用户名: 密码: 验证码:
生物质高效转化制备呋喃类化合物的催化剂设计与工艺开发的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪,经济的飞速发展,全球人口规模的不断增长,引发了全球性的能源危机。同时,由于不可再生化石能源的大量开采、使用,使得环境污染和生态破坏等问题日益突出,因此开发可再生的新能源成为当务之急。生物质是一种来源广泛的可再生绿色能源,采用高效的催化方法可将生物质转变为精细化学品和生物燃料,以满足社会发展的需求。本文针对生物质高效转化的问题,从催化化学和降低生产成本的角度,从以下几个方面开展了探索性的研究工作:
     1.采用一步水热碳化法制备了一种新型的碳基固体酸催化剂,其具有较高的酸量且表面含有-SO3H,-COOH和-OH三种官能团。将该催化剂应用到果糖脱水制备5-羟甲基糠醛(HMF)的反应中,以二甲基亚砜(DMSO)为溶剂,在温和反应条件下,底物果糖完全转化,产物HMF得率高达91.2%;增加果糖的浓度(从7至20wt.%),HMF得率也可以保持在80%以上。研究发现催化剂表面上的磺酸和羧酸之间存在协同作用,两者共同促进果糖快速且高效地脱水转化为HMF。
     2.进一步改进上述的碳基固体酸催化剂以增加其比表面积(可达189m2·g-1),并采用THF+DMSO为反应溶剂(7:3,v/v),HMF得率提高到98%。研究表明该催化剂大大降低果糖脱水反应的能垒,反应活化能为50.3kJ·mol-1,而这一活化能要远低于以硫酸或酸性离子交换树脂为催化剂的反应活化能。此外,采用简单的萃取方法,可以将大部分HMF从反应液中分离出来,实现了产物HMF与高沸点溶剂DMSO的有效分离,分离出来的HMF纯度可达96.4%。
     3.采用离子交换法制备了Sn-Mont固体酸催化剂,其属于中强酸类且表面含有Lewis和Br(?)nsted两种酸性位。以THF+DMSO为溶剂,单一Sn-Mont催化剂即可将葡萄糖完全转化,HMF得率达到53.5%。研究表明催化剂结构中的Sn离子作为Lewis酸中心用于葡萄糖到果糖的异构化反应,而活性Sn-OH作为Br(?)nsted酸中心用于将生成的果糖转化为HMF。值得一提的是,在THF/H2O-NaCl两相反应体系中,该催化剂也可催化淀粉和纤维素高效转化,HMF得率分别达到44.4和39.1%。
     4.以Sn-Mont为催化剂,在THF/H2O-NaCl两相体系中,混合糖(木糖和葡萄糖)转化完全,糠醛和HMF的得率分别达到50和65%左右。当引入另一种具有相似B/L比例但酸量更高的NbOPO4固体酸作为共催化剂时,糠醛和HMF的得率分别提高到76.8和68.6%,这主要归功于Sn-Mont和NbOPO4催化剂之间的协同作用,Sn-Mont有利于葡萄糖的转化,而NbOPO4用于高效转化木糖。原生生物质也可以在该反应体系高效转化,糠醛和HMF的质量收率均维持在20%左右,且原生生物质中的木质素和无机盐不会对半纤维素和纤维素的转化造成影响。
     5.采用共沉淀法制备了Ru/Co3O4催化剂,该催化剂在氢解糠醛和HMF的反应中显示出了优异的催化活性,以混合糖或原生生物质的反应液为底物,在温和反应条件下,该催化剂均可将反应液中的糠醛和HMF转化为MF和DMF,两者得率均在90%左右,避免了分离纯化糠醛和HMF的过程。研究表明,催化剂中Ru颗粒主要起到活化氢气的作用,而CoOx活性物种用于吸附中间产物和断裂C-O键,从而将糠醛和HMF氢解为MF和DMF。
With rapid development of economy and increase of population size, the global crisis of energy emerges in the twenty-one century. Meanwhile, due to the excessive exploit of non-renewable fossil fuels, the problems of environment pollution and ecological damage have come out, and how to develop new technical route to produce renewable biofuels has become a focus of scientific research. Lignocellulosic biomass has been regarded as renewable green-energy, and efficient production of fine chemicals and biofuels from lignocellulosic biomass would meet with the growing demand of economic development. In this thesis, from the point of catalytic chemistry and reducing the production costs, a series of novel catalysts have been prepared and used to convert lignocellulosic biomass to fine chemicals and liquid biofuels. The main research results are achieved as follows:
     1. A novel carbon-based solid acid catalyst with high concentration of acid sites, bearing-SO3H,-COOH and-OH groups, has been easily synthesized via one-step hydrothermal carbonization approach. Such carbonaceous catalyst was used in the dehydration of fructose into5-hydroxymethylfurfural (HMF). Fructose can be completely converted in DMSO solvent under mild conditions, and the yield of HMF was up to91.2%. When the concentration of fructose increased from initial7to20wt.%, the yields of HMF maintained around80%. Compared to other acidic catalysts, the multiple functional groups on the carbonaceous catalyst enhanced the adsorption of fructose, but did not inhibit the fast desorption of HMF from the catalyst surface. Meanwhile, the synergic effect between surface carboxylic acid and sulfonic acid groups promoted the efficient conversion of fructose to HMF.
     2. Fructose can be fully converted in THF/DMSO mixed-solvent (7:3, v/v) catalyzed by a novel carbon-based solid acid catalyst with high surface area (189m2·g-1) under mild conditions, and the yield of HMF was up to98%. From the results of kinetic analysis, the extraordinary activity of carbonaceous catalyst was attributed to its greatly lowering down the energy barrier of the dehydration reaction of fructose, and the activation energy was50.3kJ·mol-1, which was much lower than that catalyzed by sulfuric acid or ion-exchanged acid resin. Especially, with the addition of DEE and H2O into the reaction system to extract HMF from the reaction solution, high purity of HMF (96.4%) can be obtained, realizing the goal of separation of HMF from high boiling point solvent of DMSO.
     3. A novel Sn-Mont solid acid catalyst, which had moderate to strong acid strength and contained both Lewis and Bronsted acid sites was synthesized easily via an ion-exchanged method. Single Sn-Mont catalyst can be directly used to completely convert glucose to HMF in THF and DMSO mixed solvent under mild conditions, and the yield of HMF was up to53.5%. It was found that Sn ions in the structure of Sn-Mont catalyst was used as the Lewis acid sites to isomerize glucose to fructose and these active Sn-OH groups was used as the Bronsted acid sites to convert the generated fructose to HMF. Especially, the yields of HMF were up to44.4and39.1%from starch and cellulose in THF/H2O-NaCl biphasic system, where THF was used as the extraction agent to promote the generated HMF from aqueous phase transferring to organic phase.
     4. The mixtures of xylose and glucose can be simultaneously and completely converted catalyzed by single Sn-Mont catalyst in THF/H2O-NaCl biphasic system under mild conditions, and the yields of furfural and HMF were about50and65%, respectively. Besides, the yields of furfural and HMF can be enhanced to76.8and68.6%at the same reaction conditions with addition of another NbOPO4solid acid catalyst with similar ratio of Bronsted to Lewis acid sites and higher acid amounts. Such excellent performances were attributed to the synergistic effect between Sn-Mont and NbOPO4catalyst, where Sn-Mont catalyst was beneficial for conversion of glucose to HMF and NbOPO4catalyst was used to efficiently convert xylose to furfural. This mixed catalysts also have exhibited excellent performances in the conversion of lignocellulosic biomass, and the total mass yields of furfural and HMF were always around20%. Meanwhile, lignin and inorganic salts in lignocellulosic biomass did not affect the conversion of hemicellulose and cellulose into furfural and HMF.
     5. A Ru/Co3O4catalyst easily prepared via co-precipitation method has showed extraordinary catalytic performances in the simultaneously hydrogenolysis of furfural and HMF. Meanwhile, furfural and HMF in the reaction mixture from dehydration of mixed sugars or lignocellulosic biomass can be directly converted to MF and DMF catalyzed by such Ru/Co3O4catalyst under mild conditions, and the yields of MF and DMF were around90%. This approach not only avoided the complicated separation and purification processes of furfural and HMF from the reaction mixture, but also lowered down the costs of biofuels production, realizing the goal of efficient production of liquid biofuels from renewable lignocellulosic biomass. It was confirmed that the Ru particles in the reduced catalyst were used to activate hydrogen, and active CoOx species have played important roles in the adsorption of intermediates and breakage C-O bonds, resulting in the formation of MF and DMF from furfural and HMF.
引文
[1]R. Rinaldi, F. Schuth. Design of solid catalysts for the conversion of biomass. Energy & Environmental Science.2009,2 (6):610-626.
    [2]D. A. Simonetti, J. A. Dumesic. Catalytic strategies for changing the energy content and achieving C-C coupling in biomass-derived oxygenated hydrocarbons. ChemSusChem.2008, 1 (8-9):725-733.
    [3]BP Statistical Review of World Energy.2012.
    [4]X. Y. Yan, O. R. Inderwildi, D. A. King. Biofuels and synthetic fuels in the US and China: A review of Well-to-Wheel energy use and greenhouse gas emissions with the impact of land-use change. Energy & Environmental Science.2010,3 (2):190-197.
    [5]D. L. Klass. Biomass for renewable energy, fuels, and chemicals. New York:Academic Press.1998.
    [6]H. L. MacLean, L. B. Lave. Evaluating automobile fuel/propulsion system technologies. Progress In Energy and Combustion Science.2003,29 (1):1-69.
    [7]A. Cho. Energy's tricky tradeoffs. Science.2010,329 (5993):786-787.
    [8]P. Y. Dapsens, C. Mondelli, J. Perez-Ramirez. Biobased chemicals from conception toward industrial reality:lessons learned and to be learned. ACS Catalysis.2012,2 (7): 1487-1499.
    [9]US Department of Energy. http://wwwl.eere.energy.gov/biomass/pdfs /final_billionton_vision_report2.pdf (accessed February 2012).
