有意义的探索。
     第二部分
     壳聚糖-磷酸甘油凝胶应用于庆大霉素内耳局部给药的试验研究
     研究目的:经鼓膜注射庆大霉素已在世界范围内应用于梅尼埃病的治疗,但是,这种方法最大的缺点是治疗效果及出现听力损失的几率存在巨大的个体差异。其原因在于药物经鼓膜直接注射至中耳后,不能准确地控制与圆窗膜接触的药量,从而导致能扩散入内耳的药物剂量在个体之间存在巨大的差异。为克服现有方法的局限,建立一种安全有效并且方便的给药模式,使其能够在单次应用后,即可持续缓慢地释放庆大霉素至内耳,我们拟探索壳聚糖-磷酸甘油凝胶系统应用于庆大霉素内耳局部给药的可能。当前研究通过与传统鼓室内注射的对照,探索壳聚糖-磷酸甘油-庆大霉素凝胶在小鼠圆窗龛局部注射后,缓释庆大霉素至内耳的能力,及其对耳蜗、前庭系统功能的影响。同时,我们对比分析了该凝胶系统在携带庆大霉素与不携带任何药物两种状态下的超微结构及元素组成,以期更好地理解其特性。
     实验方法:体外实验:采用环境扫描电子显微镜及能量色散X射线光谱的方法,分析壳聚糖-磷酸甘油凝胶系统在携带庆大霉素与不携带任何药物两种状态下的超微结构及元素组成特点。动物体内实验:庆大霉素采用壳聚糖-磷酸甘油凝胶系统携带或传统经鼓膜直接注射的方法应用于小鼠中耳,术后定期采集外淋巴液及血浆样本,并通过液相色谱-串联质谱法测定样本中的庆大霉素含量,以评价药物的释放曲线。同时,我们还采用听觉脑干反应及垂直转鼓试验评估术前术后的听觉及前庭系统功能,对比这两种不同的给药途径对小鼠模型内耳功能的影响。
     实验结果:体外实验:环境扫描电子显微镜及能量色散X射线光谱分析结果显示空白凝胶与携带庆大霉素的凝胶在超微结构与元素组成方面存在一定差异。动物体内实验:两种庆大霉素给药方法在小鼠外淋巴液中产生了完全不同的药物释放曲线。庆大霉素凝胶注射组的药动学曲线呈明显的缓释特性,在第一天到第三天达峰值,并呈平台期,此后4天,呈线性趋势逐渐下降。而经鼓膜注射组药动学曲线则在第一天达到峰值浓度之后,急剧下降。两组资料中,血浆中庆大霉素浓度均明显低于外淋巴液的药物浓度。空白凝胶的应用对内耳功能没有明显影响。在注射相同剂量的40μg庆大霉素之后,采用凝胶的方法可以造成显著的平衡功能异常,同时没有明显的听力损失;而采用经鼓膜注射的方法对前庭和听觉功能均没有造成任何显著的改变。
     研究结论:该研究建立的壳聚糖-磷酸甘油-庆大霉素凝胶系统证实可以持续、有效地释放庆大霉素至内耳,并且个体之间的一致性很好;注射药物的手术过程安全可靠,对内耳功能没有显著影响。庆大霉素凝胶系统相比传统经鼓膜注射,表现出其优秀的特性,为提高梅尼埃病的治疗效果提供了一种新的方法和思路,做出了有意义的探索。
PartⅠ
     A Sustained Local Dexamethasone Delivery System for Inner Ear Applications
     Objectives/Hypothesis:Glucocorticosteroid has been widely used for the treatment of inner ear diseases in the clinic. However, Systemic drug administration increases the likelihood of systemic toxicities and side effects and creates an inequality in drug concentration with higher circulating levels in the serum but lower local levels at the inner ear where the drug is needed. So much interest has been generated in developing a system for local drug delivery to the inner ear for the treatment of inner diseases, such as Meniere's disease and sudden idiopathic or noise-induced hearing loss. Intratympanic injection has overcome some risks and limitations of systemic drug delivery, while there remains a considerable amount of variability in clinical outcomes among those patients treated with intratympanic injections. So there is a clear need for a versatile system which capable of safely and efficiently delivering a sustained dose of the drugs. This system would allow to treat patients by using a single application. The present study investigates the effectiveness of a controlled and sustained local Chitosan-Glycerophosphate hydrogel system on the delivery of dexamethasone into the inner ear and its influences on the inner ear functions.
     Methods:In vitro:dexamethasone release and Chitosan-Glycerophosphate-hydrogel matrix degradation were characterized. In vivo:dexamethasone laden hydrogel was placed directly in the round window niche of mice. By collecting perilymph and plasma at different time points and analyzing the samples with high performance liquid chromophotography and mass spectrometry, we characterized the drug release of this drug delivery system. The safety of hydrogel on auditory function was also evaluated.
     Results:We developed a Chitosan-Glycerophosphate-hydrogel which is prepared in a liquid state at room temperature. At body temperature, it undergoes a phase transition becoming solid. In vitro:dexamethasone laden hydrogel released almost half of the dexamethasone it contained over 7 consecutive days with concurrent degradation of the hydrogel matrix to 15.3% of its starting weight. In vivo:Elevated levels of dexamethasone were detected in perilymph for 7 days following a single hydrogel application. In post-operative day 2, there was a little increase in hearing thresholds, and by post-operative day 10, the hearing thresholds returned to baseline.
