用户名: 密码: 验证码:
山东半岛北部典型滨海湿地碳的沉积与埋藏
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滨海湿地是地球碳循环的一个重要源汇地,揭示滨海湿地碳储存、收支等关键过程对探明全球碳循环意义重大。本文聚焦对比研究了山东北部广饶潮汐湿地和昌邑柽柳林湿地两种典型滨海湿地沉积物中碳的生物地球化学特征,诠释了滨海湿地沉积物中的不同形态活性有机碳库和难降解有机碳库状况,在此基础上,评估了两种滨海湿地沉积物中稳定有机碳库的储量以及沉积物有机碳库的稳定性,这可为深入研究我国滨海湿地碳的生物地球化学循环及准确评估滨海湿地碳埋藏能力提供基础。论文研究获得的主要结论如下:
     1.山东半岛北部广饶潮汐湿地和昌邑柽柳林湿地沉积物中碳的含量变化特征、来源、控制因素有较明显的差异,植被和潮沟对沉积物有机碳和无机碳的持留有重要影响。广饶潮汐湿地沉积物中无机碳的垂直变化较小,但浓度较高,有机碳变化相对较大,与芦苇、碱蓬优势群落的根系发育有关,定期的淹水使沉积物常处于厌氧环境,导致有机质矿化分解速率较低,其结果使有机碳得到更多的保存;昌邑柽柳林湿地无机碳的浓度较低,而其有机碳主要来源于覆盖植被地上生物量和地下生物量的输入,但这种输入的影响仅在0-20cm沉积层内发挥作用,其下层根系的地下生产力较低,且有机碳矿化速率较快。
     广饶潮汐湿地GRB1柱样沉积物总有机碳含量在剖面32cm以上随深度增加缓慢上升,此后则表现为下降趋势。GRC2站位TOC含量在垂直剖面的变化趋势并不是很规则,在前10cm随着深度的增加而逐渐降低,之后除在12-14cm和38-40cm两个深度出现明显的积累峰以外,TOC均表现为随深度增加而上升的趋势。GRB1与GRC2柱样平均含量分别为1.798g/kg和3.109g/kg,变异系数为16.15%和19.10%。GRC2站位的芦苇相较于GRB1站位的碱蓬具有更高的生物量,同时芦苇通过强壮的根系来影响着更深层的土壤有机碳的积累,而碱蓬的根系并不发达,不能够通过深入土壤来达到有机碳的显著积累。因此,GRB1柱样中TOC含量和变异系数均低于GRC2。GRB1和GRC2无机碳含量的均值分别为11.25g/kg和10.93g/kg,总体上广饶湿地沉积物中无机碳的垂直变异较小。对于昌邑柽柳林湿地,潮水无法抵达防潮大坝内侧的研究站位,其TOC含量的垂直分布特征基本上呈现表层聚积的特点,在前10cm随深度增加剧烈下降,而在20cm以下变化幅度较小。原因在于研究区域土壤表层枯落物丰富,因此表层有机碳含量较高,其次研究区域植物根系较浅,根系分布由表层向深层递减。昌邑湿地沉积物中无机碳含量较低,沉积物无机碳含量最高的CYA9站位平均值仅为4.39g/kg。受地理及环境因素的综合影响,昌邑柽柳林湿地碳的埋藏能力有很大提升空间。
     2.首次研究揭示了滨海湿地沉积物不同形态活性有机碳(水提和酸提部分)的变化特征。热水可提取碳(HWC)的含量远高于可溶性有机碳(冷水提取)的含量,昌邑湿地沉积物中HWC含量比广饶湿地低,但所占总有机碳的比例较广饶湿地高,潮汐、植被与地貌等对HWC有重要影响;盐酸提有机碳含量在不同类型湿地的柱样沉积物中变化较大,环境指示意义不明确,但不同浓度硫酸提取活性有机碳在指示沉积物有机碳降解程度方面,很有潜在价值。
     两类滨海湿地沉积物中可溶性有机碳含量差别很大,广饶湿地沉积物中DOC含量远高于昌邑湿地。GRB1和GRC2柱样中DOC含量均值分别为637.37mg/kg和712.705mg/kg,后者DOC含量波动较前者显著。在昌邑湿地,CYA3柱样中DOC最高值74.68mg/kg出现在表层0-2cm,在浅层深度DOC大致呈随深度增加而下降的趋势。沉积物含水量影响着DOC在总有机碳中的分配,两类型湿地沉积物中DOC占总有机碳比例差别很大。广饶湿地沉积物中DOC占总有机碳含量比例的均值在34.86%-24.08%之间,而昌邑柱样则仅在2.42%-1.54%之间。GRC2柱样中HWC含量高于GRB1,均值为0.751g/kg,而在昌邑湿地,CYA9柱样中HWC含量的平均值高于CYA3。CYA3柱样沉积物中HWC含量与总有机碳含量是显著相关的,其垂直变异最小,而其它站位HWC的变异系数则很接近。研究显示,潮汐涨落对滨海湿地沉积物中热水可提取碳的分布产生了不可忽视的影响,在不同的植被与地貌等条件的综合影响下HWC产生了较强的空间异质性。GRC2柱样沉积物中盐酸酸提有机碳含量显著高于GRB1柱样。昌邑湿地CYA3柱样的酸提有机碳含量总体来说呈下降趋势,均值为0.92g/kg。而在CYA9站位,沉积物中酸解有机碳含量变化很小,仅在0-12cm内的浅层有一定幅度的波动。不同浓度的硫酸将沉积物中的活性有机质分解为两组水解产物,不同组分的含量与分布在一定程度上可以指示沉积物中有机碳的降解程度。不同湿地沉积更加稳定。在广饶湿地,GRC2站位芦苇的生长与根系的深入向沉积物中输入较多的活性有机质,使GRC2柱样沉积物中组分I与组分II的含量高于GRB1。GRB1柱样中组分I与组分II的含量均值分别为0.583g/kg和0.290g/kg,而GRC2柱样沉积物则分别为0.860g/kg和0.409g/kg。昌邑湿地CYA3柱样中,组分I含量在前10cm剧烈下降,均值为0.639g/kg。组分II的含量在前16cm是随着深度增加逐渐降低的,之后深度内的波动一直较小。
     3.获取了不同类型滨海湿地沉积物中难降解有机碳的含量及垂直分布特征,分析了沉积物中有机碳难降解指数,阐明了不同类型滨海湿地沉积物中的稳定有机碳库特征。作为滨海湿地碳最终汇地的沉积物,其难降解有机碳含量在广饶湿地显著高于昌邑柽柳林湿地。有机碳难降解指数结果表明,广饶湿地沉积物有机碳库的稳定性高于昌邑湿地,广饶湿地有机碳稳定性变化不大,潮汐在维持其湿地有机碳的稳定性方面起到了非常重要的作用。昌邑湿地沉积物有机碳难降解指数较低且变化大,有机质相对易矿化分解;估算1m沉积层内,广饶湿地沉积物稳定有机碳库平均为21.9kg/m2,昌邑湿地仅为7.5kg/m2,表明昌邑湿地的碳封存具有更高的提升潜力。
     广饶湿地GRB1和GRC2沉积物中难降解有机碳的平均含量分别0.919g/kg和1.671g/kg,造成这种差异的原因可能是不同植被的有机质的输入质量在沉积物剖面内有着显著差异。GRB1沉积物中难降解有机碳随着深度呈现先升高后降低的趋势,GRC2则呈现出先降低后增加的趋势。昌邑柽柳林湿地沉积物中难降解有机碳含量较低。CYA3柱样中难降解有机碳含量随深度的分布模式为先剧烈降低后波动幅度减小,而CYA9柱样难降解有机碳约为0.384g/kg,变化幅度较小。由于植被枯落物在表层的累积较多,而活性有机质在浅层内的淋溶过程使得下层的积累不断增加,CYA3站位有机碳的稳定性在浅层是随深度增加而降低的。在潮汐湿地沉积物中有机碳库稳定性较高,而对于昌邑湿地,其在1m深度内的稳定有机碳储量非常低。估算得到1m深度内GRB1,GRC2和CYA3,CYA9站位沉积物中稳定有机碳库的储量分别为15.074kg/m2,28.748kg/m2,9.371kg/m2和5.652kg/m2。光滩CYA9站位虽无植被生长,然而其稳定有机碳剖面分布较为均匀,在1m深度内可达到CYA3储量的一半以上。
Coastal wetlands are located at a critical interface between the terrestrial andmarine environments, which are generally known to be biogeochemical reactors formaterial sinks, sources, and transformations in landscapes. Coastal wetland plays animportant role in the global carbon budget. The research of soil carbon deposition andburial is of great significance for clearly understanding global carbon cycle. Thisstudy investigated the vertical variations of carbon pool and their influencing factorsin different coastal wetland through the comparison of the biogeochemicalcharacteristics of carbon in sediments from two typical coastal wetlands of Shandongpeninsula, and characterized the labile carbon pool and recalcitrant carbon pool in thecoastal wetlands,then estimated the storage of stabile carbon pool and discussedstability of the sediment organic carbon pool. Our study would be helpful for futureresearch on the carbon biogeochemical cycle and accurate assessment of carbon burialability for the coastal wetlands. Major results and conclusions are as the following:
