用户名: 密码: 验证码:
给定运行模式下电网主宰特性研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电网复杂性以及电力市场竞争机制的引入使得电力系统运行调度与控制的直观性越来越差。因此,探索一种简捷直观的方法来分析复杂电网载荷变化规律,并用其监视电网运行的安全性具有重要意义。
     电力系统中的发电和负荷变化是有一定规律可循的,在这一思想指导下,基于给定运行规律,本文以揭示复杂电网存在主宰特性为核心,将国内外涉及相关问题的研究归类为主宰特性,对其理论、识别、及不同状况下的特点进行了深入的探索性研究和分析。
     首先,以有功功率传输为研究对象,提出了运行模式、输电通路、主宰通路及其单调性等基本概念;在给定的运行模式下,从线性系统出发,给出了主宰特性存在的理论基础;进一步地,结合灵敏度的概念,对电力系统中的主宰特性进行了定性的研究;简单系统的算例表明,当无功支撑充分时,系统的线性度较好,主宰特性继续保持成立。
     其次,深入讨论了输电元件模型,结合运行圆和极限圆的概念,对输电元件的有功限值进行了修正;在给定运行模式下,分三种情况由浅入深地对电力系统中的主宰特性进行了研究:第一,在直流潮流基础上,考虑进正弦函数的非线性,建立了数学模型,对输电元件输送有功功率与节点注入之间的函数单调关系以及主宰特性的存在性进行了严格的数学证明,并给出了估计主宰区间的算法;第二,再考虑进电阻参数,即损耗的影响,论证了有损情况下,输电元件有功流依然是节点注入的单调函数,而且主宰特性依然成立,但是主宰区间与无损耗时相比会根据r/x的大小发生偏移;第三,定性的讨论了,电压水平和无功功率对有功功率主宰特性的影响。结合5节点系统算例对上述三种情况进行了比较验证。
     最后,在上述研究基础上,讨论了主宰特性在电力系统中的应用。提出了基于一定时间内负荷预测数据的主宰元件识别方法,探讨了主宰元件及其主宰特性在网络输电能力评估、网络安全预警以及网络结构评价方面的应用,指出KVL的存在是网络存在复杂性的根本原因。
     针对山东电网500kV网络的研究表明,网络主宰特性研究能够正确的进行实际电网的能力评价和安全监视,其功能与传统的关键输电断面监视一致,并且该方法更加简单直观,这对于简化调度员工作量,以及进行实时和超前的电力系统安全控制与决策有重要意义。
The introduction of market competition mechanisms, as well as the complexity of power grid, make the intuitiveness of power systems' operation, dispatch and control more and more worse. Therefore, it is of great importance to explore a simple and intuitive approach to analyze the regularity of power flow in a complex grid, and to monitor the security of power grid with the regularity.
     The changes of power generation and load in power systems follow some certain rules. Under a given operation mode, this thesis reveals the simple regularity in complex power grid, namely the dominant characteristic. And then the thesis gives discussion and study on the dominant characteristic in depth.
     Taking the active power transmission as the subject investigated, this thesis proposes the basic concepts of operation mode, transmission path, dominant path and its monotone, and reveals the theoretical foundation of existence of dominant characteristic under a given operation mode staring from the linear systems, and then studies the power systems' dominant characteristic qualitatively combining the concept of sensitivity. The simple examples show that the dominant characteristic continues to maintain when the reactive power is sufficient.
     Based on the discussion of transmission elements model and the concepts of operating circle and limiting circle, the limiting value of active power flow in transmission elements is amended. Under a given operation mode, the thesis studies the dominant characteristic of power systems from the simple to the more complex in three situations as following. Firstly, on the basis of DC power flow model, taking the sine nonlinearity into consideration, the monotone relationship between active power flow in transmission elements and injective active power, and the existence of dominant characteristic are proven mathematically. And then, an algorithm is proposed to find the dominant interval in which the dominant characteristic maintains. Secondly, taking resistance, namely power losses, into consideration, the monotone relationship between active power flow in transmission elements and injective active power, and the existence of dominant characteristic continue to maintain. Comparing to the no-loss situation, the dominant interval shifts according to the value of r/x when the loss is considered. Thirdly, the impact of voltage level and reactive power on the dominant characteristic is discussed qualitatively. A comparison test with 5-bus system is following, in which the certification about the above three situations is done.