    [10]P. N. R. Vennestrom, C. M. Osmundsen, C. H. Christensen, E. Taarning. Beyond petrochemicals:the renewable chemicals industry. Angewandte Chemie International Edition. 2011,50(45):10502-10509.
    [11]D. R. Dodds, R. A. Gross. Chemicals from biomass. Science.2007,318 (5854): 1250-1251.
    [12]R. F. Service. Chemistry-Sugary recipe boosts grow-your-own plastics. Science.2006, 312 (5782):1861-1861.
    [13]A. Corma, S. Iborra, A. Velty. Chemical routes for the transformation of biomass into chemicals. Chemical Reviews.2007,107 (6):2411-2502.
    [14]M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B. C. Gates, M. R. Rahimpour. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy & Environmental Science.2014,7 (1):103-129.
    [15]L. Petrus, M. A. Noordermeer. Biomass to biofuels, a chemical perspective. Green Chemistry.2006,8 (10):861-867.
    [16]H. Kopetz. Build a biomass energy market. Nature.2013,494 (7435):29-31.
    [17]D. M. Alonso, J. Q. Bond, J. A. Dumesic. Catalytic conversion of biomass to biofuels. Green Chemistry.2010,12 (9):1493-1513.
    [18]A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski. The path forward for biofuels and biomaterials. Science.2006,311 (5760): 484-489.
    [19]Y. Sun, J. Y. Cheng. Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresource Technology.2002,83 (1):1-11.
    [20]J. Perez, J. M. Dorado, T. D. Rubia, J. Martinez. Biodegradation and biological treatment of cellulose, hemicellulose and lignin:an overview. International Microbiology.2002,5: 53-63.
    [21]H. Jorgensen, J. B. Kristensen, C. Felby. Enzymatic conversion of lignocellulose into fermentable sugars:challenges and opportunities. Biofuels Bioproducts & Biorefining-Biofpr. 2007,1(2):119-134.
    [22]G W. Huber, S. Iborra, A. Corma. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews.2006,106 (9):4044-4098.
    [23]F. S. Chakar, A. J. Ragauskas. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products.2004,20 (2):131-141.
    [24]R. Vanholme, K. Morreel, J. Ralph, W. Boerjan. Lignin engineering. Current Opinion In Plant Biology.2008,11 (3):278-285.
    [25]A. M. A. R., K. Iben, J. Jechura, K. Neeves, J. Sheehan, B. Wallace, L. Montague, A. Slayton, J. Lukas. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymati hydrolysis for corn stover.2002. www.nrel.gov.docs/fy02osti/32438.pdf.
    [26]A. Aden, T. Foust. Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose.2009,16 (4): 535-545.
    [27]T. R. Carlson, J. Jae, Y. C. Lin, G. A. Tompsett, G. W. Huber. Catalytic fast pyrolysis of glucose with HZSM-5:The combined homogeneous and heterogeneous reactions. Journal of Catalysis.2010,270 (1):110-124.
    [28]J. H. Jae, G A. Tompsett, Y. C. Lin, T. R. Carlson, J. C. Shen, T. Y. Zhang, B. Yang, C. E. Wyman, W. C. Conner, G W. Huber. Depolymerization of lignocellulosic biomass to fuel precursors:maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy & Environmental Science.2010,3 (3):358-365.
    [29]R. J. A. Gosselink, E. de Jong, B. Guran, A. Abacherli. Co-ordination network for lignin-standardisation, production and applications adapted to market requirements (EUROLIGNIN). Industrial Crops and Products.2004,20 (2):121-129.
    [30]L. R. Lynd, J. H. Cushman, R. J. Nichols, C. E. Wyman. Fuel ethanol from cellulosic biomass. Science.1991,251:1318-1323.
    [31]T. A. Lloyd, C. E. Wyman. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology.2005,96 (18):1967-1977.
    [32]C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, Y. Y. Lee. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresource Technology.2005,96 (18):2026-2032.
    [33]T. A. Hsu, M. R. Ladisch, G T. Tsao. Alcohol from cellulose. Chemistry and Technology. 1980,10 (5):315-319.
    [34]P. Kumar, D. M. Barrett, M. J. Delwiche, P. Stroeve. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research.2009,48 (8):3713-3729.
    [35]R. Luque, L. Herrero-Davila, J. M. Campelo, J. H. Clark, J. M. Hidalgo, D. Luna, J. M. Marinas, A. A. Romero. Biofuels:a technological perspective. Energy & Environmental Science.2008,1 (5):542-564.
    [36]M. Balat, H. Balat, C. Oz. Progress in bioethanol processing. Progress In Energy and Combustion Science.2008,34 (5):551-573.
    [37]ENERS Energy Concept. Production of biofuels in the world.2009. http://www.plateformbiocarburants.ch/en/infos/production.php?id=bioethanol.
    [38]M. Balat. Current alternative engine fuels. Energy Sources.2005,27 (6):569-577.
    [39]D. A. Bulushev, J. R. H. Ross. Catalysis for conversion of biomass to fuels via pyrolysis and gasification:A review. Catalysis Today.2011,171 (1):1-13.
    [40]M. E. Dry. The Fischer-Tropsch process:1950-2000. Catalysis Today.2002,71 (3-4): 227-241.
    [41]W. Torres, S. S. Pansare, J. G. Goodwin. Hot gas removal of tars, ammonia, and hydrogen sulfide from Biomass gasification gas. Catalysis Reviews-science and Engineering.2007,49 (4):407-456.
    [42]Y. C. Lin, G. W. Huber. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy & Environmental Science.2009,2(1):68-80.
    [43]J. A. Melero, J. Iglesias, A. Garcia. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy & Environmental Science.2012,5 (6): 7393-7420.
    [44]M. S. Mettler, D. G. Vlachos, P. J. Dauenhauer. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy & Environmental Science.2012,5 (7):7797-7809.
    [45]G W. Huber. Breaking the chemical and engineering barriers to lignocellulosic biofuels: next generation hydrocarbon biorefineries. http://www.ecs.umass.edu/biofuels/Images /Roeadmap2-08.pdf.2007.
    [46]D. C. Elliott. Historical developments in hydroprocessing bio-oils. Energy & Fuels.2007, 21 (3):1792-1815.
    [47]X. Y. Wang, R. Rinaldi. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin. ChemSusChem.2012,5 (8): 1455-1466.
    [48]E. C. Achinivu, R. M. Howard, G Q. Li, H. Gracz, W. A. Henderson. Lignin extraction from biomass with protic ionic liquids. Green Chemistry.2014,16:1114-1119.
    [49]J. Kibet, L. Khachatryan, B. Dellinger. Molecular products and radicals from pyrolysis of lignin. Environmental Science & Technology.2012,46 (23):12994-13001.
    [50]T. N. Trinh, P. A. Jensen, Z. Sarossy, K. Dam-Johansen, N. O. Knudsen, H. R. Sorensen, H. Egsgaard. Fast pyrolysis of lignin using a pyrolysis centrifuge reactor. Energy & Fuels. 2013,27 (7):3802-3810.
    [51]Z. Q. Ma, V. Custodis, v. B. J. A. Selective deoxygenation of lignin during catalytic fast pyrolysis. Catalysis Science & Technology.2012,4:766-772.
    [52]N. Yan, C. Zhao, P. J. Dyson, C. Wang, L. T. Liu, Y. Kou. Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem.2008,1 (7):626-629.
    [53]N. Yan, Y. A. Yuan, R. Dykeman, Y. A. Kou, P. J. Dyson. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Bronsted acidic ionic liquids. Angewandte Chemie International Edition.2010,49 (32):5549-5553.
    [54]S. W. Liu, Z. L. Shi, L. Li, S. T. Yu, C. X. Xie, Z. Q. Song. Process of lignin oxidation in an ionic liquid coupled with separation. RSC Advances.2013,3 (17):5789-5793.
    [55]X. Y. Wang, R. Rinaldi. A route for lignin and bio-oil conversion:dehydroxylation of phenols into arenes by catalytic tandem reactions. Angewandte Chemie International Edition. 2013,52(44):11499-11503.
    [56]C. Zhao, Y. Kou, A. A. Lemonidou, X. B. Li, J. A. Lercher. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angewandte Chemie International Edition.2009,48: 3987-3990.
    [57]C. Zhao, J. A. Lercher. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angewandte Chemie International Edition.2012,51:5935-5940.
    [58]R. B. Lima, R. Raza, H. Y. Qin, J. B. Li, M. E. Lindstrom, B. Zhu. Direct lignin fuel cell for power generation. RSC Advances.2013,3:5083-5089.
    [59]S. Dutta, S. De, B. Saha, M. I. Alam. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catalysis Science & Technology.2012,2 (10): 2025-2036.
    [60]P. Maki-Arvela, T. Salmi, B. Holmbom, S. Willfor, D. Y. Murzin. Synthesis of sugars by hydrolysis of hemicelluloses-Areview. Chemical Reviews.2011,111 (9):5638-5666.
    [61]C. Z. Li, M. Y. Zheng, A. Q. Wang, T. Zhang. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts:simultaneous conversion of cellulose, hemicellulose and lignin. Energy & Environmental Science.2012,5 (4): 6383-6390.
    [62]T. Lloyd, C. E. Wyman. Application of a depolymerization model for predicting thermochemical hydrolysis of hemicellulose. Applied Biochemistry and Biotechnology.2003, 105:53-67.
    [63]H. J. Sun, S. Yoshida, N. H. Park, I. Kusakabe. Preparation of (1 -> 4)-beta-D-xylooligosaccharides from an acid hydrolysate of cotton-seed xylan:suitability of cotton-seed xylan as a starting material for the preparation of (1 -> 4)-beta-D-xylooligosaccharides. Carbohydrate Research.2002,337 (7):657-661.
    [64]C. Sievers, I. Musin, T. Marzialetti, M B. V. Olarte, P. K. Agrawal, C. W. Jones. Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. ChemSusChem. 2009,2 (7):665-671.