     1. Biogeochemical characteristics of carbon in sediments from different coastalwetlands were quite different, while vegetation and tidal creek had greatinfluence on sediments organic carbon and inorganic carbon retention. Generally,the inorganic carbon contents in Guangrao wetland were homogeneous and quitehigh, while the variation of organic carbon was obvious. It could be explained bythe point that the capacity of wetland soils for organic matters retention andplant litters input amounts were very distinct within this wetland, and themineralization and decomposition of organic matter were quite slow under thelong-term anaerobic situation. Inorganic carbon contents in Changyi wetlandsediments were lower, and the profile distributions of TOC might be dominantlycontrolled by the aboveground and belowground biomass of local vegetation. Soilorganic carbon mineralization rates were higher in Changyi wetland, and thecarbon burial capacity still needed to be improved.
     In Guangrao wetland, the TOC contents in GRB1slightly increased in the profileuntil a depth of30-32cm firstly, and then it showed a decreased trend with depth with the lowest value of1.139mg g-1at72-74cm. TOC contents in GRC2profile werehigher than that in GRB1. An irregular increase of TOC contents was observed alongGRC2profile. In the upper10cm, SOC contents gradually decreased with depth, thenit showed a gradually increase trend except for two obvious accumulation peaks at the12-14cm and38-40cm depth. Firstly, the GRC2area had a tidal creek nearby, whichcan bring much allochthonous nutrients deposited. Secondly, GRC2surface wascovered with P.australis, which had much higher biomass and sufficiently strongerroots than GRA2with S.salsa. Generally, the inorganic carbon contents in Guangraowetland were homogeneous, the average of the inorganic carbon contents in GRB1and GRC2were11.25g/kg and10.93g/kg, respectively. In Changyi wetland, TOCcontents at most study sites that located at supralittoral zone showed a regularlychange pattern that generally decreased with depth along about an upper10cm depthprofile and then fluctuated within a limited range. There was only occasionally floodfrequency when spring tide or storm surge came. Therefore, the profile distributionsof TOC might be dominantly controlled by the aboveground and belowgroundbiomass of local vegetation. Compared to Guangrao wetland, inorganic carboncontents in Changyi wetland sediments were lower.
     2. Dissolved organic carbon (DOC), hot water extractable carbon (HWC) andacid hydrolyzable carbon distribution characteristics in different coastalwetlands were obtained, and the HWC content was quite higher than DOCcontent. While the HWC content in Changyi wetland were lower than that inGuangrao wetland, its proportion in total organic carbon was higher. Tidal,vegetation and landscape were of significance for the distribution of HWC.Hydrochloric acid extraction of organic carbon content varied differently, and itsenvironmental significance was not clear. However, different concentrationsulfuric acid could divided the labile organic matter into two groups ofhydrolysate extraction that had great potential value for indicating the organiccarbon degradation.