     Conclusions:Chitosan-Glycerophosphate-hydrogel provides sustained and controlled drug release of dexamethasone within the inner ear of mice. The surgical procedure and administration of CGP-hydrogel to mouse ears is safe. This novel system provides a unique approach for sustained local drug delivery for inner ear therapy.
     PartⅡ
     A Controlled and Sustained Local Gentamicin Delivery System for Inner Ear Applications
     Objectives/Hypothesis:Intratympanic gentamicin injection has gained popularity worldwide for the treatment of Meniere's disease, However, this delivery system remains a considerable amount of variability in clinical outcomes among those patients treated with intratympanic gentamicin injection as unstable portions of the gentamicin contact with the round window membrane (RWM) and enter the fluids of the inner ear by diffusing across the RWM. The present study investigates the effectiveness of a controlled and sustained local hydrogel system on the delivery of gentamicin into the inner ear and its superiority for the treatment of Meniere's disease.
     Methods:Ultrastructure of hydrogel loaded with/without gentamicin was explored in vivo. Gentamicin was applied to the ear of mice either through intratympanic gentamicin injection or in the hydrogel system. Kinetics curves, hearing and balance functions were examined to study how the hydrogel system affected the gentamicin delivery and inner ear functions.
     Results:The micrographs and spectra analyses showed different structures between the blank hydrogel and drug-laden hydrogel. The two gentamicin-delivery methods yielded different kinetics curves. The hydrogel system achieved sustained-release over a 7-day period with a flat plateau phase from day 1 to day 3 and slow decent in the subsequent days. The intratympanic gentamicin injection curve dramatically declined after the peak concentration at day 1 and almost eliminated by day 3. Hydrogel system yielded noticeable balance dysfunction with no significant hearing changes. In contrast, intratympanic gentamicin injection exhibited no significant influences on the inner ear functions after applying the same dosage of 40μg gentamicin.
     Conclusions:The hydrogel system established in this research has been proved to be much more sustained, consistent and efficient than traditional intratympanic gentamicin injection for the transportation of gentamicin into the inner ear and hence offers new outlook for Meniere's disease's therapy.
引文
1. Jackson LE, Silverstein H. Chemical perfusion of the inner ear. Otolaryngol Clin North Am 2002; 35(3):639-653.
    2. Schuknecht HF. Ablation therapy in the management of Meniere's disease. Acta Otolaryngol Suppl 1957; 132:1-42.
    3. Beck C. Intratympanic application of gentamicin for treatment of Meniere's disease. Keio J Med 1986; 35(1):36-41.
    4. Nedzelski JM, Schessel DA, Bryce GE, et al. Chemical labyrinthectomy: local application of gentamicin for the treatment of unilateral Meniere's disease. Am J Otol 1992; 13(1):18-22.
    5. Silverstein H, Arruda J, Rosenberg SI, et al. Direct round window membrane application of gentamicin in the treatment of Meniere's disease. Otolaryngol Head Neck Surg 1999; 120(5):649-655.
    6. Light JP, Silverstein H, Jackson LE. Gentamicin perfusion vestibular response and hearing loss. Otol Neurotol 2003; 24(2):294-298.
    7. Blakley BW. Update on intratympanic gentamicin for Meniere's disease. Laryngoscope 2000; 110(2 Pt 1):236-240.
    8. Sakata E, Ito Y, Itoh A. Clinical Experiences of Steroid Targeting Therapy to Inner Ear for Control of Tinnitus. Int Tinnitus J 1997; 3(2): 117-121.
    9. Chandrasekhar SS. Intratympanic dexamethasone for sudden sensorineural hearing loss:clinical and laboratory evaluation. Otol Neurotol 2001; 22(1):18-23.
    10. Parnes LS, Sun AH, Freeman DJ. Corticosteroid pharmacokinetics in the inner ear fluids:an animal study followed by clinical application. Laryngoscope 1999; 109(7 Pt 2):1-17.
    11. Barrs DM. Intratympanic corticosteroids for Meniere's disease and vertigo. Otolaryngol Clin North Am 2004; 37(5):955-972, v.
    12. Rauch SD. Intratympanic steroids for sensorineural hearing loss.
    Otolaryngol Clin North Am 2004; 37(5):1061-1074.
    13. Haynes DS, O'Malley M, Cohen S, et al. Intratympanic dexamethasone for sudden sensorineural hearing loss after failure of systemic therapy. Laryngoscope 2007; 117(1):3-15.
    14. Plontke SK, Lowenheim H, Mertens J, et al. Randomized, double blind, placebo controlled trial on the safety and efficacy of continuous intratympanic dexamethasone delivered via a round window catheter for severe to profound sudden idiopathic sensorineural hearing loss after failure of systemic therapy. Laryngoscope 2009; 119(2):359-369.
    15. Light JP, Silverstein H. Transtympanic perfusion:indications and limitations. Curr Opin Otolaryngol Head Neck Surg 2004; 12(5): 378-383.
    16. Schwab B, Lenarz T, Heermann R. [Use of the round window micro cath for inner ear therapy-results of a placebo-controlled, prospective study on chronic tinnitus]. Laryngorhinootologie 2004; 83(3):164-172.
