用户名: 密码: 验证码:
鄱阳湖南矶山湿地土壤对氮的吸附与释放特性初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地是地球上重要的生存环境和生态系统。湿地土壤对氮等营养物质具有一定的吸附截留和释放作用,影响富营养化水平。本研究以鄱阳湖南矶山湿地自然保护区湿地土壤作为研究对象,采用现场采样与实验室模拟研究相结合的方法,测定了湿地土壤的理化性质、氮素的赋存状态和含量,为本区域进行氮的生物地球化学循环研究奠定基础。探讨了湿地土壤对氮的吸附与释放及其影响因素,确定了湿地接受和净化氮的最大能力和阈限,为湖泊水质的保持及鄱阳湖富营养化的控制提供基本的科学依据,为实现鄱阳湖湿地的可持续发展提供理论基础。
     主要研究结果如下:
     (1)土壤样品呈微酸性,pH变化范围和平均值分别为5.18~6.04和5.71,有机质含量的分布范围和平均值分别为:0.81%~3.83%和1.32%。湿地土壤表层总磷、总硫、总碳及碳氮比的平均值分别为477.36 mg/kg、1909.29 mg/kg、6690mg/kg、1.35。土壤表层全氮(TN)、铵态氮(NH_4~+-N)、硝态氮(NO_3~--N)、碱解氮(K-N)、有机氮(OR-N)平均含量分别为4591 mg/kg、12.66 mg/kg、1.8 mg/kg、26.25 mg/kg、4598 mg/kg,土壤表层各形态氮素的含量在剖面中的分布特征是从表层到底层呈下降趋势。采用SPSS统计软件分析可知,土壤中各形态氮素之间有良好的相关性。
     (2)土壤对NH_4~+-N的吸附是一个复合动力学过程,本文以鄱阳湖南矶山湿地土壤为材料,进行了土壤对NH_4~+-N的吸附特性及其影响因素的试验研究。结果表明,土壤对NH_4~+-N的吸附在7h达到稳态,之后基本处于一种动态平衡,土壤对NH_4~+-N的吸附速率最大值达到14.04 mg/kg·h。通过模型拟合得出,等温吸附曲线与常用的Langmuir和Freundlich吸附方程都有很好的相关性,其中以Langmuir方程式的拟合效果最佳。应用Langmuir方程拟合,计算得出土壤对NH_4~+-N平均最大物理吸附量、平衡常数和最大缓冲容量分别为:X_m=196.08mg/kg;k=0.45;MBC=88.27 mg/kg。环境因素对土壤NH_4~+-N的吸附有很大的影响,结果显示,pH对土壤吸附NH_4~+-N的影响显著,随着pH的上升,土壤对NH_4~+-N的吸附量增加;水土比越大,吸附量越多;离子强度和温度对NH_4~+-N的吸附均有抑制作用。
     (3)土壤对NH_4~+-N的吸附—释放的过程是可逆的,亦即吸附的NH_4~+-N可以再次释放出来,吸附量越多,释放量越大。湿地土壤对NH_4~+-N释放特性的试验研究结果表明:土壤对NH_4~+-N的释放在12 h后基本达到平衡,最大释放速率为3.47 mg/kg·h。土样中NH_4~+-N的释放过程进行得较为缓慢,这对土壤氮的流失的研究提供了一定的理论依据和研究方向。
Wetland is important ecosystem and environment in globe.Its purification for nutrient from the water flow can relieve the water eutrophication,which are the results of the excess of nitrogen and phosphorus.Analyses were carried out by using the methods which connect real sampling sampling with Laboratory simulation to measure the physical and chemical characteristics,the speciation and the contents of nitrogen in Nanjishan wetland nature reserve.It provided a scientific basis for biogeochemical circulation of this area.The adsorption and desorption of nitrogen and the environmental factors had been also discussed in this paper.The results of the research ascertained the maximum adsorption of nitrogen by soil.The results provided a scientific basis for eutrophication controlling in Poyang Lake and it has important theoretical value for the sustainable development of the Poyang Lake wetland.The results were summarized as follows:
     (1) The samples of soil in Nanjishan nature reserve were of light acidity.The distributed range and average value of the content of pH value in soil samples were 5.18~6.04 and 5.71 respectively.The distributed range and average value of the content of the organic in soil samples were 0.81%~3.83%and 1.32%respectively. The average value of the total phosphorus,total sulfur,total carbon and the carbon and nitrogen ratio were 477.36 mg/kg,1909.29 mg/kg,6690 mg/kg and 1.35 respectively.The average value of the total nitrogen,ammonium nitrogen,nitrate nitrogen,available nitrogen and organic nitrogen were 4591 mg/kg,12.66 mg/kg,1.8 mg/kg,26.25 mg/kg and 4598 mg/kg respectively.The forms of nitrogen that we concerned were decreased from plow layer to subsoil in five paddy soil profile. Relevant analysis taken by SPSS showed that the forms of nitrogen had significantly correlated each other in plow layer.