     Dissolved organic carbon content in different coastal wetlands varied greatly, with higher contents in the sediments of Guangrao wetland. The average contents ofDOC in GRB1and GRC2were637.37mg/kg and712.705mg/kg, respectively, andthe variation of DOC content in GRC2was more significantly than GRB1. In ChangyiWetland, the maximum value of74.68mg/kg appeared in the surface0-2cm, andDOC in the shallow depth decreased. Water content affected the allocation of DOC inthe TOC, and the proportion of DOC in TOC in different wetlands was of greatdifference. The proportion of DOC in the GRB1and GRC2profiles were34.86%and24.08%, while the CYA3and CYA9profiles were only2.42%and1.54%. While theHWC content in Changyi wetland sediment were lower than that in Guangrao wetland,its proportion in total organic carbon was higher. The mean content of HWC in GRB1was0.632g/kg, and it was higher in GRC2with an average value of0.751g/kg. InChangyi wetland, the average HWC content in CYA9was higher than that of CYA3.The vertical variation of HWC content in CYA3which was not influenced by tide isthe smallest, while the variation coefficients in the other three stations were quitesimilar. In addition, only in CYA3the content of HWC was significantly related to thetotal organic carbon. These results implied that tidal fluctuations could bringconsiderable impact on the HWC in the sediments of the coastal wetlands, and thecomprehensive effects of different vegetation and landform conditions caused thestrong spatial heterogeneity of HWC distribution. Hydrochloric acid extraction oforganic carbon content in GRC2was significantly higher than that of GRB1. The acidhydrolyzable carbon in GRB1was within the range of0.527g/kg-1.280g/kg, whilethe GRC2was in the range of1.087-2.309g/kg. In Changyi wetland, the verticalvariation of acid hydrolyzable carbon in CYA3showed obvious downward trend withthe average of0.92g/kg. In CYA9, the variation of acid hydrolyzable carbon was verysmall, and it only had a certain degree of volatility within the0-12cm shallow layer.Different concentration sulfuric acid could divide the labile organic matter into twogroups. In different wetland, labile pool II were significantly lower than labile pool I,and changes of pool II were more stable with depth than pool I. In Guangrao wetland,the mean content of GRB1pool I and pool II were0.583g/kg and0.290g/kg, whilethat of the GRC2were0.860g/kg and0.409g/kg, respectively. In Changyi wetland, pool I sharply decreased within the first10cm along CYA3profile. Pool II increasedwith the depth within the first16cm, after which the fluctuations became smaller.
     3. The recalcitrancy indices of sediment organic carbon were analyzed, andvertical distribution characteristics of recalcitrant carbon pool in differentcoastal wetlands were illuminated. Generally, stability of organic carbon pool inGuangrao wetland sediments was higher than that of Changyi wetland. InGuangrao wetland, the stability of organic carbon of two sediment profiles werevery close to each other, and the tidal played very important role in maintainingthe stability of sediments organic carbon pool. However, due to environmentalconstraints, the recalcitrancy indices were quite low, and the organic matter inChangyi wetland were easily decomposed. We estimated the stabile carbonstorage capacity of Guangrao and Changyi wetland within1m depth were21.9kg/m2and7.5kg/m2, respectively. The results indicated that the carbonsequestration ability of Changyi wetland had higher potential for improvement.
     In Guangrao wetland, recalcitrant carbon contents in GRB1and GRC2were0.919g/kg and1.671g/kg, respectively, and this may due to the significantly differentquality of organic matter input in profiles from different vegetation. The recalcitrantcarbon increased with depth firstly and then decreased in GRB1, while it decreasedfirstly and then increased in GRC2. Recalcitrant carbon content was lower in Changyiwetland sediments. The distribution pattern of recalcitrant carbon contents in CYA3showed a dramatic reduction with depth firstly and a slight fluctuation then. Theaverage content of recalcitrant carbon in CYA9was0.384g/kg, with smaller change.In the shallow layer, the stability of organic carbon in CYA3was decreased withdepth, this probably due to more vegetation litter accumulated in the surface layer,besides, the leaching process of the active organic matter in the shallow layer causingthe increasing accumulation. We estimated the stabile carbon storage capacity ofGRB1, GRC2and CYA3, CYA9within1m depth were15.074kg/m2,28.748kg/m2,9.371kg/m2and5.652kg/m2. In tidal wetland, the sediment organic carbon storagestability was relatively high, while the Changyi wetland, due to environmental constraints, the stable organic carbon storage was very low. CYA9was located at thebare tidal flat, however, its stable organic carbon distribution was more uniform, andit can reach more than half of CYA3stable carbon reserves within1m depth.
引文
[1] Lal R. Soil carbon sequestration impacts on global climate Change and food security.Science,2004,304(5677):1623-1627.
    [2]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-973.
    [3]赵俊芳,延晓冬,贾根锁.东北森林净第一性生产力与碳收支对气候变化的响应.生态学报,2008,28(1):92-102.
    [4]吴庆标,王效科,段晓男,邓立斌,逯非,欧阳志云,冯宗炜.中国森林生态系统植被固碳现状和潜力.生态学报,2008,28(2):517-524.
    [5]韩冰,王效科,逯非,段晓男,欧阳志云.中国农田土壤生态系统固碳现状和潜力.生态学报,2008,28(2):612-619.
    [6] Intergovernmental Panel on Climate Change. Climate Change2007: The Physical ScienceBasis. Working Group I Contribution to the Fourth Assessment Report of theIntergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,2007.
    [7] Chmura G L, Anisfeld S C, Cahoon D R, Lynch J C. Global carbon sequestration in tidal,saline wetland soils. Global Biogeochemistry Cycles,2003,17(4):1111, doi:10.1029/2002GB001917.
    [8] Choi Y, Wang Y. Dynamics of carbon sequestration in a coastal wetland using radiocarbonmeasurements. Global Biogeochemical Cycles,2004,18: GB4016, doi:10.1029/2004GB002261.
    [9] Baldocchi D D, Falge E, Gu L, Olson R, Hollinger D Y, Running S W, Anthoni P, BernhoferC, et al. FLUXNET: a new tool to study the temporal and spatial variability ofecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of theAmerican Meteorological Society,2001,82(11):2415-2434.
    [10] Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxideexchange rates of ecosystems: past, present and future. Global Change Biology,2003,9(4):479-492.
    [11] Guo H Q, Noormets A, Zhao B, Chen J Q, Sun G, Gu Y J, Li B, Chen J K. Tidal effects onnet ecosystem exchange of carbon in an estuarine wetland. Agricultural and ForestMeteorology,2009,149(11):1820-1828.
    [12] Janssens I A, Ceulemans R. Spatial variability in forest soil CO2efflux assessed with acalibrated soda lime technique. Ecology Letters,1998,1(2):95-98.
    [13]岳保静,张军强,辛一.滨海湿地碳的生物地球化学循环过程.海洋地质前沿,2011,27(2):72-78.
    [14]葛振鸣,周晓,王开运, Kellom ki S,巩晋楠.长江河口典型湿地碳库动态研究方法.生态学报,2010,30(4):1097-1108.
    [15]姜欢欢,孙志高,王玲玲,牟晓杰,孙万龙,宋红丽,孙文广.秋季黄河口滨岸潮滩湿地系统CH4通量特征及影响因素研究.环境科学,2012,33(2):565-573.
    [16]仝川,王维奇,雷波,林璐莹,曾从盛.闽江河口潮汐湿地甲烷排放通量温度敏感性特征.湿地科学,2010,8(3):240-248.