    17. Van Wijk F, Staecker H, Keithley E, et al. Local perfusion of the tumor necrosis factor alpha blocker infliximab to the inner ear improves autoimmune neurosensory hearing loss. Audiol Neurootol 2006; 11(6): 357-365.
    18. Suckfuell M, Canis M, Strieth S, et al. Intratympanic treatment of acute acoustic trauma with a cell-permeable JNK ligand:a prospective randomized phase Ⅰ/Ⅱ study. Acta Otolaryngol 2007; 127(9):938-942.
    19. Chandrasekhar SS, Rubinstein RY, Kwartler JA, et al. Dexamethasone pharmacokinetics in the inner ear:comparison of route of administration and use of facilitating agents. Otolaryngol Head Neck Surg 2000; 122(4):521-528.
    20. Salt AN, Ma Y. Quantification of solute entry into cochlear perilymph through the round window membrane. Hear Res 2001; 154(1-2):88-97.
    21. Alles MJ, der Gaag MA, Stokroos RJ. Intratympanic steroid therapy for inner ear diseases, a review of the literature. Eur Arch Otorhinolaryngol 2006; 263(9):791-797.
    22. Chia SH, Gamst AC, Anderson JP, et al. Intratympanic gentamicin therapy for Meniere's disease:a meta-analysis. Otol Neurotol 2004; 25(4):544-552.
    23. Cohen-Kerem R, Kisilevsky V, Einarson TR, et al. Intratympanic gentamicin for Meniere's disease:a meta-analysis. Laryngoscope 2004; 114(12):2085-2091.
    24. Penha R, Escada P. Round-window anatomical considerations in intratympanic drug therapy for inner-ear diseases. Int Tinnitus J 2005; 11(1):31-33.
    25. Alzamil KS, Linthicum FH, Jr. Extraneous round window membranes and plugs:possible effect on intratympanic therapy. Ann Otol Rhinol Laryngol 2000; 109(1):30-32.
    26. Goycoolea MV, Lundman L. Round window membrane. Structure function and permeability:a review. Microsc Res Tech 1997; 36(3): 201-211.
    27. Selivanova O, Maurer J, Ecke U, et al. [The effects of Streptolysin-O and sodium hyaluronate on the permeability of the round window membrane in guinea pigs--an electrophysiologic study]. Laryngorhinootologie 2003; 82(4):235-239.
    28. Salt AN, Kellner C, Hale S. Contamination of perilymph sampled from the basal cochlear turn with cerebrospinal fluid. Hear Res 2003; 182(1-2):24-33.
    29. Silverstein H. Use of a new device, the MicroWick, to deliver medication to the inner ear. Ear Nose Throat J 1999; 78(8):595-598,600.
    30. Hoffer ME, Kopke RD, Weisskopf P, et al. Microdose gentamicin administration via the round window microcatheter:results in patients with Meniere's disease. Ann N Y Acad Sci 2001; 942:46-51.
    31. Van Wijck F, Staecker H, Lefebvre PP. Topical steroid therapy using the Silverstein Microwick in sudden sensorineural hearing loss after failure of conventional treatment. Acta Otolaryngol 2007; 127(10):1012-1017.
    32. Hillman TM, Arriaga MA, Chen DA. Intratympanic steroids:do they acutely improve hearing in cases of cochlear hydrops? Laryngoscope 2003; 113(11):1903-1907.
    33. Suryanarayanan R, Srinivasan VR, O'Sullivan G. Transtympanic gentamicin treatment using Silverstein MicroWick in Meniere's disease patients:long term outcome. J Laryngol Otol 2009; 123(1):45-49.
    34. Silverstein H, Thompson J, Rosenberg SI, et al. Silverstein MicroWick. Otolaryngol Clin North Am 2004; 37(5):1019-1034.
    35. Salt AN, Plontke SK. Local inner-ear drug delivery and pharmacokinetics. Drug Discov Today 2005; 10(19):1299-1306.
    36. Kopke RD, Hoffer ME, Wester D, et al. Targeted topical steroid therapy in sudden sensorineural hearing loss. Otol Neurotol 2001; 22(4): 475-479.
    37. Lefebvre PP, Staecker H. Steroid perfusion of the inner ear for sudden sensorineural hearing loss after failure of conventional therapy:a pilot study. Acta Otolaryngol 2002; 122(7):698-702.
    38. Thomsen J, Charabi S, Tos M. Preliminary results of a new delivery system for gentamicin to the inner ear in patients with Meniere's disease. Eur Arch Otorhinolaryngol 2000; 257(7):362-365.
    39. Hoffer ME, Allen K, Kopke RD, et al. Transtympanic versus sustained-release administration of gentamicin:kinetics, morphology, and function. Laryngoscope 2001; 111(8):1343-1357.
    40. DeCicco MJ, Hoffer ME, Kopke RD, et al. Round-Window Microcatheter-Administered Microdose Gentamicin:Results from Treatment of Tinnitus Associated with Meniere's Disease. Int Tinnitus J 1998; 4(2):141-143.
    41. Plontke SK, Zimmermann R, Zenner HP, et al. Technical note on microcatheter implantation for local inner ear drug delivery:surgical technique and safety aspects. Otol Neurotol 2006; 27(7):912-917.