     Based on the above mentioned researches, the application of dominant characteristic in power systems is discussed. A method of dominant path identification is proposed based on a certain time-level load forecasting data. The applications of dominant path and its dominant characteristic in the area of network transmission capability assessment, security early warning and network structure evaluation are discussed. This thesis points out that the fundamental reason for the complexity of power grid is the existence of KVL.
     The study on the Shandong 500kV power grid shows that, dominant characteristic research is able to evaluate the transmission ability and monitor the system security correctly in real power systems. And the function of the method mentioned in this thesis is the same as the traditional transmission section surveillance. And what's more, the dominant characteristic method is more intuitive and direct, which is of great significance to simplify the ISO's work, and to carry out the real-time and advanced security control, as well as the decision-making.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [2]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析[J].电力系统自动化,2004,28(15):21-24.
    [3]鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化,2005,29(12):93-97.
    [4]Promoting Utility Competition through Open Access,Nondiscriminatory Transmission Service by Public Utilities;Recovery of Stranded Costs by Public Utilities and Transmitting Utilities[R].Order No.888,Final Rule,FERC,April 24,1996.
    [5]Open Access Same-time Information System and Standards of Conduct[R].Order No.889,Final Rule,FERC,April24,1996.
    [6]柳焯.电力系统态势分析与运行模式[C].第一次现代化电网标准研讨会论文集,大连,1992.
    [7]高中文,柳焯,等.电力系统运行模式的建立问题[J].华中电力,1994,7(2):9-15.
    [8]A.J.Wood,B.F.Wollenberg.Power generation,operation and control[M].New York..John Wiley & Sons,1996.
    [9]张强,韩学山,徐建政.安全经济调度与均匀调度间关系分析[J].电力系统及其自动化学报,2005,17(2):84-89.
    [10]K.B.Azhar,S.S.Ahmed,M.W.Mustafa,et al.A novel method for ATC computations in a large-scale power system[J].IEEE Trans.on Power Systems,2004,19(2):1150-1158.
    [11]韩学山,李晓波.考虑元件长期载荷容许条件的最大可用输电能力的实用计算方法[J].电网技术,2004,28(24):10-15.
    [12]G.Hamoud.Assessment of available transfer capability of transmission systems[J].IEEE Trans on Power Systems,2000,15(1):27-32.
    [13]Yan Ou,Singh C.Assessment of available transfer capability and margins[J].IEEE Trans onPower Systems,2002,17(2):463-468.
    [14]刘皓明,严正,倪以信,等.快速计算电网可用输电能力的交流灵敏度方法[J].电力系统自动化,2003,27(19):11-15.
    [15]刘俊勇.电网可视化调度系统[J].现代电力,2007,24(3):专家视点.
    [16]潘坚跃.电网可视化研究与实践[J].电力信息化,2007,5(7):40-42.
    [17]杨光.电网可视化技术[J].国际电力,2004,8(2):45-47.
    [18]T.J.Overbye,J.D.Weber.Visualizing the electric grid[J].IEEE Spectrum,2001,38(2):52-58.
    [19]Q.Zhou,J.Davidson,A.A.Fouad.Application of artificial neural networks in power system security and vulnerability assessment[J].IEEE Trans.on Power Systems,1994,9(1):525-532.
    [20]A.A.Fouad,Q.Zhou,V.Vittal.System vulnerability as a concept to assess power system dynamic security[J].IEEE Trans.on Power Systems,1994,9(2):1009-1015.
    [21]H.B.Song,K.Mladen.Static analysis of vulnerability and security margin of the power system[C].PES TD 2005/2006.
    [22]M.A.EI-Sharkawi Vulnerability assessment and control of power system[C].IEEE/PES Transmission and Distribution Conference and Exhibition,2002:656-660.
    [23]M.Kim,M.A.EI-Sharkawi,R.J.Marks.Vulnerability indices for power systems[C].Proceedings of the 13th International Conference on Intelligent Systems Application to power Systems,2005..335-341.
    [24]付霞飞.电力系统不均匀性分析软件开发成功[J].华中电力,2000,13(4):22.