    [17] Connor R F, Chmura G L, Beecher C B. Carbon accumulation in Bay of Fundy salt marshes:Implications for restoration of reclaimed marshes. Global Biogeochemistry Cycles,2001,15(4):943-954.
    [18] Reddy K R, DeLaune R D. Biogeochemistry of Wetlands: Science and Applications. BocaRaton: CRC Press,2008:111-184.
    [19] Schlesinger W H. An Overview of the C Cycle in Soils and Global Change. Boca Raton:CRC Press,1995.
    [20] Alongi D M, Tirendi F, Dixon P, Trott L A, Brunskill G J. Mineralization of organic matterin intertidal sediments of a tropical semi-enclosed delta. Estuarine, Coastal and ShelfScience,1999,48(4):451-467.
    [21] Thornton S F, Mcmanus J. Application of organic carbon and nitrogen stable-isotope andC/N ratios as source indicators of organic-matter provenance in estuarine systems: evidencefrom the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science,1994,38(3):219-233.
    [22] Vernberg F J. Salt-marsh process: a review. Environmental Technology and Chemistry,1993,12(12):2167-2195.
    [23] Levin L A, Talley T S, Hewitt J. Macrobenthos of Spartina foliosa (Pacific Cordgrass) saltmarshes in Southern California: community structure and comparison to a Pacific mudflatand a Spartina alterniflora (Atlantic smooth cordgrass) marsh. Estuarine,1998,21(1):129-144.
    [24]梅雪英,张修峰.长江口典型湿地植被储碳、固碳功能研究——以崇明东滩芦苇为例.中国生态农业学报,2008,16(2):269-272.
    [25]索安宁,赵冬至,张丰收.我国北方河口湿地植被储碳、固碳功能研究——以辽河三角洲盘锦地区为例.海洋学研究,2010,28(3):67-71.
    [26]罗美娟,黄炜娟,谭芳林,潘辉,高元竞.闽江河口湿地主要植物群落生物量研究.防护林科技,2009,(6):1-3.
    [27]冯忠江,赵欣胜.黄河三角洲芦苇生物量空间变化环境解释.水土保持研究,2008,15(3):170-174.
    [28]梅雪英,张修峰.崇明东滩湿地自然植被演替过程中储碳及固碳功能变化.应用生态学报,2007,18(4):933-936.
    [29] Funk D W, Noel L E, Freedman A H. Environmental gradients, plant distribution, andspecies richness in arctic salt marsh near Prudhoe Bay, Alaska. Wetlands Ecology andManagement,2004,12(3):215-233.
    [30] Ca ador I, Tibério S, Cabral H N. Species zonation in Corroios salt marsh in the Tagusestuary (Portugal) and its dynamics in the past fifty years. Hydrobiologia,2007,587(1):205-211.
    [31] Touchette B W. Salt tolerance in a Juncus roemerianus brackish marsh: spatial variations inplant water relations. Journal of Experimental Marine Biology and Ecology,2006,337(1):1-12.
    [32]吴志芬,赵善伦,张学雷.黄河三角洲盐生植被与土壤盐分的相关性研究.植物生态学报,1994,18(2):184-193.
    [33]张绪良,叶思源,印萍,陈东景.黄河三角洲自然湿地植被的特征及演化.生态环境学报,2009,18(1):292-298.
    [34] Roman C T, Daiber F C. Aboveground and belowground primary production dynamics oftwo Delaware Bay tidal marshes. Bulletin of the Torrey Botanical Club,1984,111(1):34-41.
    [35] Aerts R, Berendse F, Klerk N M, Bakker C. Root production and root turnover in twodominant species of wet heathlands. Oecologia,1989,81(3):374-378.
    [36] Megonigal J P, Day F P Jr. Organic matter dynamics in four seasonally flooded forestcommunities of the dismal swamp.American Journal of Botany,1988,75(9):1334-1343.
    [37] Finer L, Laine J. Root dynamics at drained peatland sites of different fertility in southernFinland. Plant and Soil,1998,201(1):27-36.
    [38]刘白贵,仝川,罗榕婷.闽江河口湿地3种主要植物冬春季枯落物分解特征.福建师范大学学报:自然科学版,2008,24(2):80-85.
    [39]周俊丽,吴莹,张经,孙承兴.长江口潮滩先锋植物藨草腐烂分解过程研究.海洋科学进展,2006,24(1):44-50.
    [40]贾瑞霞,仝川,王维奇,曾从盛.闽江河口盐沼湿地沉积物有机碳含量及储量特征.湿地科学,2008,6(4):492-499.
    [41]陈华,王东启,陈振楼,杨红霞,王军,许世远.崇明东滩海三棱藨草生长期沉积物有机碳含量变化.环境科学学报,2007,27(1):135-142.
    [42]董洪芳,于君宝,孙志高,牟晓杰,陈小兵,毛培利,吴春发,管博.黄河口滨岸潮滩湿地植物-土壤系统有机碳空间分布特征.环境科学,2010,31(6):1594-1599.
    [43]丁喜桂,叶思源,王吉松.黄河三角洲湿地土壤、植物碳氮稳定同位素的组成特征.海洋地质前沿,2011,27(2):66-71.
    [44] Cheng X L, Luo Y Q, Chen J Q, Lin G H, Chen J K, Li B. Short-term C4plant Spartinaalterniflora invasions change the soil carbon in C3plant-dominated tidal wetlands on agrowing estuarine Island. Soil Biology and Biochemistry,2006,38(12):3380-3386.
    [45]高建华,杨桂山,欧维新.苏北潮滩湿地不同生态带有机质来源辨析与定量估算.环境科学,2005,26(6):51-56.
    [46]邵学新,杨文英,吴明,蒋科毅.杭州湾滨海湿地土壤有机碳含量及其分布格局.应用生态学报,2011,22(3):658-664.
    [47]曾从盛,钟春棋,仝川,柳铮铮.土地利用变化对闽江河口湿地表层土壤有机碳含量及其活性的影响.水土保持学报,2008,22(5):125-129.
    [48] Blair G J, Crocker G J. Crop rotation effects on soil carbon and physical fertility of twoAustralian soils.Australian Journal of Soil Research,2000,38(1):71-84.
    [49]陈庆强,周菊珍,孟翎,胡克林,顾靖华.长江口盐沼滩面演化的有机碳累积效应.自然科学进展,2007,18(5):614-623.
    [50] Cranford RF, Chmura GL, Beecher CB. Measurement of cordgrass,Spatina alterniflora,production in a macrotidal estuary, Bay of Fundy. Estuaries,1989,12(1):27-34
    [51] Bull ID, Bergen PF, Bol R, Brown S, Gledhill AR, Gray AJ, Harkness DD, Woodbury SE,Evershed RP. Estimating the contribution of Spartina anglica biomass to salt marshsediments using compound specific stable carbon isotope measurements. OrganicGeochemistry,1999,30(7):477-483.