    42. Brown JN, Miller JM, Altschuler RA, et al. Osmotic pump implant for chronic infusion of drugs into the inner ear. Hear Res 1993; 70(2): 167-172.
    43. Prieskorn DM, Miller JM. Technical report:chronic and acute intracochlear infusion in rodents. Hear Res 2000; 140(1-2):212-215.
    44. Lehner R, Brugger H, Maassen MM, et al. A totally implantable drug delivery system for local therapy of the middle and inner ear. Ear Nose Throat J 1997; 76(8):567-570.
    45. Praetorius M, Limberger A, Muller M, et al. A novel microperfusion system for the long-term local supply of drugs to the inner ear: implantation and function in the rat model. Audiol Neurootol 2001; 6(5): 250-258.
    46. Gouveris H, Selivanova O, Mann W. Intratympanic dexamethasone with hyaluronic acid in the treatment of idiopathic sudden sensorineural hearing loss after failure of intravenous steroid and vasoactive therapy. Eur Arch Otorhinolaryngol 2005; 262(2):131-134.
    47. Arriaga MA, Goldman S. Hearing results of intratympanic steroid treatment of endolymphatic hydrops. Laryngoscope 1998; 108(11 Pt 1): 1682-1685.
    48. Hoffer ME, Balough B, Henderson J, et al. Use of sustained release vehicles in the treatment of Meniere's disease. Otolaryngol Clin North Am 1997; 30(6):1159-1166.
    49. Arnold W, Senn P, Hennig M, et al. Novel slow- and fast-type drug release round-window microimplants for local drug application to the cochlea:an experimental study in guinea pigs. Audiol Neurootol 2005; 10(1):53-63.
    50. Duan M, Chen Z, Qiu J, et al. Low-dose, long-term caroverine administration attenuates impulse noise-induced hearing loss in the rat. Acta Otolaryngol 2006; 126(11):1140-1147.
    51. Ito J, Endo T, Nakagawa T, et al. A new method for drug application to the inner ear. ORL J Otorhinolaryngol Relat Spec 2005; 67(5):272-275.
    52. Endo T, Nakagawa T, Kita T, et al. Novel strategy for treatment of inner ears using a biodegradable gel. Laryngoscope 2005; 115(11): 2016-2020.
    53. Tamura T, Kita T, Nakagawa T, et al. Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope 2005; 115(11):2000-2005.
    54. Ge X, Jackson RL, Liu J, et al. Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol Head Neck Surg 2007; 137(4): 619-623.
    55. Praetorius M, Brunner C, Lehnert B, et al. Transsynaptic delivery of nanoparticles to the central auditory nervous system. Acta Otolaryngol 2007; 127(5):486-490.
    56. Wareing M, Mhatre AN, Pettis R, et al. Cationic liposome mediated transgene expression in the guinea pig cochlea. Hear Res 1999; 128(1-2):61-69.
    57. Austin PR, Brine CJ, Castle JE, et al. Chitin:New facets of research. Science 1981; 212(4496):749-753.
    58. Hirano S, Noishiki Y. The blood compatibility of chitosan and N-acylchitosans. J Biomed Mater Res 1985; 19(4):413-417.
    59. Sakai K, Katsumi R, Isobe A, et al. Purification and hydrolytic action of a chitosanase from Nocardia orientalis. Biochim Biophys Acta 1991; 1079(1):65-72.
    60. Patel VR, Amiji MM. Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 1996; 13(4):588-593.
    61. Lee KY, Ha WS, Park WH. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials 1995; 16(16): 1211-1216.
    62. Miwa A, Ishibe A, Nakano M, et al. Development of novel chitosan derivatives as micellar carriers of taxol. Pharm Res 1998; 15(12):
    1844-1850.
    63. Felt O, Furrer P, Mayer JM, et al. Topical use of chitosan in ophthalmology:tolerance assessment and evaluation of precorneal retention. Int J Pharm 1999; 180(2):185-193.
    64. Hirano S, Tsuchida H, Nagao N. N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials 1989; 10(8):574-576.
    65. Aiba S. Studies on chitosan:4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int J Biol Macromol 1992; 14(4):225-228.
    66. Singla AK, Chawla M. Chitosan:some pharmaceutical and biological aspects--an update. J Pharm Pharmacol 2001; 53(8):1047-1067.
    67. Ruel-Gariepy E, Chenite A, Chaput C, et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 2000; 203(1-2):89-98.
    68. Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000; 21(21): 2155-2161.
    69. Back JF, Oakenfull D, Smith MB. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry 1979; 18(23): 5191-5196.
    70. Gekko K, Koga S. Increased thermal stability of collagen in the presence of sugars and polyols. J Biochem 1983; 94(1):199-205.
    71. Wu J, Wei W, Wang LY, et al. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 2007; 28(13):2220-2232.
    72. Iliescu M, Hoemann CD, Shive MS, et al. Ultrastructure of hybrid chitosan-glycerol phosphate blood clots by environmental scanning electron microscopy. Microsc Res Tech 2008; 71(3):236-247.
    73. Ho EA, Vassileva V, Allen C, et al. In vitro and in vivo characterization of a novel biocompatible polymer-lipid implant system for the sustained delivery of paclitaxel. J Control Release 2005; 104(1):181-191.