     (2) The adsorption of NH_4~+-N for the soil of Nanjishan was a complex dynamics process.In this paper,adsorptive characteristic of NH_4~+-N on soil in Nanjishan were analyzed in laboratory.The results indicated that process of sorption of NH_4~+-N on soil mainly occurred within 0~7 hours,and then reached a dynamic equilibrium.The maximum value of adsorption rate of NH_4~+-N reached 14.04 mg/kg.h.The research of isothermal adsorption indicated that the NH_4~+-N in the soil in Nanjishan had a good correlation with the Langmuir and Freundlich equations,especially,there was a significant correlation between the latter equation and the soil.According to the Langmuir adsorption equation,the maximum adsorption amount was 196.08 mg/kg soil,the adsorption constant was 0.45;MBC was 88.27 mg/kg soil.The adsorption was greatly influenced by environmental factors.The result indicated that,pH values had great influence on the sorption of NH_4~+-N,with the sorption ability increasing gradually as the increasing pH values and as the increasing of the water and soil ratio. High concentration of ion and temperature restrained NH_4~+-N.
     (3) The adsorption and desorption were reciprocal processes.NH_4~+-N that adsorbed could release inversely.The desorption amount of NH_4~+-N in soil increased with the adsorbed amount.In this paper,desorption characteristic of NH_4~+-N on soil in Nanjishan were also analyzed in laboratory.The result indicated that it reached equilibrium after 12 hours,the maximum value of desorption rate of NH_4~+-N reached 3.47 mg/kg.h.The desorption amount of NH_4~+-N in the soil were mainly from the beginning of the process,and the process of desorption was very slow.The results provide a scientific basis for the in-depth study of nitrogen loss in soil.
引文
[1]丁疆华,温琰茂,舒强,等.鄱阳湖湿地保护与可持续发展[J].环境与开发,1999,14(3):42-44.
    [2]郭中伟,甘雅玲.关于生态系统服务功能的几个科学问题[J].生物多样性,2003,11(1):63-69.
    [3]安青树.湿地生态工程[M].北京:化学工业出版社,2003.
    [4]田应兵,宋光煜.湿地土壤及其生态功能[J].生态学杂志,2002,21(6):36-39.
    [5]川口桂三郎.水田土壤学[M].北京:农业出版社,1985.
    [6]朱鹤键.水稻土[M].北京:农业出版社,1985.
    [7]李良漠.无定形氧化铁作为嫌气下NH_4~+氧化时电子受体的研究[J].土壤学报,1988,25(2):184-90.
    [8]Stenenson,F.J.Cycles of soil Carbon,Nitrgen,Phosphorus,Sulfur,Micronutrient[M].Chichester:John Wiley and Sons Ltd.,1986.
    [9]陈博谦.湿地土壤因素对污水处理作用的模拟研究[J].土壤学进展,1995,23(4):31-37.
    [10]程树培.应用人工湿地生态系统处理中小城市排放废水[J].城市环境与城市生态,1989,2(1):35-37.
    [11]John M Johnston,Crossley Jr D A.Forest ecosystem recovery in the southeast US:soil ecology as an essential component of ecosystem management[J].Forest Ecology and Management,2002,155:187-203.
    [12]白军红,邓伟,朱颜明,等.水陆交错带土壤氮素空间分异规律研究—以月亮泡水陆交错带为例[J].环境科学学报,2002,22(3):343-348.
    [13]白军红,王庆改.向海沼泽湿地土壤氮素分布特征及生产效应研究[J].土壤通报,2002,33(2):113-116.
    [14]白军红,欧阳华,邓伟,等.向海沼泽湿地土壤氮素的空间分布格局[J].地理研究,2004,23(5):614-622.
    [15]周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表现盈亏研究[J].生态学报,2001,21(11):1782-1789.
    [16]古丽米热.克里雅河流城N、P环境行为研究[D].新疆:新疆大学,2006.
    [17]Martin JF,Reddy KR.Interaction and spatial distribution of wetland nitrogen processes.Ecological Modelling,1997,105:1-21.