    [52] Cheng XL, Luo YQ, Chen JQ, Lin GH, Chen JK, Li B. Short-term C-4plant Spartinaalterniflora invasions change the soil carbon in C-3plant-dominated tidal wetlands on agrowing estuarine Island. Soil Biology and Biochemistry,2006,38(12):3380-3386.
    [53] Peterson BJ, Howarth RW, Garritt RH. Multiple stable isotopes used to trace the flow oforganic matter in estuarine foodwebs. Science,1985,227(4692):1361-1363
    [54] Middelburg JJ, Nieuwenhuize J, Lubberts RK, van de Plassche O. Organic carbon isotopesystematics of coastal marshes. Estuarine, Coastal and Shelf Science,1997,45(5):681-687.
    [55] Cifuentes LA, Coffin RB, Solorzano L, Cardenas W, Espinoza J, Twilley RR. Isotopic andElemental Variations of Carbon and Nitrogen in a Mangrove Estuary. Estuarine, Coastal andShelf Science,1996,43(6):781-800.
    [56] Fry B, Sherr EB. δ13C measurements as indicators of carbon flow in marine and freshwaterecosystems. Contributions in Marine Science,1984,27(Sep):13-47.
    [57]薛博.漳江口红树林湿地沉积物有机质来源追溯[D].厦门:厦门大学,2007.
    [58]周俊丽.长江口湿地生态系统中有机质的生物地球化学过程研究[D].上海:华东师范大学,2005.
    [59] Jespersen JL, Osher LJ. Carbon storage in the soils of a Mesotidal Gulf of Maine Estuary.Soil Science society ofAmerica Journal,2007,71(2):372-379.
    [60] Canadell J. Maximum rooting depth of vegetation types at the global scale. Oecologia,1996,108(4):349-356.
    [61] Malty E, Immirzi P. Carbon dynamics in peatlands and other wetland soils: regional andglobal perspective. Chemosphere,1993,27(6):999-1023.
    [62] Duarte CM, Middelburg J, Caraco N. Major role of marine vegetation on the oceanic carboncycle. Biogeosciences,2005a,2(1):1-8.
    [63] Bird MI, Fifield LK, Chua S, Goh B. Calculating sediment compaction for radiocarbondating of intertidal sediments. Radiocarbon,2004,46(1):421-35.
    [64] Lovelock CE, Sorrell BK, Hancock N, Hua Q, Swales A. Mangrove forest and soildevelopment on a rapidly accreting shore in New Zealand. Ecosystems,2010,13(3):437-51.
    [65] Sanders CJ, Smoak JM, Naidu AS, Sanders LM, Patchineelam SR. Organic carbon burial ina mangrove forest, margin and intertidal mud flat. Estuarine, Coastal and Shelf Science,2010,90(3):168-72.
    [66] Duarte CM, Marba N, Gacia E, Fourqurean JW, Beggins J, Barron C, Apostolaki ET.Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows.Global Biogeochemical Cycles,2010,24(4).
    [67] Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marba N, Middelburg JJ.Seagrass sediments as a global carbon sink: isotopic constraints. Global BiogeochemicalCycles,2010,24(4).
    [68] Schlesinger WH. Biogeochemistry: an analysis of global change,2nd edn. San Diego, CA:Academic Press,1997.
    [69] Zehetner F. Does organic carbon sequestration in volcanic soils offset volcanic CO2emissions? Quaternary Sci Rev,2010,29(11-12):1313-1316.
    [70] Ibanez C, Curco A, Day JW, Prat N. Structure and productivity of microtidal Mediterraneancoastal marshes. Concepts and Controversies in Tidal Marsh Ecology. London: KluwerAcademic Publishers,2002, Part2:107-136.
    [71] Neves JP, Ferreira LF, Simoes MP, Gazarini LC. Primary production and nutrient content intwo salt marsh species, Atriplex portulacoides L. and Limo-niastrum monopetalum L., inSouthern Portugal. Estuaries and Coasts,2007,30:459-468.
    [72] Connor R. An Examination of Carbon Flow in a Bay of Fundy Salt Marsh. UnpublishedM.Sc. thesis, McGill University,1995.
    [73] Roman CT, Daiber FC. Aboveground and belowground primary production dynamics oftwo Delaware Bay tidal marshes. Bulletin of the Torrey Botanical Club,1984,111(1):34-41.
    [74] Shaw J, Ceman J. Salt-marsh aggradation in response to Late-Holocene sea-level rise atAmherst Point, Nova Scotia, Canada. The Holocene,1999,9(4):439-451.
    [75] Callaway JC, Delaune RD, Patrick WH. Chernobyl Cs-137used to determine sedimentaccretion rates at selected north European coastal wetlands. Limnology and Oceanography,1996,41(3):444-450.
    [76] Buol SW, Southard RJ, Graham RC, McDaniel PA. Soil genesis and classification, fifthedition. Wiley-Blackwell,2003.
    [77] Delaune RD, Pezeshki SR. The role of soil organic carbon in maintaining surface elevationin rapidly subsiding U.S. Gulf of Mexico Coastal Marshes. Water, Air, and Soil Pollution,2003,3(1):167-179.
    [78] Culberson SD, Foin TC, Collins JN. The role of sedimentation in estuarine marshdevelopment within the San Francisco Estuary, California, USA. Journal of CoastalResearch,2004,20(4):746-759.
    [79] Nyman JA, Walters RJ, Delaune RD, Patrick WH. Marsh vertical accretion via vegetativegrowth. Estuarine, Coastal and Shelf Science,2006,69(3-4):370-380.
    [80] Neubauer SC. Contributions of mineral and organic components to tidal freshwater marshaccretion. Estuarine, Coastal and Shelf Science,2008,78(1):78-88.
    [81] Turner RE, Swenson EM, Milan CS. Organic and Inorganic Contributions to VerticalAccretion in Salt Marsh Sediments. Concepts and Controversies in Tidal Marsh Ecology,2002, part7:583-595.
    [82] Baustian JJ, Mendelssohn IA, Hester MW. Vegetation’s importance in regulating surfaceelevation in a coastal salt marsh facing elevated rates of sea level rise. Global ChangeBiology,2012,18(11):3377-3382.
    [83] FitzGerald DM, Fenster MS, Argow BA, Buynevich IV. Coastal impacts due to sea-levelrise.Annual Review of Earth and Planetary Sciences,2008,36:601-647.