    [65]R. Weingarten, J. Cho, W. C. Conner, G. W. Huber. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry.2010, 12 (8):1423-1429.
    [66]O. Yemis, G. Mazza. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresource Technology.2011,102 (15):7371-7378.
    [67]K. J. Zeitsch. The chemistry and technology of furfural and its many by-products.
    [68]J. B. Binder, J. J. Blank, A. V. Cefali, R. T. Raines. Synthesis of furfural from xylose and xylan. ChemSusChem.2010,3 (11):1268-1272.
    [69]Z. H. Zhang, Z. B. K. Zhao. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresource Technology.2010,101 (3):1111-1114.
    [70]T. vom Stein, P. M. Grande, W. Leitner, P. D. de Maria. Iron-catalyzed furfural production in biobased biphasic systems:from pure sugars to direct use of crude xylose effluents as feedstock. ChemSusChem.2011,4 (11):1592-1594.
    [71]M. J. Antal, T. Leesomboon, W. S. Mok, M. G. Richards. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydrate Research.1991,217:71-85.
    [72]G. Marcotullio, W. de Jong. Furfural formation from D-xylose:the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields. Carbohydrate Research.2011,346 (11):1291-1293.
    [73]T. vom Stein, P. M. Grande, H. Kayser, F. Sibilla, W. Leitner, P. D. de Maria. From biomass to feedstock:one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system. Green Chemistry.2011,13 (7):1772-1777.
    [74]E. I. Gurbuz, S. G. Wettstein, J. A. Dumesic. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. ChemSusChem.2012,5 (2): 383-387.
    [75]X. J. Shi, Y. L. Wu, H. F. Yi, G Rui, P. P. Li, M. D. Yang, G. H. Wang. Selective preparation of furfural from xylose over sulfonic acid functionalized mesoporous SBA-15 materials. Energies.2011,4 (4):669-684.
    [76]R. Sahu, P. L. Dhepe. A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts. ChemSusChem. 2012,5 (4):751-761.
    [77]J. H. Zhang, J. P. Zhuang, L. Lin, S. J. Liu, Z. Zhang. Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass & Bioenergy.2012,39:73-77.
    [78]E. Lam, J. H. Chong, E. Majid, Y. L. Liu, S. Hrapovic, A. C. W. Leung, J. H. T. Luong. Carbocatalytic dehydration of xylose to furfural in water. Carbon.2012,50 (3):1033-1043.
    [79]R. Weingarten, G. A. Tompsett, W. C. Conner, G. W. Huber. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates:The role of Lewis and Bronsted acid sites. Journal of Catalysis.2011,279 (1):174-182.
    [80]M. Moliner, Y. Roman-Leshkov, M. E. Davis. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences of the United States of America.2010,107 (14):6164-6168.
    [81]V. Choudhary, A. B. Pinar, S. I. Sandler, D. G. Vlachos, R. F. Lobo. Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catalysis.2011,1 (12): 1724-1728.
    [82]E. Nikolla, Y. Roman-Leshkov, M. Moliner, M. E. Davis. "One-pot" synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catalysis.2011,1 (4):408-410.
    [83]李相呈,张宇,夏银江,胡必成,钟霖,王艳芹,卢冠忠.介孔磷酸铌一锅法高效催化木糖制备糠醛.物理化学学报.2012,28(10):2349-2354.
    [84]S. R. Bare, S. D. Kelly, W. Sinkler, J. J. Low, F. S. Modica, S. Valencia, A. Corma, L. T. Nemeth. Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure. Journal of the American Chemical Society.2005,127 (37):12924-12932.
    [85]A. Corma, L. T. Nemeth, M. Renz, S. Valencia. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature.2001,412 (6845):423-425.
    [86]C. A. Collyer, D. M. Blow. Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase. Proceedings of the National Academy of Sciences of the United States of America.1990,87:1362-1366.
    [87]J. P. Lange, E. van der Heide, J. van Buijtenen, R. Price. Furfural-A promising platform for lignocellulosic biofuels. ChemSusChem.2012,5 (1):150-166.
    [88]J. G. M. Bremner, R. K. F. Keeys. The hydrogenation of furfuraldehyde to furfuryl alcohol and sylvan (2-methylfuran). Journal of the Chemical Society.1947:1068-1080.
    [89]G. E. G. Linares, N. S. Nudelman. Reactions of lithiated aromatic heterocycles with carbon monoxide. Journal Of Physical Organic Chemistry.2003,16 (8):569-576.
    [90]D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes, J. R. H. Ross. Biorefineries-Industrial processes and products, Vol I.2006:139-164.
    [91]I. Ahmed. Processes for the preparation of 2-methylfuran and 2-methyltetrahydrofuran. WO.2002/034697.2002.
    [92]J. G. Stevens, R. A. Bourne, M. V. Twigg, M. Poliakoff. Real-time product switching using a twin catalyst system for the hydrogenation of furfural in supercritical CO2. Angewandte Chemie International Edition.2010,49 (47):8856-8859.
    [93]S. Koso, I. Furikado, A. Shimao, T. Miyazawa, K. Kunimori, K. Tomishige. Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chemical Communications.2009, Doi 10.1039/B822942b (15):2035-2037.
    [94]S. Koso, N. Ueda, Y. Shinmi, K. Okumura, T. Kizuka, K. Tomishige. Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2. Journal of Catalysis.2009,267 (1):89-92.
    [95]Y. Amada, S. Koso, Y. Nakagawa, K. Tomishige. Hydrogenolysis of 1,2-propanediol for the production of biopropanols from glycerol. ChemSusChem.2010,3 (6):728-736.
    [96]W. J. Xu, H. F. Wang, X. H. Liu, J. W. Ren, Y. Q. Wang, G. Z. Lu. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chemical Communications.2011,47 (13):3924-3926.
    [97]R. J. Haan. Gasoline composition and process for the preparation of alkylfurfuryl ether. WO.2009/077606.2009.
    [98]Z. H. Zhang, K. Dong, Z. B. Zhao. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst. ChemSusChem.2011, 4(1):112-118.
    [99]W. R. H. Wright, R. Palkovits. Development of heterogeneous catalysts for the conversion of levulinic acid to gamma-valerolactone. ChemSusChem.2012,5 (9): 1657-1667.
    [100]D. M. Alonso, S. G Wettstein, J. A. Dumesic. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry.2013,15 (3): 584-595.
    [101]A. M. Hengne, S. B. Kamble, C. V. Rode. Single pot conversion of furfuryl alcohol to levulinic esters and gamma-valerolactone in the presence of sulfonic acid functionalized ILs and metal catalysts. Green Chemistry.2013,15 (9):2540-2547.
    [102]X. Tang, L. Hu, Y. Sun, G. Zhao, W. W. Hao, L. Lin. Conversion of biomass-derived ethyl levulinate into gamma-valerolactone via hydrogen transfer from supercritical ethanol over a ZrO2 catalyst. RSC Advances.2013,3 (26):10277-10284.
    [103]Z. Yang, Y. B. Huang, Q. X. Guo, Y. Fu. RANEY (R) Ni catalyzed transfer hydrogenation of levulinate esters to gamma-valerolactone at room temperature. Chemical Communications.2013,49 (46):5328-5330.
    [104]X. Tang, H. W. Chen, L. Hu, W. W. Hao, Y. Sun, X. H. Zeng, L. Lin, S. J. Liu. Conversion of biomass to gamma-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Applied Catalysis B:Environmental.2014,147:827-834.
    [105]G. Y. Gardos, L. Pechy, A. Redey, E. Csaszar. Investigations of the decarbonylation of furfural over metal-oxide catalysts in the presence of steam. Hungarian Journal of Industrial Chemistry.1975,3 (4):577-588.
    [106]R. M. West, Z. Y. Liu, M. Peter, J. A. Dumesic. Liquid Alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem.2008,1 (5):417-424.
    [107]C. J. Barrett, J. N. Chheda, G. W. Huber, J. A. Dumesic. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Applied Catalysis B:Environmental.2006,66 (1-2):111-118.
    [108]A. Corma, O. de la Torre, M. Renz. Production of high quality diesel from cellulose and hemicellulose by the Sylvan process:catalysts and process variables. Energy & Environmental Science.2012,5 (4):6328-6344.
    [109]P. L. Dhepe, A. Fukuoka. Cellulose conversion under heterogeneous catalysis. ChemSusChem.2008,1 (12):969-975.
    [110]S. Van De Vyver, J. Geboers, P. A. Jacobs, B. F. Sels. Recent advances in the catalytic conversion of cellulose. ChemCatChem.2011,3 (1):82-94.
    [111]R. Rinaldi, F. Schuth. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem.2009,2 (12):1096-1107.
    [112]M. Yabushita, H. Kobayashi, A. Fukuoka. Catalytic transformation of cellulose into platform chemicals. Applied Catalysis B:Environmental.2014,145:1-9.
    [113]D. Klemm, B. Heublein, H. P. Fink, A. Bohn. Cellulose:Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition.2005,44 (22): 3358-3393.
    [114]Y. H. P. Zhang, L. R. Lynd. Toward an aggregated understanding of enzymatic hydrolysis of cellulose:Noncomplexed cellulase systems. Biotechnology and Bioengineering. 2004,88 (7):797-824.
    [115]V. Bravo, M. P. Paez, M. Aoulad, A. Reyes. The influence of temperature upon the hydrolysis of cellobiose by beta-1,4-glucosidases from Aspergillus niger. Enzyme and Microbial Technology.2000,26 (8):614-620.
    [116]A. P. Dadi, S. Varanasi, C. A. Schall. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnology and Bioengineering.2006,95 (5): 904-910.
    [117]L. Shuai, Q. Yang, J. Y. Zhu, F. C. Lu, P. J. Weimer, J. Ralph, X. J. Pan. Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresource Technology.2010,101 (9):3106-3114.