    [18]Chapelle A.A preliminary model of nutrient cycling in sediments of a Mediterraanean lagoon.Ecological Model,1995,80:131-147.
    [19]白军红,邓伟,张玉霞,等.洪泛区天然湿地有机质及氮素的空间分布特征[J].环境科学,2002,23(2):77-81.
    [20]袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983.
    [21]Williams BL,Buttler A,Grosvernier P,Francez AJ,Gilbert D,Ilomets M,Jauhiainen J,Matthey Y,Silcock DJ,Vasander H.The fate of NH4NO3 added to Sphagnum magellanicum carpets at five European mire sites.Biogeochemistry,1999,45:73-93.
    [22]Jacobson PJ,Jacobson KM,Angermeier PL,Cherry DS.Hydrologic influences on soil pro-perties along ephemeral rivers in the Namib Desert.Journal of Arid Environments,2000,45(1):21-34.
    [23]Hanaikova.Chemical characteristics of soils and pore waters of three wetland sites dominated by Phragmites australis:Relation to vegetation composition and reed performance.Aquatic Botany,2001,69(2/4):235-249.
    [24]McKinney RA,Nelson WG,Charpentier MA,Wigand C.Ribbed mussel nitrogen isotope signatures reflect nitrogen sources in coastal salt marshes.Ecological Applications,2001,11(1):203-214.
    [25]白军红,王庆改,余国营.吉林向海沼泽湿地土壤中氮素分布特征及生产效应研究[J].土壤通报,2002,33(2):113-121.
    [26]彭佩钦,张文菊,童成立,等.洞庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂直分布[J].水土保持学报,2005,19(1):74-81.
    [27]高俊琴,吕宪国.毛果苔草湿地开垦后土壤中主要营养元素垂直分布[J].水土保持通报,2002,3:32-34.
    [28]胡启武,欧阳华,刘贤德.祁连山北坡垂直带土壤碳氮分布特征[J].山地学报,2006,24(6):654-661.
    [29]Downing JA,McClain M,Twilley R,Melack JM,Elser J,Rabalais NN,Lewis WM,Turner RE,Corredor J,Soto D,Yanez-Arancibia A,Kopaska JA,Howarth RW.The impact of accelerating land-use change on the N-Cycle of tropical aquatic ecosystems:Current conditions and projected changes.Biogeochemistry,1999,46:109-14.
    [30]白军红,邓伟,朱颜明,等.水陆交错带土壤氮素空间分异规律研究—以月亮泡水陆交错带为例[J].环境科学学报,2002,22(3):343-348.
    [31]David A K,David M B,Starks K M and Cooke R A.Effectiveness of constructed wetlands in reducing nitrogen and phosphorus export from agriculture tile drainage[J].J Environ Qual,2000,29:1262-1274.
    [32]Ricked D H,Janssen L L and Woodland R.Buffered wetlands in agricultural landscapes in the Prairie Pothole Region:environmental,agronomic and economic evaluations[J].Journal of Soil and Water Conservation,2000,55(12):220-225.
    [33]谢红梅,朱波,朱钟麟.紫色土NH_4~+、NO_3~-的吸附—解吸特性研究[J].土壤肥料,2006,20(2):19-22.
    [34]姜桂华.铵态氮在土壤中吸附性能探讨[J].长安大学学报(建筑与环境科学版),2004,21(2):32-38.
    [35]尹澄清,邵霞,王星.白洋淀水陆交错带土壤对磷氮截留容量的初步研究[J].生态学杂志,1999,18(5):7-11.
    [36]何建华.土壤对氮的吸持特性及其与土壤供氮指标之间的关系[J].土壤学报,1998,25(4):397-404.
    [37]胡德洪,李华兴,陆远金.广东省母质发育水稻土对氮的吸附特性[J].应用生态学报,2000,11(2):553-556.
    [38]张智,刘亚丽,龙腾锐,等.重庆双龙湖水草对营养盐的吸附与释放试验研究[J].资源环境与工程,2005,19(4):305-310
    [39]刘亚丽,张智,段秀举.湖泊底泥释氮预测模型及释氮控制研究[J].农业环境科学学报,2006,25(6):1603-1606.
    [40]刘培芳,陈振楼,刘杰等.环境因子对长江口潮滩沉积物中NH_4~+的释放影响[J].环境科学研究,2002,15(5):48-53.
    [41]范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J].太湖科学,2000,12(4):359-367.
    [42]吴群河,曾学云,黄钥.河流底泥中DO和有机质对三氮释放的影响[J].环境科学研究,2005,18(5):55-63.