    [84] Hatton RS, DeLaune RD, Patrick Jr WH. Sedimentation, accretion, and subsidence inmarshes of Barataria Basin, Louisiana. Limnology and Oceanography,1983,28(3):494-502.
    [85] Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J,Vorosmarty C, Saito Y, Giosan L. Sinking deltas due to human activities. Nature Geoscience,2009,2:681-686.
    [86] Intergovernmental Panel on Climate Change. Climate Change2007: The Physical ScienceBasis. Working Group I Contribution to the Fourth Report of the Intergovernmental Panelon Climate Change,2007.
    [87] Kirwan ML, Murray AB, Donnelly JP, Corbett DR. Rapid wetland expansion duringEuropean settlement and its implication for marsh survival under modern sediment deliveryrates. Geology,2011,39(12):507-510.
    [88] Vermeer M, Rahmstorf S. Global sea level linked to global temperature. Proceedings of theNationalAcademy of Sciences,2009,106(51):21527-21532.
    [89] Doody J.‘Coastal squeeze’-an historical perspective. Journal of Coastal Conservation,2004,10:129-138.
    [90] Turner RE, Milan CS, Swenson EM. Recent volumetric changes in salt marsh soils.Estuarine, Coastal and Shelf Science,2006,69(3-4):352-359.
    [91] Mudd SM, Howell SM, Morris JT. Impact of dynamic feedbacks between sedimentation,sea level rise, and biomass production on near-surface marsh stratigraphy and carbonaccumulation. Estuarine, Coastal and Shelf Science,2009,82(3):377-389.
    [92] DeLaune RD, White JR. Will coastal wetlands continue to sequester carbon in response toan increase in global sea level? a case study of the rapidly subsiding Mississippi riverdeltaic plain. Climatic Change,2012,110(1-2):297-314.
    [93] Nellemann C, Corcoran E, Duarte CM, et al.(Ed.) Blue carbon: The role of healthy oceansin binding carbon.Arapid response assessment. Grid-Arendal/UNEP:Arendal,2009.
    [94] Rovira P, Vallejo VR. Labile and recalcitrant pools of carbon and nitrogen in organic matterdecomposing at different depths in soil: an acid hydrolysis approach. Geoderma,2002,107:109-41.
    [95] Lewis DB, Kaye JP, Jabbour R, Barbercheck ME. Labile carbon and other soil qualityindicators in two tillage systems during transition to organic agriculture. RenewableAgriculture and Food Systems,2011,26(4):342-353.
    [96] Datta SP, Rattan RK, Chandra S. Labile soil organic carbon, soil fertility, and cropproductivity as influenced by manure and mineral fertilizers in the tropics. Journal of PlantNutrition and Soil Science,2010,173(5):715-726.
    [97] Wang Y, Ruan HH, Huang LL, Feng YQ, Qi Y, Zhou JZ, Shen YL. Soil Labile OrganicCarbon With Different Land Uses in Reclaimed Land Area From Taihu Lake. Soil Science,2010,175(12):624-630.
    [98] Robarts RD, Sephton LM, Wicks RJ. Labile Dissolved Organic-Carbon and WaterTemperature as Regulators of Heterotrophic Bacterial-Activity and Production in the Lakesof Sub-Antarctic Marion Island. Polar Biology,1991,11(6):403-413.
    [99] Moore TR, Desouza W, Koprivnjak JF. Controls on the Sorption of DissolvedOrganic-Carbon by Soils. Soil Science,1992,154(2):120-129.
    [100]李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报,2004,41(4):544-551.
    [101] Ghani A, Dexter M, Perrott KW. Hot-water extractable carbon in soils: a sensitivemeasurement for determining impacts of fertilisation, grazing and cultivation. Soil BiologyBiochemistry,2003,35(9):1231-1243.
    [102] Spohn M, Giani L. Total, hot water extractable, and oxidation-resistant carbon in sandyhydromorphic soils-analysis of a220-year chronosequence. Plant Soil,2011,338(1-2):183-192.
    [103] Fischer T, Bergmann C, Huttl RF. Soil carbon and nitrogen budget in Scots pine (Pinussylvestris L) stands along an air pollution gradient in eastern Germany. Water Air and SoilPollution,1995,85(3):1671-1676.
    [104] Leavitt SW, Follett RF, Paul EA. Estimation of slow-and fast-cycling soil organiccarbon pools from6N HCl hydrolysis. Radiocarbon,1996,38(2):231-239.
    [105] Moulin V, Saclay CE. Humic substances in the environment. Abstracts of Papers of theAmerican Chemical Society,2000,219:U85-U85.
    [106] Preston CM, Schnitzer M. Effects of Chemical Modifications and Extractants on theC-13Nmr-Spectra of Humic Materials. Soil Science Society of America Journal,1984,48(2):305-311.
    [107] Dodla SK, Wang JJ, DeLaune RD. Characterization of labile organic carbon in coastalwetland soils of the Mississippi River deltaic plain: Relationships to carbon functionalities.Science of the Total Environment,2012,435:151-158.
    [108] Rovira P, Vallejo VR. Examination of thermal and acid hydrolysis procedures incharacterization of soil organic matter. Communications in Soil Science and Plant Analysis,2000,31(1-2):81-100.
    [109] Becker-Heidmann P, Andresen O, Kalmar D, Scharpenseel HW, Yaalon DH. Carbondynamics in vertisols as revealed by high-resolution sampling. Radiocarbon,2002,44(1):63-73.
    [110] Falloon P, Smith P, Coleman K, Marshall S. How important is inert organic matter forpredictive soil carbon modelling using the Rothamsted carbon model? Soil BiologyBiochemistry,2000,32(3):433-436.
    [111] Kleber M. What is recalcitrant soil organic matter? Environmental Chemistry,2010,7(4):320-332.
    [112] Six J, Conant RT, Paul EA, Paustian K. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils. Plant Soil,2002,241(2):155-176.
    [113] Mikutta R, Kleber M, Torn MS, Jahn R. Stabilization of soil organic matter:Association with minerals or chemical recalcitrance? Biogeochemistry,2006,77(1):25-56.
    [114] Kogel-Knabner I. The macromolecular organic composition of plant and microbialresidues as inputs to soil organic matter. Soil Biology Biochemistry,2002,34(2):139-162.
    [115] Feller C, Beare MH. Physical control of soil organic matter dynamics in the tropics.Geoderma,1997,79(1-4):69-116.