    74. Ruel-Gariepy E, Leclair G, Hildgen P, et al. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 2002; 82(2-3):373-383.
    75. Ren D, Yi H, Xie W, et al. [Study on homogeneity of enzymatic degradation of chitosan as biomaterials by gel permeation chromatography]. Se Pu 2006; 24(4):407-410.
    76. Varum KM, Holme HK, Izume M, et al. Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans. Biochim Biophys Acta 1996; 1291(1):5-15.
    77. Needleman IG, Martin GP, Smales FC. Characterisation of bioadhesives for periodontal and oral mucosal drug delivery. J Clin Periodontol 1998; 25(1):74-82.
    78. Schipper NG, Varum KM, Stenberg P, et al. Chitosans as absorption enhancers of poorly absorbable drugs.3:Influence of mucus on absorption enhancement. Eur J Pharm Sci 1999; 8(4):335-343.
    79. Crompton KE, Tomas D, Finkelstein DI, et al. Inflammatory response on injection of chitosan/GP to the brain. J Mater Sci Mater Med 2006; 17(7): 633-639.
    80. Molinaro G, Leroux JC, Damas J, et al. Biocompatibility of thermosensitive chitosan-based hydrogels:an in vivo experimental approach to injectable biomaterials. Biomaterials 2002; 23(13): 2717-2722.
    81. Rao SB, Sharma CP. Use of chitosan as a biomaterial:studies on its safety and hemostatic potential. J Biomed Mater Res 1997; 34(1): 21-28.
    82.杜臻雁,唐福林.糖皮质激素抗炎作用的研究进展.中华医学杂志2006;86:2512-2515.
    83. Roebuck J, Chang CY. Efficacy of steroid injection on idiopathic sudden sensorineural hearing loss. Otolaryngol Head Neck Surg 2006; 135(2): 276-279.
    84. Slattery WH, Fisher LM, Iqbal Z, et al. Oral steroid regimens for idiopathic sudden sensorineural hearing loss. Otolaryngol Head Neck Surg 2005; 132(1):5-10.
    85. Loveman DM, de Comarmond C, Cepero R, et al. Autoimmune sensorineural hearing loss:clinical course and treatment outcome. Semin Arthritis Rheum 2004; 34(2):538-543.
    86. McCabe BF. Autoimmune sensorineural hearing loss. Ann Otol Rhinol Laryngol 2007; 116(12):875-879.
    87. Garduno-Anaya MA, Couthino De Toledo H, Hinojosa-Gonzalez R, et al. Dexamethasone inner ear perfusion by intratympanic injection in unilateral Meniere's disease:a two-year prospective, placebo-controlled, double-blind, randomized trial. Otolaryngol Head Neck Surg 2005; 133(2):285-294.
    88. Murofushi T, Nakahara H, Sakata A, et al. Intratympanic injection of dexamethasone as an alternative treatment of steroid-dependent sensorineural hearing loss associated with aortitis syndrome. Auris Nasus Larynx 2007; 34(2):225-228.
    89. Plaza G, Herraiz C. Intratympanic steroids for treatment of sudden hearing loss after failure of intravenous therapy. Otolaryngol Head Neck Surg 2007; 137(1):74-78.
    90. Thorne M, Salt AN, DeMott JE, et al. Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 1999; 109(10):1661-1668.
    91.孔维佳.耳鼻咽喉科学(七年制).北京:人民卫生出版社,2002:506-510.
    92. Fuller JL, Wimer RE. In:GREEN EL, editor. Biology of the Laboratory Mouse. New York:McGraw-Hill; 1966:609-628.
    93. Xiang M, Gan L, Li D, et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci U S A 1997; 94(17):9445-9450.
    94. Tran Ba Huy P, Bernard P, Schacht J. Kinetics of gentamicin uptake and release in the rat. Comparison of inner ear tissues and fluids with other organs. J Clin Invest 1986; 77(5):1492-1500.
    95. Bird PA, Begg EJ, Zhang M, et al. Intratympanic versus intravenous delivery of methylprednisolone to cochlear perilymph. Otol Neurotol 2007; 28(8):1124-1130.
    96. Plontke SK, Mynatt R, Gill RM, et al. Concentration gradient along the scala tympani after local application of gentamicin to the round window membrane. Laryngoscope 2007; 117(7):1191-1198.
    97. Wanamaker HH, Gruenwald L, Damm KJ, et al. Dose-related vestibular and cochlear effects of transtympanic gentamicin. Am J Otol 1998; 19(2):170-179.
    98. Chen JM, Kakigi A, Hirakawa H, et al. Middle ear instillation of gentamicin and streptomycin in chinchillas:morphologic appraisal of selective ototoxicity. J Otolaryngol 1999; 28(3):121-128.
    1. Schuknecht HF. Ablation therapy for the relief of Meniere's disease. Laryngoscope 1956; 66(7):859-870.
    2. Nedzelski JM, Bryce GE, Pfleiderer AG. Treatment of Meniere's disease with topical gentamicin:a preliminary report. J Otolaryngol 1992; 21(2): 95-101.