    [25]叶莺,穆钢.基于稳态参数的电力网络临界割集的识别方法[J].东北电力学院学报,2003,23(1):1-5.
    [26]符国晖,林子钊,王铁辉.识别输电网络脆弱环节的新方法[J].电力建设,2003,24(2):27-29.
    [27]管霖,王同文,唐宗顺.电网安全监测的智能化关键特征识别及稳定分区算法[J].电力系统自动化,2006,30(21):22-27.
    [28]赵渊,周念成,谢开贵.大电力系统可靠性评估的灵敏度分析[J].电网技术,2005,29(24):25-30.
    [29]赵渊,周家启,周念成.大电力系统可靠性评估的解析计算模型[J].中国电机工程学报,2006,26(5):19-25.
    [30]范宇峰,王先培,王泉德.电力系统安全研究的新进展——脆弱性问题研究[J].武汉大学学报(工学版),2003,36(2):110-113.
    [31]A.J.Mao,J.X.Yu,Z.Z.Guo.Electric power grid structural vulnerability assessment[C].Power EngineeringSocietyGeneralMeeting,2006:18-22.
    [32]刘广利,李响.基于输电断面划分原则及方法[J].东北电力技术,2005,26(11):13-16.
    [33]周德才,张保会,姚峰,等.基于图论的输电断面快速搜索[J].中国电机工程学报,2006,26(12):32-38.
    [34]X.F.Wang,G.R.Chen.Complex networks:small world,scale-free and beyond[J].IEEE on Circuits and Systems Magazine,2003,3(1):6-20.
    [35]曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨识[J].电力自动化设备,2006,26(12):1-5.
    [36]M.Ilic-Spong,J.Zaborszky.A different approach to load flow[J].IEEE Trans.on Power Apparatus and Systems,1982,PAS-101(1):168-179.
    [37]D.H.Wolaver.Proof in graph theory of the 'no gain' property of resistor networks[J].IEEE Trans.on Circuits and Systems,1970,17(3):436-437.
    [38]M.Ilic,M.W.Spong,R.Fischl.The no-gain theorem and localized response for the decoupled P-O power network with active power losses included[J].IEEE Trans.on Circuits and Systems,1985,CAS-32(2):170-176.
    [39]M.Hasler,C.Wang.Monotonic dependence on sources in nonlinear resistive circuits[J].AEU,International Journal of Electronics and Communications,1992,46(4):242-249.
    [40]M.Fosseprez,M.Hasler.Algorithms for the qualitative analysis of nonlinear resistive circuits[C].IEEE International Symposium on Circuits and Systems,1989:2165-2168.
    [41]P.Chauffoureaux,M.Hasler.Monotonicity in nonlinear resistive circuits[C].Proc.IEEE Int.Symp.Circuits and Systems,New Orleans,1990:395-398.
    [42]M.D.Ilic.Nonlinear monotone networks and their role in the electric power systems[C].IEEE International Symp.on Circuits and Systems,1990..148-151.
    [43]M.Ilic.Network theoretic conditions for existence and uniqueness of state solutions to electric power circuits[C].Proc.ISCAS'92,San Diego,1992:2821-2828.
    [44]M.Hasler,C.Wang,M.Ilic,A.Zobian.Computation of static stability margins in power systems using monotonicity[C].Proc.ISCAS'93,Chicago,1993:2196-2199.
    [45]M.D.Ilic,Y.T.Yoon,A.Zobian.Available transmission capacity(ATC)and its value under open access[J].IEEE Trans.on Power Systems,1997,12(2):636-645.
    [46]S.Grijalva,P.W.Sauer,J.D.Weber.Enhancement of linear ATC calculations by the incorporation of reactive power flows[J].IEEE Trans.on Power Systems,2003,18(2):619-624.
    [47]S.de la Torre,F.D.Galiana.On the convexity of the system loss function[J].IEEE Trans.on Power Systems,2005,20(4):2061-2069.
    [48]栾军,张智刚,寇惠珍,等.提高500kv电网输电能力的技术研究[J].电网技术,2005,29(19):15-17.
    [49]余贻鑫,陈礼义.电力系统的安全性和稳定性[M].北京:科学出版社,1988.
    [50]韩力,韩学山,贠志皓,等.多节点超短期负荷预测方法[J].电力系统自动化,2007,31(21):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700