    [116] Rasse DP, Dignac MF, Bahri H, Rumpel C, Mariotti A, Chenu C. Lignin turnover in anagricultural field: from plant residues to soil-protected fractions. European Journal of SoilScience,2006,57(4):530-538.
    [117] Bahri H, Dignac MF, Rumpel C, Rasse DP, Chenu C, Mariotti A. Lignin turnoverkinetics in an agricultural soil is monomer specific. Soil Biology Biochemistry,2006,38(7):1977-1988.
    [118] Kogel-Knabner I, Chenu C, Kandeler E, Piccolo A. Biological and physicochemicalprocesses and control of soil organic matter stabilization and turnover. European Journal ofSoil Science,2006,57(4):425-425.
    [119] Chenu C, Plante AF. Clay-sized organo-mineral complexes in a cultivationchronosequence: revisiting the concept of the 'primary organo-mineral complex'. EuropeanJournal of Soil Science,2006,57(4):596-607.
    [120] Poirier N, Derenne S, Balesdent J, Chenu C, Bardoux G, Mariotti A, Largeau C:Dynamics and origin of the non-hydrolysable organic fraction in a forest and a cultivatedtemperate soil, as determined by isotopic and microscopic studies. European Journal of SoilScience,2006,57(5):719-730.
    [121]李庆梅,侯龙鱼,刘艳,马风云.黄河三角洲盐碱地不同利用方式土壤理化性质.中国生态农业学报,2009,17(6):1132-1136.
    [122]陈庆强,周菊珍,孟翎,胡克林,顾靖华.长江口盐沼滩面演化的有机碳累积效应.自然科学通报,2007,18(5):614-623.
    [123]毛志刚,王国祥,刘金娥,桑利娟,任丽娟.苏北滨海湿地不同植被粒度特征分析.海洋科学进展,2008,26(4):454-463.
    [124] Wolaver TG, Spurrier JD. Carbon transport between a Euhaline vegetated marsh inSouth-Carolina and the adjacent tidal creek-Contributions via tidal inundation, Runoff andSeepage. Marine Ecology Progress Series,1988,42(1):53-62.
    [125] Gao HF, Bai JH, Xiao R, Yan DH, Huang LB, Huang C. Soil net nitrogenmineralization in salt marshes with different flooding periods in the Yellow River Delta,China. Clean-SoilAir Water,2012,40(10):1111–1117.
    [126] Mou XJ, Sun ZG, Wang LL, Wang CY. Nitrogen cycle of a typical Suaeda salsa marshecosystem in the Yellow River estuary. Journal of Environmental Sciences,2011,23(6):958-967.
    [127] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected byroot-induced chemical changes: a review. Plant Soil,2001,237(2):173-195.
    [128] Bradshaw C, Kautsky U, Kumblad L. Ecological stoichiometry and multi-elementtransfer in a coastal ecosystem. Ecosystems,2012,15(4):591-603.
    [129]王维奇,曾从盛,钟春棋,仝川.人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响.环境科学,2010,31(10):2411-2416.
    [130]王维奇,仝川,贾瑞霞,曾从盛.不同淹水频率下湿地土壤碳、氮、磷生态化学计量学特征.水土保持学报,2010,24(3):238-242.
    [131] Zhou JL, Wu Y, Kang QS, Zhang J. Spatial variations of carbon, nitrogen, phosphorousand sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuarine Coastaland Shelf Science,2007,71(1-2):47-59.
    [132] Spohn M, Babka B, Giani L. Changes in soil organic matter quality duringsea-influenced marsh soil development at the North Sea coast. Catena,2013,107:110-117.
    [133]潘根兴.中国土壤有机碳和无机碳库量研究.科技通报,1999,15(5):330-332.
    [134] Yang YH, Fang JY, Ji CJ, Ma WH, Su SS, Tang ZY. Soil inorganic carbon stock in theTibetan alpine grasslands. Global Biogeochemical Cycles,2010,24.
    [135] Rawlins BG, Henrys P, Breward N, Robinson DA, Keith AM, Garcia-Bajo M. Theimportance of inorganic carbon in soil carbon databases and stock estimates: a case studyfrom England. Soil Use Manage,2011,27(3):312-320.
    [136] Civeira G. Distribution of soil organic and inorganic carbon by soil Taxa in the centralEastern Pampas of BuenosAires. Soil Science,2013,178(3):120-127.
    [137]杨黎芳,李贵桐.土壤无机碳研究进展.土壤通报,2011,42(4):986-990.
    [138]祖元刚,李冉,王文杰,苏冬雪,王莹,邱岭.我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性.生态学报,2011,31(18):5207-5216.
    [139]张雪妮,吕光辉,贡璐,秦璐,李尝君,孙景鑫.新疆艾比湖湿地自然保护区不同土壤类型无机碳分布特征.中国沙漠,2013,33(4):1084-1090.
    [140] Wu HB, Guo ZT, Gao Q, Peng CH. Distribution of soil inorganic carbon storage and itschanges due to agricultural land use activity in China. Agriculture Ecosystems Environment,2009,129(4):413-421.
    [141] Jobbagy EG, Jackson RB. The vertical distribution of soil organic carbon and itsrelation to climate and vegetation. EcologicalApplications,2000,10(2):423-436.
    [142] Franzluebbers AJ, Stuedemann JA. Bermudagrass management in the southernpiedmont USA: VII. Soil-profile organic carbon and total nitrogen. Soil Science Society ofAmerica Journal,2005,69(5):1455-1462.
    [143] Jobbagy EG, Jackson RB. The distribution of soil nutrients with depth: global patternsand the imprint of plants, Biogeochemistry,2001,53(1):51-77.
    [144] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected byroot-induced chemical changes: a review. Plant Soil,2001,237(2),173-195.
    [145] Wang GP, Liu JS, Wang JD, Yu JB. Soil phosphorus forms and their variations indepressional and riparian freshwater wetlands (Sanjiang Plain, Northeast China). Geoderma,2006,132(1-2):59-74.
    [146] Chen CR, Condron LM, Davis MR, Sherlock RR. Effects of plant species on microbialbiomass phosphorus and phosphatase activity in a range of grassland soils. Biology andFertility of Soils,2004,40(5):313-322.
    [147] Xiao R, Bai JH, Gao HF, Huang LB, Deng W. Spatial distribution of phosphorus inmarsh soils of a typical land/inland water ecotone along a hydrological gradient. Catena,2012,98:96-103.
    [148] Wang GP, Liu JS, Wang JD, Yu JB. Soil phosphorus forms and their variations indepressional and riparian freshwater wetlands (Sanjiang Plain, Northeast China). Geoderma,2006,132(1-2):59-74.