    3. Haynes DS, O'Malley M, Cohen S, et al. Intratympanic dexamethasone for sudden sensorineural hearing loss after failure of systemic therapy. Laryngoscope 2007; 117(1):3-15.
    4. Xenellis J, Papadimitriou N, Nikolopoulos T, et al. Intratympanic steroid treatment in idiopathic sudden sensorineural hearing loss:a control study. Otolaryngol Head Neck Surg 2006; 134(6):940-945.
    5. Alles MJ, der Gaag MA, Stokroos RJ. Intratympanic steroid therapy for inner ear diseases, a review of the literature. Eur Arch Otorhinolaryngol 2006; 263(9):791-797.
    6. Chia SH, Gamst AC, Anderson JP, et al. Intratympanic gentamicin therapy for Meniere's disease:a meta-analysis. Otol Neurotol 2004; 25(4):544-552.
    7. Cohen-Kerem R, Kisilevsky V, Einarson TR, et al. Intratympanic gentamicin for Meniere's disease:a meta-analysis. Laryngoscope 2004; 114(12):2085-2091.
    8. Alzamil KS, Linthicum FH, Jr. Extraneous round window membranes and plugs:possible effect on intratympanic therapy. Ann Otol Rhinol Laryngol 2000; 109(1):30-32.
    9. Penha R, Escada P. Round-window anatomical considerations in intratympanic drug therapy for inner-ear diseases. Int Tinnitus J 2005; 11(1):31-33.
    10. Silverstein H. Use of a new device, the MicroWick, to deliver medication to the inner ear. Ear Nose Throat J 1999; 78(8):595-598,600.
    11. Hoffer ME, Kopke RD, Weisskopf P, et al. Microdose gentamicin administration via the round window microcatheter:results in patients with Meniere's disease. Ann N Y Acad Sci 2001; 942:46-51.
    12. Endo T, Nakagawa T, Kita T, et al. Novel strategy for treatment of inner ears using a biodegradable gel. Laryngoscope 2005; 115(11): 2016-2020.
    13. Park AH, Jackson A, Hunter L, et al. Cross-linked hydrogels for middle ear packing. Otol Neurotol 2006; 27(8):1170-1175.
    14. Selivanova OA, Gouveris H, Victor A, et al. Intratympanic dexamethasone and hyaluronic acid in patients with low-frequency and Meniere's-associated sudden sensorineural hearing loss. Otol Neurotol 2005; 26(5):890-895.
    15. Sheppard WM, Wanamaker HH, Pack A, et al. Direct round window application of gentamicin with varying delivery vehicles:a comparison of ototoxicity. Otolaryngol Head Neck Surg 2004; 131(6):890-896.
    16. Ruel-Gariepy E, Chenite A, Chaput C, et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 2000; 203(1-2):89-98.
    17. Ho EA, Vassileva V, Allen C, et al. In vitro and in vivo characterization of a novel biocompatible polymer-lipid implant system for the sustained delivery of paclitaxel. J Control Release 2005; 104(1):181-191.
    18. Ruel-Gariepy E, Leclair G, Hildgen P, et al. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 2002; 82(2-3):373-383.
    19. Ren D, Yi H, Xie W, et al. [Study on homogeneity of enzymatic degradation of chitosan as biomaterials by gel permeation chromatography]. Se Pu 2006; 24(4):407-410.
    20. Varum KM, Holme HK, Izume M, et al. Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans. Biochim Biophys Acta 1996; 1291(1):5-15.
    21. Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000; 21(21): 2155-2161.
    22. Crompton KE, Tomas D, Finkelstein DI, et al. Inflammatory response on injection of chitosan/GP to the brain. J Mater Sci Mater Med 2006; 17(7): 633-639.
    23. Molinaro G, Leroux JC, Damas J, et al. Biocompatibility of thermosensitive chitosan-based hydrogels:an in vivo experimental approach to injectable biomaterials. Biomaterials 2002; 23(13): 2717-2722.
    24. Rao SB, Sharma CP. Use of chitosan as a biomaterial:studies on its safety and hemostatic potential. J Biomed Mater Res 1997; 34(1): 21-28.
    25. Itoh A, Sakata E. Treatment of vestibular disorders. Acta Otolaryngol Suppl 1991; 481:617-623.
    26. Sakata E, Kitago Y, Murata Y, et al. [Treatment of Meniere's disease. Middle ear infusion with lidocaine and steroid solution]. Auris Nasus Larynx 1986; 13(2):79-89.
    27. Schwab B, Lenarz T, Heermann R. [Use of the round window micro cath for inner ear therapy-results of a placebo-controlled, prospective study on chronic tinnitus]. Laryngorhinootologie 2004; 83(3):164-172.
    28. Oestreicher E, Arnold W, Ehrenberger K, et al. New approaches for inner ear therapy with glutamate antagonists. Acta Otolaryngol 1999; 119(2):174-178.
    29. Wang J, Jiang H, Liu S, et al. Effect of epidermal growth factor and dexamethasone on explosive deafness. Chin Med J (Engl) 1998; 111(9): 851-853.
    30. Bolger C, Sansom AJ, Smith PF, et al. An antisense oligonucleotide to brain-derived neurotrophic factor delays postural compensation following unilateral labyrinthectomy in guinea pig. Neuroreport 1999; 10(7):1485-1488.