    [118]A. Berlin, V. Maximenko, N. Gilkes, J. Saddler. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnology and Bioengineering.2007,97 (2):287-296.
    [119]S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. Journal of the American Chemical Society.2008,130 (38):12787-12793.
    [120]M. Kitano, D. Yamaguchi, S. Suganuma, K. Nakajima, H. Kato, S. Hayashi, M. Hara. Adsorption-enhanced hydrolysis of beta-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir.2009,25 (9):5068-5075.
    [121]D. Yamaguchi, M. Kitano, S. Suganuma, K. Nakajima, H. Kato, M. Hara. Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. Journal of Physical Chemistry C.2009,113 (8):3181-3188.
    [122]Y. Wu, Z. Fu, D. Yin, Q. Xu, F. Liu, C. Lu, L. Mao. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chemistry.2010,12 (4): 696-700.
    [123]Z. H. Zhang, Z. B. K. Zhao. Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydrate Research.2009,344 (15):2069-2072.
    [124]J. F. Pang, A. Q. Wang, M. Y. Zheng, T. Zhang. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications.2010,46 (37): 6935-6937.
    [125]H. Kobayashi, T. Komanoya, K. Hara, A. Fukuoka. Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem.2010,3 (4):440-443.
    [126]A. Takagaki, C. Tagusagawa, K. Domen. Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chemical Communications.2008, Doi 10.1039/B810346a (42):5363-5365.
    [127]A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara, K. Domen. Nanosheets as highly active solid acid catalysts for green chemical syntheses. Energy & Environmental Science. 2010,3(1):82-93.
    [128]L. Shuai, X. J. Pan. Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy & Environmental Science.2012,5 (5):6889-6894.
    [129]C. Z. Li, Z. K. B. Zhao. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis.2007,349 (11-12):1847-1850.
    [130]C. Z. Li, Q. Wang, Z. K. Zhao. Acid in ionic liquid:An efficient system for hydrolysis of lignocellulose. Green Chemistry.2008,10 (2):177-182.
    [131]R. Rinaldi, R. Palkovits, F. Schuth. Depolymerization of cellulose using solid catalysts in ionic liquids. Angewandte Chemie International Edition.2008,47 (42):8047-8050.
    [132]R. Rinaldi, N. Meine, J. vom Stein, R. Palkovits, F. Schuth. Which controls the depolymerization of cellulose in ionic liquids:the solid acid catalyst or cellulose? ChemSusChem.2010,3 (2):266-276.
    [133]S. M. Hick, C. Griebel, D. T. Restrepo, J. H. Truitt, E. J. Buker, C. Bylda, R. G. Blair. Mechanocatalysis for biomass-derived chemicals and fuels. Green Chemistry.2010,12 (3): 468-474.
    [134]N. Meine, R. Rinaldi, F. Schuth. Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem.2012,5 (8):1449-1454.
    [135]H. Kobayashi, M. Yabushita, T. Komanoya, K. Hara, I. Fujita, A. Fukuoka. High-yielding one-pot synthesis of glucose from cellulose using simple activated carbons and trace hydrochloric acid. ACS Catalysis.2013,3 (4):581-587.
    [136]R. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews.2013,113 (3):1499-1597.
    [137]M. Watanabe, Y. Aizawa, T. Iida, R. Nishimura, H. Inomata. Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K:Relationship between reactivity and acid-base property determined by TPD measurement. Applied Catalysis A:General.2005, 295 (2):150-156.
    [138]M. Watanabe, Y. Aizawa, T. Iida, T. M. Aida, C. Levy, K. Sue, H. Inomata. Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydrate Research.2005,340 (12):1925-1930.
    [139]P. M. Grande, C. Bergs, P. D. de Maria. Chemo-enzymatic conversion of glucose into 5-hydroxymethylfurfural in seawater. ChemSusChem.2012,5 (7):1203-1206.
    [140]S. Zhao, M. X. Cheng, J. Z. Li, J. A. Tian, X. H. Wang. One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Bronsted-Lewis-surfactant-combined heteropolyacid catalyst. Chemical Communications. 2011,47 (7):2176-2178.
    [141]H. P. Yan, Y. Yang, D. M. Tong, X. Xiang, C. W. Hu. Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42-/ZrO2 and SO42-/ZrO2-Al2O3 solid acid catalysts. Catalysis Communications.2009,10(11):1558-1563.
    [142]M. Ohara, A. Takagaki, S. Nishimura, K. Ebitani. Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Applied Catalysis A:General.2010,383 (1-2):149-155.
    [143]B. Saha, M. M. Abu-Omar. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chemistry.2014,16 (1):24-38.
    [144]Y. J. Pagan-Torres, T. F. Wang, J. M. R. Gallo, B. H. Shanks, J. A. Dumesic. Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Bronsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent. ACS Catalysis.2012,2 (6):930-934.
    [145]M. Mascal, E. B. Nikitin. Direct, high-yield conversion of cellulose into biofuel. Angewandte Chemie International Edition.2008,47 (41):7924-7926.
    [146]M. Mascal, E. B. Nikitin. Towards the efficient, total glycan utilization of biomass. ChemSusChem.2009,2 (5):423-426.
    [147]M. Mascal, E. B. Nikitin. Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. ChemSusChem.2009,2 (9):859-861.
    [148]H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science.2007,316 (5831):1597-1600.
    [149]C. Z. Li, Z. H. Zhang, Z. B. K. Zhao. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Letters. 2009,50 (38):5403-5405.
    [150]P. Wang, H. B. Yu, S. H. Zhan, S. Q. Wang. Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresource Technology.2011,102 (5): 4179-4183.
    [151]Y. T. Zhang, H. B. Du, X. H. Qian, E. Y. X. Chen. Ionic liquid-water mixtures: Enhanced k-w for efficient cellulosic biomass conversion. Energy & Fuels.2010,24: 2410-2417.
    [152]F. R. Tao, H. L. Song, L. J. Chou. Hydrolysis of cellulose in SO3H-functionalized ionic liquids. Bioresource Technology.2011,102 (19):9000-9006.
    [153]J. Horvat, B. Klaic, B. Metelko, V. Sunjic. Mehanism of levulinic acid formation. Tetrahedron Letters.1985,26 (17):2111.
    [154]B. Girisuta, L. P. B. M. Janssen, H. J. Heeres. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chemistry.2006,8 (8):701-709.
    [155]O. Casanova, S. Iborra, A. Corma. Biomass into chemicals:Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem.2009,2 (12):1138-1144.
    [156]N. K. Gupta, S. Nishimura, A. Takagaki, K. Ebitani. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chemistry.2011,13 (4):824-827.
    [157]H. A. Rass, N. Essayem, M. Besson. Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts:influence of the base and effect of bismuth promotion. Green Chemistry.2013,15 (8):2240-2251.
    [158]S. E. Davis, B. N. Zope, R. J. Davis. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chemistry.2012,14 (1):143-147.
    [159]Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature.2007,447 (7147):982-985.
    [160]Y. H. Zu, P. P. Yang, J. J. Wang, X. H. Liu, J. W. Ren, G. Z. Lu, Y. Q. Wang. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Applied Catalysis B:Environmental.2014,146:244-248.
    [161]J. N. Chheda, J. A. Dumesic. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catalysis Today.2007,123 (1-4):59-70.
    [1]B. F. M. Kuster.5-Hydroxymethylfurfural (HMF). A review focusing on its manufacture. Starch-Starke.1990,42:314-321.
    [2]Y. Roman-Leshkov, J. N. Chheda, J. A. Dumesic. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science.2006,312 (5782):1933-1937.
    [3]J. Zhang, E. Weitz. An in situ NMR study of the mechanism for the catalytic conversion of fructose to 5-hydroxymethylfurfural and then to levulinic acid using 13C labeled D-fructose. ACS Catalysis.2012,2 (6):1211-1218.
    [4]C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, G Avignon. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Applied Catalysis A:General.1996,145:211-224.
    [5]C. Carlini, M. Giuttari, A. M. R. Galletti, G. Sbrana, T. Armaroli, G. Busca. Selective saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts. Applied Catalysis A:General.1999,183 (2):295-302.
    [6]X. H. Qi, M. Watanabe, T. M. Aida, R. L. Smith. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chemistry.2008,10 (7):799-805.
    [7]M. Hara, T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo, S. Hayashi, K. Domen. A carbon material as a strong protonic acid. Angewandte Chemie International Edition.2004,43 (22):2955-2958.
    [8]M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi, K. Domen, M. Hara. Green chemistry-Biodiesel made with sugar catalyst. Nature.2005,438 (7065):178-178.
    [9]S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. Journal of the American Chemical Society.2008,130 (38):12787-12793.
    [10]M. Liu, S. G. Jia, Y. Y. Gong, C. S. Song, X. W. Guo. Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid. Industrial & Engineering Chemistry Research.2013,52 (24):8167-8173.
    [11]L. Peng, A. Philippaerts, X. X. Ke, J. Van Noyen, F. De Clippel, G. Van Tendeloo, P. A. Jacobs, B. F. Sels. Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today.2010,150 (1-2):140-146.
    [12]X. Liang, M. Zeng, C. Qi. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization. Carbon.2010,48 (6):1844-1848.
    [13]M. M. Titirici, A. Thomas, M. Antonietti. Replication and coating of silica templates by hydrothermal carbonization. Advanced Functional Materials.2007,17 (6):1010-1018.
    [14]I. B. Toledo, M. A. Ferro-Garcia, J. Rivera-Utrilla, C. Moreno-Castilla, F. J. V. Fernandez. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environmental Science & Technology.2005,39 (16):6246-6250.
    [15]N. S. Mosier, C. M. Ladisch, M. R. Ladisch. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering.2002, 79 (6):610-618.
    [16]X. Z. Liang, H. Q. Xiao, Y. M. Shen, C. Z. Qi. One-step synthesis of novel sulfuric acid groups' functionalized carbon via hydrothermal carbonization. Materials Letters.2010,64 (8): 953-955.