    [149] Schonbrunner IM, Preiner S, Hein T. Impact of drying and re-flooding of sediment onphosphorus dynamics of river-floodplain systems. Science of the Total Environment,2012,432:329-337.
    [150] Liu PP, Bai JH, Ding QY, Shao HB, Gao HF, Xiao R. Effects of Water Level andSalinity on TN and TP Contents in Marsh Soils of the Yellow River Delta, China. Clean-SoilAir Water,2012,40(10):1118-1124.
    [151]贺强,安渊,崔保山.滨海盐沼及其植物群落的分布与多样性.生态环境学报,2010,19(3):657-664.
    [152]贺强,崔保山,赵欣胜.水、盐梯度下黄河三角洲湿地植物种的生态位.应用生态学报,2008,19(5):969-975.
    [153] Berner RA. A New Geochemical Classification of Sedimentary Environments. Journalof Sedimentary Petrology,1981,51(2):359-365.
    [154]贺强,崔保山,赵欣胜,付华龄,熊雄,付光海.水盐梯度下黄河三角洲湿地植被空间分异规律的定量分析.湿地科学,2007,5(3):208-214.
    [155] Bertness MD, Ellison AM. Determinants of Pattern in a New-England Salt-Marsh PlantCommunity. Ecological Monographs,1987,57(2):129-147.
    [156] Wilson DJ, Jefferies RL. Nitrogen mineralization, plant growth and goose herbivory inanArctic coastal ecosystem. Journal of Ecology,1996,84(6):841-851.
    [157] Barbosa RI, Fearnside PM. Pasture burning in Amazonia: Dynamics of residualbiomass and the storage and release of aboveground carbon. Journal of GeophysicalResearch-Atmospheres,1996,101(D20):25847-25857.
    [158] Zhang ZS, Song XL, Lu XG, Xue ZS. Ecological stoichiometry of carbon, nitrogen,and phosphorus in estuarine wetland soils: influences of vegetation coverage, plantcommunities, geomorphology, and seawalls. Journal of Soils and Sediments,2013,13(6):1043-1051.
    [159] Zhang ZS, Lu XG, Song XL, Guo Y, Xue ZS. Soil C, N and P stoichiometry ofDeyeuxia angustifolia and Carex lasiocarpa wetlands in Sanjiang Plain, Northeast China.Journal of Soils and Sediments,2012,12(9):1309-1315.
    [160]杨黎芳,李贵桐,赵小蓉,林启美.栗钙土不同土地利用方式下有机碳和无机碳剖面分布特征.生态环境,2007,16(1)158-162.
    [161]刘梦云,常庆瑞,杨香云.黄土台塬不同土地利用方式下土壤碳组分的差异.植物营养与肥料学报,2010,16(6):1418-1425.
    [162] Gregorich EG, Beare MH, Stoklas U, St-Georges P. Biodegradability of solubleorganic matter in maize-cropped soils. Geoderma,2003,113(3/4):237-252.
    [163] Van den Berg LJL, Shotbolt L, Ashmore MR. Dissolved organic carbon (DOC)concentrations in UK soils and the influence of soil, vegetation type and seasonality.Science of the Total Environment,2012,427:269-276.
    [164] Vestgarden LS, Austnes K, Strand LT. Vegetation control on DOC, DON and DINconcentrations in soil water from a montane system, southern Norway. Boreal EnvironmentResearch,2010,15(6):565-578.
    [165] Wang FL, Bettany JR. Influence of Freeze-Thaw and flooding on the loss of solubleOrganic-Carbon and Carbon-Dioxide from Soil. Journal of Environmental Quality,1993,22(4):709-714.
    [166]李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报,2004,41(4):544-552.
    [167] Nelson PN, Dictor MC, Soulas G. Availability of Organic-Carbon in Soluble andParticle-Size Fractions from a Soil-Profile. Soil Biology Biochemistry,1994,26(11):1549-1555.
    [168] Clay GD, Worrall F, Fraser EDG. Effects of managed burning upon dissolved organiccarbon (DOC) in soil water and runoff water following a managed burn of a UK blanket bog.Journal of Hydrology,2009,367(1-2):41-51.
    [169] Sparling G, Vojvodic-Vukovic M, Schipper LA. Hot-water-soluble C as a simplemeasure of labile soil organic matter: the relationship with microbial biomass C. SoilBiology Biochemistry,1998,30(10-11):1469-1472.
    [170] Powlson DS, Brookes PC, Christensen BT. Measurement of soil microbial biomassprovides an early indication of changes in total soil organic-matter due to strawincorporation. Soil Biology Biochemistry,1987,19(2):159-164.
    [171] Spohn M, Giani L. Total, hot water extractable, and oxidation-resistant carbon in sandyhydromorphic soils analysis of a220-year chronosequence. Plant Soil,2011,338(1-2):183-192.
    [172] Dodla SK, Wang JJ, DeLaune RD. Characterization of labile organic carbon in coastalwetland soils of the Mississippi River deltaic plain: Relationships to carbon functionalities.Science of the Total Environment,2012,435:151-158.
    [173] Cheng L, Leavitt SW, Kimball BA, Pinter PJ, Ottmane MJ, Matthias A, Wall GW,Brooks T, Williams DG, Thompson TL. Dynamics of labile and recalcitrant soil carbonpools in a sorghum free-air CO2enrichment (FACE) agroecosystem. Soil BiologyBiochemistry,2007,39(9):2250-2263.
    [174] Ferreira FP, Vidal-Torrado P, Otero XL, Buurman P, Martin-Neto L, Boluda R, MaciasF. Chemical and spectroscopic characteristics of humic acids in marshes from the IberianPeninsula. Journal of Soils and Sediments,2013,13(2):253-264.
    [175] Franzluebbers AJ. Soil organic matter stratification ratio as an indicator of soil quality.Soil Tillage Research,2002,66(2):95-106.
    [176] Henriksen TM, Breland TA. Evaluation of criteria for describing crop residuedegradability in a model of carbon and nitrogen turnover in soil. Soil Biology Biochemistry,1999,31(8):1135-1149.
    [177] Krull ES, Baldock JA, Skjemstad JO. Importance of mechanisms and processes of thestabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology,2003,30(2):207-222.
    [178] Rovira P, Vallejo VR. Labile, recalcitrant, and inert organic matter in Mediterraneanforest soils. Soil Biology Biochemistry,2007,39(1):202-215.
    [179] Von Lutzow M, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G.Stabilization of organic matter in temperate soils: mechanisms and their relevance underdifferent soil conditions-a review. European Journal of Soil Science,2006,57(4):426-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700