    31. LeBlanc CS, Fallon M, Parker MS, et al. Phosphorothioate oligodeoxynucleotides can selectively alter neuronal activity in the cochlea. Hear Res 1999; 135(1-2):105-112.
    32. Harris KC, Hu B, Hangauer D, et al. Prevention of noise-induced hearing loss with Src-PTK inhibitors. Hear Res 2005; 208(1-2):14-25.
    33. Lallemend F, Lefebvre PP, Hans G, et al. Substance P protects spiral ganglion neurons from apoptosis via PKC-Ca2+-MAPK/ERK pathways. J Neurochem 2003; 87(2):508-521.
    34. Murashita H, Tabuchi K, Hoshino T, et al. The effects of tempol, 3-aminobenzamide and nitric oxide synthase inhibitors on acoustic injury of the mouse cochlea. Hear Res 2006; 214(1-2):1-6.
    35. Sergi B, Fetoni AR, Ferraresi A, et al. The role of antioxidants in protection from ototoxic drugs. Acta Otolaryngol Suppl 2004; (552): 42-45.
    36. Tanaka K, Takemoto T, Sugahara K, et al. Post-exposure administration of edaravone attenuates noise-induced hearing loss. Eur J Pharmacol 2005; 522(1-3):116-121.
    37. Wimmer C, Mees K, Stumpf P, et al. Round window application of D-methionine, sodium thiosulfate, brain-derived neurotrophic factor, and fibroblast growth factor-2 in cisplatin-induced ototoxicity. Otol Neurotol 2004; 25(1):33-40.
    38. Yamasoba T, Nuttall AL, Harris C, et al. Role of glutathione in protection against noise-induced hearing loss. Brain Res 1998; 784(1-2):82-90.
    39. Ernfors P, Duan ML, ElShamy WM, et al. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat Med 1996; 2(4): 463-467.
    40. Keithley EM, Ma CL, Ryan AF, et al. GDNF protects the cochlea against noise damage. Neuroreport 1998; 9(10):2183-2187.
    41. Richardson RT, O'Leary S, Wise A, et al. A single dose of neurotrophin-3 to the cochlea surrounds spiral ganglion neurons and provides trophic support. Hear Res 2005; 204(1-2):37-47.
    42. Shinohara T, Bredberg G, Ulfendahl M, et al. Neurotrophic factor intervention restores auditory function in deafened animals. Proc Natl Acad Sci U S A 2002; 99(3):1657-1660.
    43. Van De Water TR, Staecker H, Ernfors P, et al. Neurotrophic factors as pharmacological agents for the treatment of injured auditory neurons. Ciba Found Symp 1996; 196:149-162; discussion 162-146.
    44. Dazert S, Battaglia A, Ryan AF. Transfection of neonatal rat cochlear cells in vitro with an adenovirus vector. Int J Dev Neurosci 1997; 15(4-5):595-600.
    45. Di Pasquale G, Rzadzinska A, Schneider ME, et al. A novel bovine virus efficiently transduces inner ear neuroepithelial cells. Mol Ther 2005; 11(6):849-855.
    46. Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005; 11(3):271-276.
    47. Kawamoto K, Sha SH, Minoda R, et al. Antioxidant gene therapy can protect hearing and hair cells from ototoxicity. Mol Ther 2004; 9(2): 173-181.
    48. Lalwani AK, Walsh BJ, Reilly PG, et al. Development of in vivo gene therapy for hearing disorders:introduction of adeno-associated virus into the cochlea of the guinea pig. Gene Ther 1996; 3(7):588-592.
    49. Okano T, Nakagawa T, Kita T, et al. Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear. Mol Ther 2006; 14(6): 866-871.
    50. Okano T, Nakagawa T, Kita T, et al. Cell-Gene Delivery of Brain-Derived Neurotrophic Factor to the Mouse Inner Ear. Mol Ther 2006.
    51. Raphael Y, Frisancho JC, Roessler BJ. Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci Lett 1996; 207(2):137-141.
    52. Staecker H, Gabaizadeh R, Federoff H, et al. Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngol Head Neck Surg 1998; 119(1):7-13.
    53. Stover T, Yagi M, Raphael Y. Cochlear gene transfer:round window versus cochleostomy inoculation. Hear Res 1999; 136(1-2):124-130.
    54. Weiss MA, Frisancho JC, Roessler BJ, et al. Viral-mediated gene transfer in the cochlea. Int J Dev Neurosci 1997; 15(4-5):577-583.
    55. Xiang M, Gan L, Li D, et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci U S A 1997; 94(17):9445-9450.
    56. Staecker H, Liu W, Malgrange B, et al. Vector-mediated delivery of bcl-2 prevents degeneration of auditory hair cells and neurons after injury. ORL J Otorhinolaryngol Relat Spec 2007; 69(1):43-50.
    57. Staecker H, Praetorius M, Baker K, et al. Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer. Otol Neurotol 2007; 28(2):223-231.
    58. Avraham KB. Mouse models for deafness:lessons for the human inner ear and hearing loss. Ear Hear 2003; 24(4):332-341.
    59. Crompton KE, Prankerd RJ, Paganin DM, et al. Morphology and gelation of thermosensitive chitosan hydrogels. Biophys Chem 2005; 117(1):47-53.