    [17]X. Z. Liang, M. F. Zeng, C. Z. Qi. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization. Carbon.2010,48 (6):1844-1848.
    [18]H. Q. Xiao, Y. X. Guo, X. Z. Liang, C. Z. Qi. One-step synthesis of novel biacidic carbon via hydrothermal carbonization. Journal of Solid State Chemistry.2010,183 (7):1721-1725.
    [19]B. H. Zhang, J. W. Ren, X. H. Liu, Y. Guo, Y. L. Guo, G. Z. Lu, Y. Q. Wang. Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catalysis Communications.2010,11 (7):629-632.
    [20]J. J. Wang, W. J. Xu, J. W. Ren, X. H. Liu, G. Z. Lu, Y. Q. Wang. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chemistry.2011,13 (10):2678-2681.
    [21]W. L. Zhang, H. X. Tao, B. H. Zhang, J. W. Ren, G. Z. Lu, Y. Q. Wang. One-pot synthesis of carbonaceous monolith with surface sulfonic groups and its carbonization/activation. Carbon.2011,49 (6):1811-1820.
    [22]N. Tsubouchi, C. B. Xu, Y. Ohtsuka. Carbon crystallization during high-temperature pyrolysis of coals and the enhancement by calcium. Energy & Fuels.2003,17 (5):1119-1125.
    [23]M. Okamura, A. Takagaki, M. Toda, J. N. Kondo, K. Domen, T. Tatsumi, M. Hara, S. Hayashi. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chemistry of Materials.2006,18 (13):3039-3045.
    [24]R. Xing, N. Liu, Y. M. Liu, H. W. Wu, Y. W. Jiang, L. Chen, M. Y. He, P. Wu. Novel solid acid catalysts:Sulfonic acid group-functionalized mesostructured polymers. Advanced Functional Materials.2007,17 (14):2455-2461.
    [25]R. Xing, Y. M. Liu, Y. Wang, L. Chen, H. H. Wu, Y. W. Jiang, M. Y. He, P. Wu. Active solid acid catalysts prepared by sulfonation of carbonization-controlled mesoporous carbon materials. Microporous and Mesoporous Materials.2007,105 (1-2):41-48.
    [26]P. Carniti, A. Gervasini, S. Biella, A. Auroux. Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium:Fructose dehydration reaction. Catalysis Today.2006,118 (3-4):373-378.
    [27]Y. Y. Lee, K. C. W. Wu. Conversion and kinetics study of fructose-to-5-hydroxymethylfurfural (HMF) using sulfonic and ionic liquid groups bi-functionalized mesoporous silica nanoparticles as recyclable solid catalysts in DMSO systems. Physical Chemistry Chemical Physics.2012,14 (40):13914-13917.
    [28]K. Shimizu, R. Uozumi, A. Satsuma. Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catalysis Communications.2009,10(14):1849-1853.
    [29]X. H. Qi, M. Watanabe, T. M. Aida, R. L. Smith. Selective conversion of D-Fructose to 5-hydroxymethylfurfural by ion-exchange resin in acetone/dimethyl sulfoxide solvent mixtures. Industrial & Engineering Chemistry Research.2008,47 (23):9234-9239.
    [30]A. S. Amarasekara, L. D. Williams, C. C. Ebede. Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150℃:an NMR study. Carbohydrate Research.2008,343 (18):3021-3024.
    [31]V. J. Traynelis, W. L. Hergenrother, J. R. Livingaston, V. J. A. Dehydration of alcohols in dimethyl sulfoxide. Journal of Organic Chemistry.1962,27:2377-2383.
    [32]B. T. Gillis, P. E. Beck. Formation of tetrahydrofuran derivatives from 1,4-diols in dimethyl sulfoxide. Journal of Organic Chemistry.1963,28:1388-1390.
    [33]R. M. Musau, R. M. Munavu. The preparation of 5-hydroxymethyl-2-furaldehyde (HMF) from D-fructose in the presence of DMSO. Biomass.1987.13:67-74.
    [34]R. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews.2013,113 (3):1499-1597.
    [35]M. Bicker, D. Kaiser, L. Ott, H. Vogel. Dehydration of D-fructose to hydroxymethylfurfural in sub- and supercritical fluids. Journal of Supercritical Fluids.2005, 36(2):118-126.
    [36]F. W. Lichenthaler, S. Ronninger. Alpha-D-glucopyranosyl-D-fructoses:Distribution of furanoid and pyranoid tautomers in water, dimethyl sulphoxide, and pyridine. Studies on ketoses. Part 4. Journal of the Chemical Society, Perkin Transactions 2.1990:1489-1497.
    [37]X. H. Qi, M. Watanabe. T. M. Aida, R. L. Smith. Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catalysis Communications.2009, 10(13):1771-1775.
    [38]J. N. Chheda, Y. Roman-Leshkov, J. A. Dumesic. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry. 2007,9 (4):342-350.
    [39]A. J. Crisci, M. H. Tucker, M. Y. Lee, S. G Jang, J. A. Dumesic, S. L. Scott. Add-functionalized SBA-15-type silica catalysts for carbohydrate dehydration. ACS Catalysis. 2011,1(7):719-728.
    [40]G. Yang, E. A. Pidko, E. J. M. Hensen. Mechanism of Bronsted acid-catalyzed conversion of carbohydrates. Journal of Catalysis.2012,295:122-132.
    [41]Q. Cao, X. C. Guo, J. Guan, X. D. Mu, D. K. Zhang. A process for efficient conversion of fructose into 5-hydroxymethylfurfural in ammonium salts. Applied Catalysis A:General. 2011,403 (1-2):98-103.
    [42]C. Y. Fan, H. Y. Guan, H. Zhang, J. H. Wang, S. T. Wang, X. H. Wang. Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass & Bioenergy.2011,35 (7):2659-2665.
    [43]C. Z. Li, Z. K. Zhao, A. Q. Wang, M. Y. Zheng, T. Zhang. Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydrate Research.2010,345 (13):1846-1850.
    [44]Y. Roman-Leshkov, J. A. Dumesic. Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Topics in Catalysis.2009,52 (3):297-303.
    [45]M. Kitano, D. Yamaguchi, S. Suganuma, K. Nakajima, H. Kato, S. Hayashi, M. Hara. Adsorption-enhanced hydrolysis of beta-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir.2009,25 (9):5068-5075.
    [46]K. Fukuhara, K. Nakajima, M. Kitano, H. Kato, S. Hayashi, M. Hara. Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups. ChemSusChem.2011, 4 (6):778-784.
    [1]J. N. Chheda, G. W. Huber, J. A. Dumesic. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie-International Edition.2007,46 (38):7164-7183.
    [2]C. F. Wahlbom, B. Hahn-Hagerdal. Furfural,5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnology and Bioengineering.2002,78 (2):172-178.
    [3]T. S. Hansen, J. M. Woodley, A. Riisager. Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. Carbohydrate Research.2009, 344 (18):2568-2572.
    [4]F. L. Yang, Q. S. Liu, M. Yue, X. F. Bai, Y. G. Du. Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Chemical Communications. 2011,47 (15):4469-4471.
    [5]A. Corma, S. Iborra, A. Velty. Chemical routes for the transformation of biomass into chemicals. Chemical Reviews.2007,107 (6):2411-2502.
    [6]A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, C. A. M. Afonso. 5-Hydroxymethylfurfural (HMF) as a building block platform:Biological properties, synthesis and synthetic applications. Green Chemistry.2011,13 (4):754-793.
    [7]G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science.2005,308 (5727): 1446-1450.
    [8]Y. Roman-Leshkov, J. N. Chheda, J. A. Dumesic. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science.2006,312 (5782):1933-1937.
    [9]J. J. Wang, W. J. Xu, J. W. Ren, X. H. Liu, G. Z. Lu, Y. Q. Wang. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chemistry.2011,13 (10):2678-2681.
    [10]H. Zhu, Q. Cao, C. H. Li, X. D. Mu. Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents. Carbohydrate Research.2011,346 (13): 2016-2018.
    [11]X. H. Qi, M. Watanabe, T. M. Aida, R. L. Smith. Selective conversion of D-Fructose to 5-hydroxymethylfurfural by ion-exchange resin in acetone/dimethyl sulfoxide solvent mixtures. Industrial & Engineering Chemistry Research.2008,47 (23):9234-9239.
    [12]R. M. West, Z. Y. Liu, M. Peter, J. A. Dumesic. Liquid Alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem.2008,1 (5):417-424.
    [13]Q. Cao, X. C. Guo, J. Guan, X. D. Mu, D. K. Zhang. A process for efficient conversion of fructose into 5-hydroxymethylfurfural in ammonium salts. Applied Catalysis A:General. 2011,403 (1-2):98-103.
    [14]J. Y. G. Chan, Y. G. Zhang. Selective conversion of fructose to 5-hydroxymethylfurfural catalyzed by tungsten salts at low temperatures. ChemSusChem.2009,2 (8):731-734.
    [15]S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. Journal of the American Chemical Society.2008,130 (38):12787-12793.
    [16]X. Z. Liang, M. F. Zeng, C. Z. Qi. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization. Carbon.2010,48 (6):1844-1848.
    [17]B. H. Zhang, J. W. Ren, X. H. Liu, Y. Guo, Y. L. Guo, G. Z. Lu, Y. Q. Wang. Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catalysis Communications.2010,11 (7):629-632.
    [18]J. N. Chheda, Y. Roman-Leshkov, J. A. Dumesic. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry. 2007,9 (4):342-350.
    [19]M. Bicker, D. Kaiser, L. Ott, H. Vogel. Dehydration of D-fructose to hydroxymethylfurfural in sub- and supercritical fluids. Journal of Supercritical Fluids.2005, 36(2):118-126.
    [20]F. W. Lichenthaler, S. Ronninger. Alpha-D-glucopyranosyl-D-fructoses:Distribution of furanoid and pyranoid tautomers in water, dimethyl sulphoxide, and pyridine. Studies on ketoses. Part 4. Journal of the Chemical Society, Perkin Transactions 2.1990:1489-1497.