    [43]徐晓锋,杨浩,吕俊杰.湖泊底泥氮营养释放特征研究[J].中国农学通报,2006,22(10):95-103.
    [44]崔丽娟.鄱阳湖湿地生态系统服务功能价值评估研究报告[R],2000.
    [45]刘信中,樊三宝,胡斌华.江西南矶山湿地自然保护区综合科学考察[M].中国林业出版社,2005.
    [46]简东兴,李仁东,王建波,等.鄱阳湖滩地水生植物多样性的调查及滩地植物植被的遥感研究[J].植物生态学报,2001,25(5):581-587.
    [47]王小鸿.鄱阳湖湿地生态系统评估[M].北京:科学出版社,2004.
    [48]陈水森,詹志明.基于GIS的鄱阳湖湿地遥感调查试验研究[J].热带地理,1999,19(1):35-38.
    [49]王江林,万慧霖.鄱阳湖湿地植被的生物多样性及其保护和利用[J].环境与开发,2000,15(4):19-21.
    [50]国家林业局.国家保护的有益的或者有重要经济、科学价值的陆生野生动物名录[M].野生动物,2000.
    [51]江西省自然保护区管理办公室.鄱阳湖候鸟保护区珍禽越冬生态考察报告[R].南昌:江西科学技术出版社,1987.
    [52]陈立伟.长河中下游水鸟调查报告[M].北京:中国林业出版社,2004.
    [53]李日志.鄱阳湖湿地生态系统的综合评价模型研究[J].江西农业学报,2004,16(2):25-32.
    [54]程时长.鄱阳湖湿地特征及生态资源[J].江西水利科技,2002,28(4):249-251.
    [55]田应兵,宋光煜.湿地土壤及其生态功能[J].生态学杂志,2002,21(6):36-39.
    [56]Ponnamperuma,E.N主编.淹水土壤的化学[M].刘志光译.土壤农化,1977,42(3):1-60.
    [57]程时长.鄱阳湖自然环境及现状[J].海洋湖沼通报,1990,39(2):35-47.
    [58]刘信中.湿地保护与利用研讨会论文选编[M].北京:开明出版社,2002.
    [59]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [60]杨帆,邓伟,杨建锋,等.土壤含水量和电导率对芦苇生长和种群分布的影响[J].水土保持学报,2006,20(4):199-201.
    [61]William J Mitsch et al.Wetlands.New York:Van Nostrand Reinhold Company Inc.,1986.89-125.
    [62]Xiao Huilin.Climate Change in Relation to Soil Organic Matter.土壤与环境,1999,8(4):300-304.
    [63]李忠佩,王效举.小区域水平土壤有机质动态变化的评价与分析[J].地理科学,2000,20(2):182-187.
    [64]张金屯.全球气候变化对自然土壤碳、氮循环的影响[J].地理科学,1998,18(5):463-471.
    [65]王其兵,李凌浩,刘先华,等.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析[J].植物生态学报,1998,22(5):409-414.
    [66]余晓鹤,朱培立,黄东迈.土壤表层管理对稻田土壤矿化势、固氮强度及铵态氮的影响[J].中国农业科学,1991,24(2):73-79.
    [67]白军红,邓伟,朱颜明等.湿地土壤有机质和全氮含量分布特征对比研究——以向海与科尔沁自然保护区为例[J].地理科学,2002,22(2):59-68.
    [68]王琳,欧阳华,周才平,等.贡嘎山东坡土壤有机质及氮素分布特征[J].地理学报,2004,59(6):1014-1015.
    [69]刘吉平,吕宪国,杨青,等.三江平原环型湿地土壤养分的空间分布规律[J].土壤学报,2006,43(2):247-255.
    [70]龚子同,吴志东.西沙群岛的土壤和鸟粪磷矿[M].北京:科学出版社,1977.
    [71]白军红,邓伟,王庆改,等.内陆盐沼湿地土壤碳氮磷剖面分布的季节动态特征[J].湖泊科学,2007,19(5):599-603.
    [72]Ivanov M V,Freney J R.The global biogeochemical sulfur cycyle[M].Scope.1986.
    [73]Lindsay W L.Chemical Equilibria in Soil[M].New York:JohnWiley & Sons,1979.
    [74]曲东,尉庆丰.陕西几种代表性土壤硫形态与土壤性质关系[J].土壤通报,1996,27(1):16-18.
    [75]郝庆菊,王起超,王跃思.三江平原典型湿地土壤中硫的分布特征[J].土壤通报,2004,35(3):331-335.