    1. Schuknecht HF. Ablation therapy in the management of Meniere's disease. Acta Otolaryngol Suppl 1957; 132:1-42.
    2. Beck C. Intratympanic application of gentamicin for treatment of Meniere's disease. Keio J Med 1986; 35(1):36-41.
    3. Nedzelski JM, Schessel DA, Bryce GE, et al. Chemical labyrinthectomy: local application of gentamicin for the treatment of unilateral Meniere's disease. Am J Otol 1992; 13(1):18-22.
    4. Silverstein H, Arruda J, Rosenberg SI, et al. Direct round window membrane application of gentamicin in the treatment of Meniere's disease. Otolaryngol Head Neck Surg 1999; 120(5):649-655.
    5. Light JP, Silverstein H, Jackson LE. Gentamicin perfusion vestibular response and hearing loss. Otol Neurotol 2003; 24(2):294-298.
    6. Blakley BW. Update on intratympanic gentamicin for Meniere's disease. Laryngoscope 2000; 110(2 Pt 1):236-240.
    7. Salt AN, Ma Y. Quantification of solute entry into cochlear perilymph through the round window membrane. Hear Res 2001; 154(1-2):88-97.
    8. Penha R, Escada P. Round-window anatomical considerations in intratympanic drug therapy for inner-ear diseases. Int Tinnitus J 2005; 11(1):31-33.
    9. Alles MJ, der Gaag MA, Stokroos RJ. Intratympanic steroid therapy for inner ear diseases, a review of the literature. Eur Arch Otorhinolaryngol 2006; 263(9):791-797.
    10. Chia SH, Gamst AC, Anderson JP, et al. Intratympanic gentamicin therapy for Meniere's disease:a meta-analysis. Otol Neurotol 2004; 25(4):544-552.
    11. Cohen-Kerem R, Kisilevsky V, Einarson TR, et al. Intratympanic gentamicin for Meniere's disease:a meta-analysis. Laryngoscope 2004; 114(12):2085-2091.
    12. Silverstein H. Use of a new device, the MicroWick, to deliver medication to the inner ear. Ear Nose Throat J 1999; 78(8):595-598,600.
    13. Hoffer ME, Kopke RD, Weisskopf P, et al. Microdose gentamicin administration via the round window microcatheter:results in patients with Meniere's disease. Ann N Y Acad Sci 2001; 942:46-51.
    14. Plontke SK, Zimmermann R, Zenner HP, et al. Technical note on microcatheter implantation for local inner ear drug delivery:surgical technique and safety aspects. Otol Neurotol 2006; 27(7):912-917.
    15. Ruel-Gariepy E, Chenite A, Chaput C, et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 2000; 203(1-2):89-98.
    16. Needleman IG, Martin GP, Smales FC. Characterisation of bioadhesives for periodontal and oral mucosal drug delivery. J Clin Periodontol 1998; 25(1):74-82.
    17. Schipper NG, Varum KM, Stenberg P, et al. Chitosans as absorption enhancers of poorly absorbable drugs.3:Influence of mucus on absorption enhancement. Eur J Pharm Sci 1999; 8(4):335-343.
    18. Singla AK, Chawla M. Chitosan:some pharmaceutical and biological aspects--an update. J Pharm Pharmacol 2001; 53(8):1047-1067.
    19. Paulson DP, Abuzeid W, Jiang H, et al. A Novel Controlled Local Drug Delivery System for Inner Ear Disease. Laryngoscope 2008; 118(4): 706-711.
    20. Iliescu M, Hoemann CD, Shive MS, et al. Ultrastructure of hybrid chitosan-glycerol phosphate blood clots by environmental scanning electron microscopy. Microsc Res Tech 2008; 71(3):236-247.
    21. Fuller JL, Wimer RE. In:GREEN EL, editor. Biology of the Laboratory Mouse. New York:McGraw-Hill; 1966. p.609-628.
    22. Xiang M, Gan L, Li D, et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci U S A 1997; 94(17):9445-9450.
    23. Hoffer ME, Allen K, Kopke RD, et al. Transtympanic versus sustained-release administration of gentamicin:kinetics, morphology, and function. Laryngoscope 2001; 111(8):1343-1357.
    24. Tran Ba Huy P, Bernard P, Schacht J. Kinetics of gentamicin uptake and release in the rat. Comparison of inner ear tissues and fluids with other organs. J Clin Invest 1986; 77(5):1492-1500.
    25. Bird PA, Begg EJ, Zhang M, et al. Intratympanic versus intravenous delivery of methylprednisolone to cochlear perilymph. Otol Neurotol 2007; 28(8):1124-1130.
    26. Plontke SK, Mynatt R, Gill RM, et al. Concentration gradient along the scala tympani after local application of gentamicin to the round window membrane. Laryngoscope 2007; 117(7):1191-1198.
    27. Wanamaker HH, Gruenwald L, Damm KJ, et al. Dose-related vestibular and cochlear effects of transtympanic gentamicin. Am J Otol 1998; 19(2):170-179.
    28. Chen JM, Kakigi A, Hirakawa H, et al. Middle ear instillation of gentamicin and streptomycin in chinchillas:morphologic appraisal of selective ototoxicity. J Otolaryngol 1999; 28(3):121-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700