    [21]K. Shimizu, R. Uozumi, A. Satsuma. Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catalysis Communications.2009,10(14):1849-1853.
    [22]B. F. M. Kuster.5-Hydroxymethylfurfural (HMF). A review focusing on its manufacture. Starch-Starke.1990,42:314-321.
    [23]M. Bicker, J. Hirth, H. Vogel. Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone. Green Chemistry.2003,5 (2):280-284.
    [24]X. H. Qi, M. Watanabe, T. M. Aida, R. L. Smith. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chemistry.2008,10 (7):799-805.
    [25]K. Seri. Y. Inoue, H. Ishida. Catalytic activity of Lanthanide(Ⅲ) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water. Bulletin of the Chemical Society of Japan.2001,74 (6):1145-1150.
    [26]C. Carlini, P. Patrono, A. M. R. Galletti, G Sbrana. Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Applied Catalysis A:General.2004,275 (1-2):111-118.
    [27]C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, G Avignon. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Applied Catalysis A:General.1996,145:211-224.
    [28]Y. Yang, C. W. Hu, M. M. Abu-Omar. The effect of hydrochloric acid on the conversion of glucose to 5-hydroxymethylfurfural in AlCl3·H2O/THF biphasic medium. Journal of Molecular Catalysis A:Chemical.2013,376:98-102.
    [29]C. M. Cai, T. Y. Zhang, R. Kumar, C. E. Wyman. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chemistry.2013,15 (11): 3140-3145.
    [30]Y. Yang, C. W. Hu, M. M. Abu-Omar. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system. Green Chemistry.2012,14 (2):509-513.
    [31]H. Amiri, K. Karimi, S. Roodpeyma. Production of furans from rice straw by single-phase and biphasic systems. Carbohydrate Research.2010,345 (15):2133-2138.
    [32]Y. X. Wang, C. M. Pedersen, T. S. Deng, Y. Qiao, X. L. Hou. Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution. Bioresource Technology.2013,143:384-390.
    [33]M. H. Tucker, R. Alamillo, A. J. Crisci, G. M. Gonzalez, S. L. Scott, J. A. Dumesic. Sustainable Solvent Systems for Use in Tandem Carbohydrate Dehydration Hydrogenation. Acs Sustainable Chemistry & Engineering.2013,1 (5):554-560.
    [34]E. F. Boffo, L. A. Tavares, A. C. T. Tobias, M. M. C. Ferreira, A. G Ferreira. Identification of components of Brazilian honey by'H NMR and classification of its botanical origin by chemometric methods. Lwt-Food Science and Technology.2012,49 (1):55-63.
    [35]J. Zhang, E. Weitz. An in Situ NMR Study of the Mechanism for the Catalytic Conversion of Fructose to 5-Hydroxymethylfurfural and then to Levulinic Acid Using C-13 Labeled D-Fructose. ACS Catalysis.2012,2 (6):1211-1218.
    [36]Y. N. Li, J. Q. Wang, L. N. He, Z. Z. Yang, A. H. Liu, B. Yu, C. R. Luan. Experimental and theoretical studies on imidazolium ionic liquid-promoted conversion of fructose to 5-hydroxymethylfurfural. Green Chemistry.2012,14 (10):2752-2758.
    [1]J. N. Chheda, G. W. Huber, J. A. Dumesic. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition.2007,46 (38):7164-7183.
    [2]Y. Roman-Leshkov, J. N. Chheda, J. A. Dumesic. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science.2006,312 (5782):1933-1937.
    [3]J. N. Chheda, Y. Roman-Leshkov, J. A. Dumesic. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry. 2007,9 (4):342-350.
    [4]P. Carniti, A. Gervasini, M. Marzo. Absence of expected side-reactions in the dehydration reaction of fructose to HMF in water over niobic acid catalyst. Catalysis Communications. 2011,12 (12):1122-1126.
    [5]K. Shimizu, R. Uozumi, A. Satsuma. Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catalysis Communications.2009,10 (14):1849-1853.
    [6]J. J. Wang, J. W. Ren, X. H. Liu, G. Z. Lu, Y. Q. Wang. High yield production and purification of 5-hydroxymethylfurfural. AIChE Journal.2013,59 (7):2558-2566.
    [7]M. Moliner, Y. Roman-Leshkov, M. E. Davis. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences of the United States of America.2010,107 (14):6164-6168.
    [8]T. Stahlberg, S. Rodriguez-Rodriguez, P. Fristrup, A. Riisager. Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chemistry-a European Journal.2011,17 (5):1456-1464.
    [9]M. Watanabe, Y. Aizawa, T. Iida, C. Levy, T. M. Aida, H. Inomata. Glucose reactions within the heating period and the effect of heating rate on the reactions in hot compressed water. Carbohydrate Research.2005,340 (12):1931-1939.
    [10]A. Takagaki, M. Ohara, S. Nishimura, K. Ebitani. A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chemical Communications.2009, Doi 10.1039/B914087e (41):6276-6278.
    [11]R. L. Huang, W. Qi, R. X. Su, Z. M He. Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Chemical Communications.2010,46 (7): 1115-1117.
    [12]Y. Roman-Leshkov, M. Moliner, J. A. Labinger, M. E. Davis. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angewandte Chemie International Edition.2010,49 (47):8954-8957.
    [13]R. S. Assary, L. A. Curtiss. Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxy acetone by lewis acid active site models. Journal of Physical Chemistry A.2011,115 (31):8754-8760.
    [14]H. Jadhav, C. M. Pedersen, T. Soiling, M. Bols.3-Deoxy-glucosone is an intermediate in the formation of furfurals from D-glucose. ChemSusChem.2011,4 (8):1049-1051.
    [15]K. M. Su, X. Liu, M. Ding, Q. J. Yuan, Z. H. Li, B. W. Cheng. Effective conversion sucrose into 5-hydroxymethylfurfural by tyrosine in [Emim]Br. Journal of Molecular Catalysis A:Chemical.2013,379:350-354.
    [16]W. H. Peng, Y. Y. Lee, C. N. Wu, K. C. W. Wu. Acid-base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion. Journal of Materials Chemistry.2012,22 (43):23181-23185.
    [17]L. Yang, Y. H. Liu, R. S. Ruan. Hydrolysis of glucose to 5-hydroxymethylfurfural. Advanced Materials and Structures, Pts 1 and 2.2011,335-336:1448-1453.
    [18]M. Ohara, A. Takagaki, S. Nishimura, K. Ebitani. Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Applied Catalysis A:General.2010,383 (1-2):149-155.
    [19]R. W. Nagorski, J. P. Richard. Mechanistic imperatives for aldose-ketose isomerization in water:Specific, general base- and metal ion-catalyzed isomerization of glyceraldehyde with proton and hydride transfer. Journal of the American Chemical Society.2001,123 (5): 794-802.
    [20]H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science.2007,316 (5831):1597-1600.
    [21]S. Q. Hu, Z. F. Zhang, J. L. Song, Y. X. Zhou, B. X. Han. Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chemistry.2009,11 (11):1746-1749.
    [22]V. Choudhary, A. B. Pinar, R. F. Lobo, D. G. Vlachos, S. I. Sandler. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. ChemSusChem.2013,6 (12):2369-2376.
    [23]V. Choudhary, S. H. Mushrif, C. Ho, A. Anderko, V. Nikolakis, N. S. Marinkovic, A. I. Frenkel, S. I. Sandler, D. G. Vlachos. Insights into the interplay of Lewis and Bronsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. Journal of the American Chemical Society.2013,135 (10):3997-4006.
    [24]L. Hu, Y. Sun, L. Lin. Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium(Ⅲ) chloride in inexpensive ionic liquid. Industrial & Engineering Chemistry Research.2012,51 (3):1099-1104.
    [25]G Tian, X. L. Tong, Y. Cheng, S. Xue. Tin-catalyzed efficient conversion of carbohydrates for the production of 5-hydroxymethylfurfural in the presence of quaternary ammonium salts. Carbohydrate Research.2013,370:33-37.
    [26]E. Nikolla, Y. Roman-Leshkov, M. Moliner, M. E. Davis. "One-pot" synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catalysis.2011,1 (4):408-410.
    [27]A. Corma, M. E. Domine, L. Nemeth, S. Valencia. Al-free Sn-beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). Journal of the American Chemical Society.2002,124 (13):3194-3195.
    [28]M. Boronat, A. Corma, M. Renz. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn-and Zr-beta zeolite catalysts. Journal of Physical Chemistry B.2006,110 (42):21168-21174.
    [29]V. Choudhary, A. B. Pinar, S. I. Sandler, D. G. Vlachos, R. F. Lobo. Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catalysis.2011,1 (12): 1724-1728.
    [30]Y. Izumi, M. Onaka. Organic syntheses using aluminosilicates. Advances in Catalysis. 1992,38:245-282.
    [31]S. S. Ray, M. Okamoto. Polymer/layered silicate nanocomposites:a review from preparation to processing. Progress In Polymer Science.2003,28 (11):1539-1641.
    [32]石宁,于元章,王庆昭,倪礼忠,郑安呐.纳米蒙脱土的结构表征与应用研究.合成橡胶工业.2007,30(4):311.
    [33]杨科,王锦成,郑晓昱.蒙脱土的结构、性能及其改性研究现状.上海工程技术大学学报.2011,25(1):65-70.
    [34]M. Onaka, R. Ohno, M. Kawai, Y. Izumi. Clay montmorillonite-catalyzed aldol reactions of silyl ketene acetals with carbonyl compounds. Bulletin of the Chemical Society of Japan. 1987,60 (7):2689-2691.
    [35]K. Kawai, M. Onaka, Y. Izumi. Clay montmorillonite:an efficient, heterogeneous catalyst for Michael reactions of silyl ketene acetals and silyl enol ethers with alpha, beta-unsaturated carbonyl compounds. Bulletin of the Chemical Society of Japan.1988,61 (6):2157-2164.