    [76]BatjesNH.Total carbon and nitrogen in soils of theworld[J].European Journal of SoilScience,1996,47:151-163.
    [77]Prentice IC.The carbon cycle and atmospheric carbon dioxide[A].In:Houghton JT,DingY,GriggsDJ,NoguerM,van derLinden PJ,DaiX,MaskellK,Johnson CA) Climate Change 2001:The Scientific Basis[C].CambridgeUniversity Press,Cambridge,183-23.
    [78]PaulE A,Clark FE.Soilmicrobiology and biochemistry[M].Academic Press,San Diego,1989.
    [79]PrescottC E,ChappellNH,VesterdalL.Nitrogen turnover in forest floors ofcoastal Douglas-firatsitesdiffering in soilnitrogen capital[J].Ecology,2000,81:1878-1886.
    [80]PostWM,PastorJ,ZinkePJ,StangenbergerAG.Globalpattenrs of soil nitrogen storage.Nature,1985,317(I7):613-616.
    [81]KRUMBEINW E.Microbial Geochemistry[M].Oxford:Alden Press,1983.
    [82]白军红.向海沼泽湿地氮素生物地球化学过程研究[D].中国科学院东北地理与农业生态研究所,2003.
    [83]Wolaver TG,et al.Tidal exchange of nitrogen and phosphorus between a mesohaline vegetatedmarsh and the surrounding estuary in the lower Chesapeake Bay[J].Estuarine and Coastal Shelf Science,1983,16:321-332.
    [84]Smith CM,Tiedje JM.Phases of dentrification following oxygen depletion in soil.Biol.Bio —chem.,1979,11:261-267.
    [85]Verhoeven J A,Whigham D F,Kerkhoven M Y.Comparative studyofnutrient-related processes in geographically separated wetlands:Towards a science base for functional assessment procedure.In:William JM.Global Wetlands:Old World and New.Columbus:Elsevier Press,1994.91-106.
    [86]BaiJ,DengW,ZhuY,elal.Spatial variability of nitrogen in soils from land/inland water ecotones.Comun.Soil sci.PlantAnaly,2004,35(5-6):735-750.
    [87]黄瑞农.环境土壤学[M].北京:高等教育出版社,1994.
    [88]BaiJ,DengW,ZhuY,elal.Spatial variability of nitrogen in soils from land/inland water ecotones.Comun.Soil sci.PlantAnaly.2004,35(5-6):735-750.
    [89]张驰,李生秀,王长春.氮素在地球生物中的分布及循环[J].西北农业大学学报,1995,23(1):93-97.
    [90]谢鹏,蒋剑敏,熊毅.我国几种主要土壤胶体的NH_4~+吸附特征[J].土壤学报,1988,25(2):175-183.
    [91]杜青,文湘华.天然水体沉积物对重金属离子的吸附特性[J].环境化学,1996,15(3):199-206.
    [92]张新明,李华兴,陆远金.广东省主要母质发育水稻土对磷的吸附特性[J].应用生态学报,2000,11:553-556.
    [93]李改枝,郭博书.黄河水中沉积物与铜和铅交换吸附等温线的研究[J].环境科学研究,2000,13(5):35-37.
    [94]Rasiah V,mmlour JD,Menzies NW,etal.Impact of pre—existing soleplate on retention of impoged chloride and nitrate in variable charge soil profiles[J].Environ.Qual,2004,123(3-4):205-218.
    [95]Barrow N J.Testing a mechanistic model.Ⅳ.Describing the effect of pH on Zn retention by soils[J].Soil Sci,1986,37:295-302.
    [96]胡智弢,孙红文,谭媛.湖泊沉积物对N和P的吸附特性及影响因素研究[J].农业环境科学学报,2004,23(6):1212-1216.
    [97]付春平,钟成华,邓春光.pH与三峡库区底泥氮磷释放关系的实验[J].重庆大学学报,2004,27(10):125-127.
    [98]孙大志,李绪谦,潘晓峰.氨氮在土壤中的吸附影响因素的研究[J].环境科学与技术,2007,24:31-33.
    [99]GardnerW S,SeitzingerS P,MalczyJ M.The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments:Does ion pairing affect ammonium [J].Estuarine,1991,14:17-166.
    [100]谢红梅,朱波,朱钟麟.紫色土氨氮硝氮吸附解析特性研究[J].土壤肥料,2006(2):19-25.
    [101]天津大学无机化学教研室.无机化学(第2册)[M].北京:高等教育出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700