    [36]K. Higuchi, M. Onaka, Y. Izumi. Solid acid and base-catalyzed cyanosilylation of carbonyl compounds with cyanotrimethylsilane. Bulletin of the Chemical Society of Japan. 1993,66 (7):2016-2032.
    [37]J. Kadokawa, Y. Iwasaki, H. Tagaya. Ring-opening polymerization of lactones catalyzed by ion-exchanged clay montmorillonite. Green Chemistry.2002,4 (1):14-16.
    [38]A. Hachemaoui, M. Belbachir. Ring-opening polymerization of lactones catalyzed by ion-exchanged clay montmorillonite and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate. Materials Letters.2005,59 (29-30): 3904-3908.
    [39]J. C. Wang, Y. Masui, M. Onaka. Conversion of triose sugars with alcohols to alkyl lactates catalyzed by Bronsted acid tin ion-exchanged montmorillonite. Applied Catalysis B: Environmental.2011,107 (1-2):135-139.
    [40]T. Hara, M. Hatakeyama, A. Kim, N. Ichikuni, S. Shimazu. Preparation of clay-supported Sn catalysts and application to Baeyer-Villiger oxidation. Green Chemistry.2012,14 (3): 771-777.
    [41]C. Walling. The acid strength of surfaces. Journal of the American Chemical Society. 1950,72:1164-1168.
    [42]H. A. Benesi. Acidity of catalyst surfaces. I. Acid strength from colors of adsorbed indicators. Journal of the American Chemical Society.1956,78:5490-9494.
    [43]S. H. Chai, H. P. Wang, Y. Liang, B. Q. Xu. Sustainable production of acrolein: Gas-phase dehydration of glycerol over Nb2O5 catalyst. Journal of Catalysis.2007,250 (2): 342-349.
    [44]W. Q. Fan, Q. H. Zhang, W. P. Deng, Y. Wang. Niobic acid nanosheets synthesized by a simple hydrothermal method as efficient Bronsted acid catalysts. Chemistry of Materials. 2013,25 (16):3277-3287.
    [45]J. J. Wang, W. J. Xu, J. W. Ren, X. H. Liu, G. Z. Lu, Y. Q. Wang. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chemistry.2011,13 (10):2678-2681.
    [46]F. W. Lichenthaler, S. Ronninger. Alpha-D-glucopyranosyl-D-fructoses:Distribution of furanoid and pyranoid tautomers in water, dimethyl sulphoxide, and pyridine. Studies on ketoses. Part 4. Journal of the Chemical Society, Perkin Transactions 2.1990:1489-1497.
    [47]M. Bicker, D. Kaiser, L. Ott, H. Vogel. Dehydration of D-fructose to hydroxymethylfurfural in sub- and supercritical fluids. Journal of Supercritical Fluids.2005, 36 (2):118-126.
    [48]X. H. Qi, M. Watanabe, T. M. Aida, R. L. Smith. Selective conversion of D-Fructose to 5-hydroxymethylfurfural by ion-exchange resin in acetone/dimethyl sulfoxide solvent mixtures. Industrial & Engineering Chemistry Research.2008,47 (23):9234-9239.
    [49]B. F. M. Kuster.5-Hydroxymethylfurfural (HMF). A review focusing on its manufacture. Starch-Starke.1990,42:314-321.
    [50]K. Seri, Y. Inoue, H. Ishida. Catalytic activity of Lanthanide(III) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water. Bulletin of the Chemical Society of Japan.2001,74 (6):1145-1150.
    [51]C. Carlini, P. Patrono, A. M. R. Galletti, G. Sbrana. Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Applied Catalysis A:General.2004,275 (1-2):111-118.
    [52]T. Suzuki, T. Yokoi, R. Otomo, J. N. Kondo, T. Tatsumi. Dehydration of xylose over sulfated tin oxide catalyst:Influences of the preparation conditions on the structural properties and catalytic performance. Applied Catalysis A:General.2011,408 (1-2):117-124.
    [53]F. L. Yang, Q. S. Liu, X. F. Bai, Y. G Du. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst. Bioresource Technology.2011,102 (3): 3424-3429.
    [54]C. Carlini, M. Giuttari, A. M. R. Galletti, G Sbrana, T. Armaroli, G Busca. Selective saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts. Applied Catalysis A:General.1999,183 (2):295-302.
    [55]B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai. Glucose and fructose decomposition in subcritical and supercritical water:Detailed reaction pathway, mechanisms, and kinetics. Industrial & Engineering Chemistry Research.1999,38 (8):2888-2895.
    [56]T. T. Lam, T. Vickery, L. Tuma. Thermal hazards and safe scale-up of reactions containing dimethyl sulfoxide. Journal of Thermal Analysis and Calorimetry.2006,85 (1): 25-30.
    [57]Y. Roman-Leshkov, J. A. Dumesic. Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Topics in Catalysis.2009,52 (3):297-303.
    [58]Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature.2007,447 (7147):982-985.
    [59]E. I. Gurbuz, S. G. Wettstein, J. A. Dumesic. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. ChemSusChem.2012,5 (2): 383-387.
    [60]T. vom Stein, P. M. Grande, W. Leitner, P. D. de Maria. Iron-catalyzed furfural production in biobased biphasic systems:from pure sugars to direct use of crude xylose effluents as feedstock. ChemSusChem.2011,4 (11):1592-1594.
    [1]D. M. Alonso, J. Q. Bond, J. A. Dumesic. Catalytic conversion of biomass to biofuels. Green Chemistry.2010,12 (9):1493-1513.
    [2]L. Hu, G Zhao, W. W. Hao, X. Tang, Y. Sun, L. Lin, S. J. Liu. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances. 2012,2(30):11184-11206.
    [3]A. Takagaki, S. Nishimura, K. Ebitani. Catalytic transformations of biomass-derived materials into value-added chemicals. Catalysis Surveys from Asia.2012,16 (3):164-182.
    [4]C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, Y. Y. Lee. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology.2005,96 (18):1959-1966.
    [5]J. N. Chheda, Y. Roman-Leshkov, J. A. Dumesic. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry. 2007,9 (4):342-350.
    [6]A. Chareonlimkun, V. Champreda, A. Shotipruk, N. Laosiripojana. Reactions of C-5 and C-6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts. Fuel.2010,89 (10):2873-2880.
    [7]Y. Yang, C. W. Hu, M. M. Abu-Omar. Synthesis of furfural from ylose, xylan, and biomass using AlCl3 6H2O in biphasic media via ylose isomerization to ylulose. ChemSusChem.2012, 5 (2):405-410.
    [8]J. H. Zhang, L. Lin, S. J. Liu. Efficient production of furan derivatives from a sugar mixture by catalytic process. Energy & Fuels.2012,26 (7):4560-4567.
    [9]L. R. Lynd, J. H. Cushman, R. J. Nichols, C. E. Wyman. Fuel ethanol from cellulosic biomass. Science.1991,251:1318-1323.
    [10]F. S. Chakar, A. J. Ragauskas. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products.2004,20 (2):131-141.
    [11]G. W. Huber, S. Iborra, A. Corma. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews.2006,106 (9):4044-4098.
    [12]C. Branca, A. Galgano, C. Blasi, M. Esposito, C. Di Blasi. H2SO4-catalyzed pyrolysis of corncobs. Energy & Fuels.2011,25:359-369.
    [13]N. Meine, R. Rinaldi, F. Schuth. Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem.2012,5 (8):1449-1454.
    [14]O. Yemis, G. Mazza. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process. Bioresource Technology.2012,109: 215-223.
    [15]Z. H. Zhang, Z. B. K. Zhao. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresource Technology.2010,101 (3):1111-1114.
    [16]A. Chareonlimkun, V. Champreda, A. Shotipruk, N. Laosiripojana. Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition. Bioresource Technology.2010,101 (11):4179-4186.
    [17]S. Dutta, S. De, M. I. Alam, M. M. Abu-Omar, B. Saha. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. Journal of Catalysis.2012,288:8-15.
    [18]Y. Yang, C. W. Hu, M. M. Abu-Omar. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system. Green Chemistry.2012,14 (2):509-513.
    [19]R. Carrasquillo-Flores, M. Kaldstrom, F. Schuth, J. A. Dumesic, R. Rinaldi. Mechanocatalytic depolymerization of dry (ligno)cellulose as an entry process for high-yield production of furfurals. ACS Catalysis.2013,3 (5):993-997.
    [20]H. Amiri, K. Karimi, S. Roodpeyma. Production of furans from rice straw by single-phase and biphasic systems. Carbohydrate Research.2010,345 (15):2133-2138.
    [21]P. Azadi, R. Carrasquillo-Flores, Y. J. Pagan-Torres, E. I. Gurbuz, R. Farnood, J. A. Dumesic. Catalytic conversion of biomass using solvents derived from lignin. Green Chemistry.2012,14 (6):1573-1576.
    [22]W. Daengprasert, P. Boonnoun, N. Laosiripojana, M. Goto, A. Shotipruk. Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural. Industrial & Engineering Chemistry Research.2011,50 (13):7903-7910.
    [23]H. D. Zhang, S. B. Wu, J. Zhang, B. Li. Production of furans from pulp sheet over sulfated solid acid catalysts. Bioresources.2012,7 (4):4531-4544.
    [24]M. I. Alam, S. De, S. Dutta, B. Saha. Solid-acid and ionic-liquid catalyzed one-pot transformation of biorenewable substrates into a platform chemical and a promising biofuel. RSC Advances.2012,2 (17):6890-6896.
    [25]L. Hu, Y. Sun, L. Lin. Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid. Industrial & Engineering Chemistry Research.2012,51 (3):1099-1104.
    [26]D. J. Liu, E. Y. X. Chen. Ubiquitous aluminum alkyls and alkoxides as effective catalysts for glucose to HMF conversion in ionic liquids. Applied Catalysis A:General.2012,435: 78-85.
    [27]W. H. Peng, Y. Y. Lee, C. N. Wu, K. C. W. Wu. Acid-base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion. Journal of Materials Chemistry.2012,22 (43):23181-23185.
    [28]C. H. Du, Z. W. Zhang. Conversion of glucose into 5-hydroxymethylfurfural with WO3-MOO3 mixed metal oxides. Applied Energy Technology, Pts 1 and 2.2013,724-725: 365-368.
    [29]Y. Yang, C. W. Hu, M. M. Abu-Omar. The effect of hydrochloric acid on the conversion of glucose to 5-hydroxymethylfurfural in AlCl3·H2O/THF biphasic medium. Journal of Molecular Catalysis A:Chemical.2013,376:98-102.
    [30]C. M. Cai, T. Y. Zhang, R. Kumar, C. E. Wyman. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chemistry.2013,15 (11): 3140-3145.
    [31]E. I. Gurbuz, S. G. Wettstein, J. A. Dumesic. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. ChemSusChem.2012,5 (2): 383-387.
    [32]V. Choudhary, A. B. Pinar, S. I. Sandler, D. G Vlachos, R. F. Lobo. Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catalysis.2011,1 (12): 1724-1728.
    [33]R. O'Neill, M. N. Ahmad, L. Vanoye, F. Aiouache. Kinetics of aqueous phase dehydration of xylose into furfural catalyzed by ZSM-5 zeolite. Industrial & Engineering Chemistry Research.2009,48 (9):4300-4306.
    [34]V. Choudhary, S. I. Sandler, D. G. Vlachos. Conversion of xylose to furfural using Lewis and Bronsted acid catalysts in aqueous media. ACS Catalysis.2012,2 (9):2022-2028.
    [35]X. C. Li, Y. Zhang, Y. J. Xia, B. C. Hu, L. Zhong, Y. Q. Wang, G Z. Lu. One-pot catalytic conversion of xylose to furfural on mesoporous niobium phosphate. Acta Physico-Chimica Sinica.2012,28 (10):2349-2354.
    [36]B. Danon, G. Marcotullio, W. de Jong. Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chemistry.2014,16 (1):39-54.
    [37]E. I. Gurbuz, J. M. R. Gallo, D. M. Alonso, S. G Wettstein, W. Y. Lim, J. A. Dumesic. Conversion of hemicellulose into furfural using solid acid catalysts in gamma-valerolactone. Angewandte Chemie International Edition.2013,52 (4):1270-1274.
    [38]R. Weingarten, G. A. Tompsett, W. C. Conner, G W. Huber. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates:The role of Lewis and Bronsted acid sites. Journal of Catalysis.2011,279 (1):174-182.
    [39]A. Bredihhin, U. Maeorg, L. Vares. Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural. Carbohydrate Research.2013,375:63-67.
    [40]C. Z. Li, M. Y. Zheng, A. Q. Wang, T. Zhang. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts:simultaneous conversion of cellulose, hemicellulose and lignin. Energy & Environmental Science.2012,5 (4): 6383-6390.
    [1]J. N. Chheda, G. W. Huber, J. A. Dumesic. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition.2007,46 (38):7164-7183.
    [2]J. B. Binder, R. T. Raines. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. Journal of the American Chemical Society.2009,131 (5): 1979-1985.
    [3]D. M. Alonso, J. Q. Bond, J. A. Dumesic. Catalytic conversion of biomass to biofuels. Green Chemistry.2010,12(9):1493-1513.
    [4]S. Zinoviev, F. Muller-Langer, P. Das, N. Bertero, P. Fornasiero, M. Kaltschmitt, G. Centi, S. Miertus. Next-generation biofuels:survey of emerging technologies and sustainability issues. ChemSusChem.2010,3 (10):1106-1133.
    [5]D. A. Bulushev, J. R. H. Ross. Catalysis for conversion of biomass to fuels via pyrolysis and gasification:A review. Catalysis Today.2011,171 (1):1-13.
    [6]P. Gallezot. Conversion of biomass to selected chemical products. Chemical Society Reviews.2012,41 (4):1538-1558.
    [7]Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature.2007,447 (7147):982-U985.
    [8]G. W. Huber, S. Iborra, A. Corma. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews.2006,106 (9):4044-4098.
    [9]P. Gallezot. Process options for converting renewable feedstocks to bioproducts. Green Chemistry.2007,9 (4):295-302.
    [10]M. Mascal, E. B. Nikitin. Direct, high-yield conversion of cellulose into biofuel. Angewandte Chemie International Edition.2008,47 (41):7924-7926.
    [11]R. Karinen, K. Vilonen, M. Niemela. Biorefining:heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem.2011, 4 (8):1002-1016.
    [12]F. L. Yang, Q. S. Liu, X. F. Bai, Y. G Du. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst. Bioresource Technology.2011,102 (3): 3424-3429.
    [13]P. Carniti, A. Gervasini, M. Marzo. Absence of expected side-reactions in the dehydration reaction of fructose to HMF in water over niobic acid catalyst. Catalysis Communications.2011,12 (12):1122-1126.
    [14]Y. Roman-Leshkov, J. N. Chheda, J. A. Dumesic. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science.2006,312 (5782):1933-1937.
    [15]I. T. Horvath, H. Mehdi, V. Fabos, L. Boda, L. T. Mika. gamma-Valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chemistry.2008,10 (2): 238-242.
    [16]L. Deng, J. Li, D. M. Lai, Y. Fu, Q. X. Guo. Catalytic conversion of biomass-derived carbohydrates into gamma-valerolactone without using an external H2 supply. Angewandte Chemie International Edition.2009,48 (35):6529-6532.
    [17]J. P. Lange, W. D. van de Graaf, R. J. Haan. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts. ChemSusChem.2009,2 (5):437-441.
    [18]B. C. Zhang, L. W. Deng, Q. Qian, G. Y. Xiong, D. L. Zeng, R. Li, L. B. Guo, J. Y. Li, Y. H. Zhou. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Molecular Biology.2009,71 (4-5):509-524.
    [19]J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A. Dumesic. Integrated catalytic conversion of gamma-valerolactone to liquid alkenes for transportation fuels. Science.2010, 327(5969):1110-1114.
    [20]J. M. R. Gallo, D. M. Alonso, M. A. Mellmer, J. A. Dumesic. Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chemistry.2013,15 (1):85-90.
    [21]J. G. Stevens, R. A. Bourne, M. V. Twigg, M. Poliakoff. Real-time product switching using a twin catalyst system for the hydrogenation of furfural in supercritical CO2. Angewandte Chemie International Edition.2010,49 (47):8856-8859.
    [22]T. Thananatthanachon, T. B. Rauchfuss. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angewandte Chemie International Edition.2010,49 (37):6616-6618.
    [23]T. Thananatthanachon, T. B. Rauchfuss. Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation. ChemSusChem.2010,3 (10):1139-1141.
    [24]K. Yan, J. Y. Liao, X. Wu, X. M. Xie. A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid. RSC Advances.2013,3 (12):3853-3856.
    [25]J. H. Zhang, L. Lin, S. J. Liu. Efficient production of furan derivatives from a sugar mixture by catalytic process. Energy & Fuels.2012,26 (7):4560-4567.
    [26]M. Chidambaram, A. T. Bell. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chemistry.2010,12 (7):1253-1262.
    [27]G. H. Tian, R. Daniel, H. Y. Li, H. M. Xu, S. J. Shuai, P. Richards. Laminar burning velocities of 2,5-dimethylfuran compared with ethanol and gasoline. Energy & Fuels.2010, 24:3898-3905.
    [28]M. J. Diaz, C. Cara, E. Ruiz, M. Perez-Bonilla, E. Castro. Hydrothermal pre-treatment and enzymatic hydrolysis of sunflower stalks. Fuel.2011,90 (11):3225-3229.
    [29]Y. H. Zu, P. P. Yang, J. J. Wang, X. H. Liu, J. W. Ren, G. Z. Lu, Y. Q. Wang. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Applied Catalysis B:Environmental.2014,146:244-248.
    [30]W. J. Xu, H. F. Wang, X. H. Liu, J. W. Ren, Y. Q. Wang, G Z. Lu. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chemical Communications.2011,47 (13):3924-3926.
    [31]L. Xue, C. B. Zhang, H. He, Y. Teraoka. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Applied Catalysis B:Environmental.2007,75 (3-4): 167-174.
    [32]P. G Harrison, I. K. Ball, W. Daniell, P. Lukinskas, M. Cespedes, E. E. Miro, M. A. Ulla. Cobalt catalysts for the oxidation of diesel soot particulate. Chemical Engineering Journal. 2003,95 (1-3):47-55.
    [33]N. Bahlawane, E. F. Rivera, K. Kohse-Hoinghaus, A. Brechling, U. Kleineberg. Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition. Applied Catalysis B:Environmental.2004,53 (4):245-255.
    [34]H. Y. Lin, Y. W. Chen. The mechanism of reduction of cobalt by hydrogen. Materials Chemistry and Physics.2004,85 (1):171-175.
    [35]J. Yu, D. Zhao, X. L. Xu, X. Wang, N. Zhang. Study on RuO2/SnO2:Novel and active catalysts for CO and CH4 oxidation. ChemCatChem.2012,4 (8):1122-1132.
    [36]H. F. Wang, R. Kavanagh, Y. L. Guo, Y. Guo, G Z. Lu, P. Hu. Structural origin:water deactivates metal oxides to CO oxidation and promotes low-temperature CO oxidation with metals. Angewandte Chemie International Edition.2012,51 (27):6657-6661.
    [37]X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature.2009,458 (7239):746-749.
    [38]C. Y. Ma, Z. Mu, J. J. Li, Y. G. Jin, J. Cheng, G. Q. Lu, Z. P. Hao, S. Z. Qiao. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Journal of the American Chemical Society.2010,132 (8):2608-2613.
    [39]F. K. Kazi, A. D. Patel, J. C. Serrano-Ruiz, J. A. Dumesic, R. P. Anex. Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chemical Engineering Journal.2011,169 (1-3):329-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700