用户名: 密码: 验证码:
以TiO_2和ZnO为基体的复合催化剂的制备、表征及其光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以氮化钛二氧化钛氟化铵为原料,采用球磨法制备异质结型光催化剂TiN/F-TiO_2;以BN和TiO_2二氧化钛为原料,采用球磨法制备异质结型光催化剂BN/TiO_2;以硝酸铜为原料,采用热分解的方法制备CuO,然后再把CuO、TiO_2和NH_4F为原料,采用球磨法制备异质结型光催化剂CuO/F-TiO_2;以硝酸钙和硝酸锌为原料,采用热分解的方法制备CaCO_3/ZnO。采用UV-Vis、XRD、XPS、SEM、TEM、PL、等仪器对光催化剂进行分析与表征。通过氧化亚甲基蓝、罗丹明B和还原Cr~(6+)来研究其在紫外光催化氧化和还原活性。结果表明,TiN/F-TiO_2中TiN的最佳量为0.2 wt%,最佳球磨时间为12小时;球磨法制备的BN/TiO_2中的光催化氧化性高于纯的TiO_2,BN最佳量为0.5%,最佳球磨时间为0.5小时;球磨法制备异质结型光催化剂CuO/F-TiO_2光催化氧化和还原性能优于纯的TiO_2,CuO最佳掺杂量为1.0wt.%;以硝酸锌硝酸钙为原料,采用共沉淀出前驱物后再用热分解的方法制备CaCO_3/ZnO。同时讨论热处理条件对其光催化活性的影响。复合型光催化剂较单一的光催化剂,光催化活性有一定的提高。
TiN/F-TiO_2 was prepared by ball milling and using TiO_2, TiN and NH4F as the raw materials. BN/TiO_2 was prepared by ball milling and using TiO_2 and BN as the raw materials. CuO was synthesized by heat decomposition of Cu(NO_3)_2.3H_2O, then CuO/F-TiO_2 was prepared by ball milling and using CuO, TiN and NH4F as the raw materials. CaCO_3/ZnO photocatalyst was prepared by decomposition of zinc nitrate at different heat treatment temperatures and time. The photocatalysts were characterized by UV–Vis diffuse reflection spectrum, X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fluorescence spectra (FL), and Scanning electron microscopy (SEM), ransmission electron microscopy (TEM). The photocatalytic activity of the photocatalyst was evaluated by photocatalytic reduction of Cr_2O_7~(2-) and photocatalytic oxidation of methylene blue (MB) and rhodamine B (RhB). The results show that the optimum percentage of doped TiN is 0.2 wt% in the TiN/F-TiO_2 and the optimum ball milling time is 12 h. The optimum percentage of doped BN of BN/TiO_2 is 0.5 wt% and the optimum ball milling time is 0.5 h. When the doped amount CuO was 1.0 wt. % and the CuO/ F-TiO_2 show the optimal activity.The photocatalytic activity of the CaCO_3/ZnO was higher than that of ZnO.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.
    [2] Liu H L, Yang T C K. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO_2 activated with ultraviolet light [J]. Process Biochem., 2003, 39: 475-481.
    [3]侯珂珂,崔平.碳纳米管负载纳米金属氧化物的研究进展[J].安徽化工, 2007,(03): 25-26.
    [4]王侃.负载型TiO_2催化剂可见光降解染料污染物的研究[D].浙江大学, 2004: 175-180.
    [5]塔里克,王雪松,陈春城,马万红,赵进才.有毒难降解有机污染物的光催化降解[J].催化学报, 2007,(12): 871-875.
    [6] Guillard C, Debayle D, Gagnaire A, et al. Physical properties and photocatalytic efficiencies of TiO_2 films prepared by PECVD and sol-gel methods [J]. Mater. Res. Bul., 2004, 39: 1445-1458.
    [7] Shu Yin, Yohei Aita, Masakazu Komatsu, Jinshu Wang, Qing Tang , Tsugio Sato. Synthesis of excellent visible-light responsive TiO_2– xNy photocatalyst by a homogeneous precipitation-solvothermal process[J]. Mater. Chem, 2005, 15:674-682.
    [8] Sathish M, Viswanathan B,Viswanath P, Gopinath CS. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO_2 Nanocatalyst[J]. Chem. Mater, 2005, 17: 6349–6353.
    [9] Fitzmaurice D, Frei H, Rabani J. Time-Resolved Optical Study on the Charge Carrier Dynamics in a TiO_2/AgI Sandwich Colloid[J]. J. Phys. Chem, 1995, 99: 9176-9181.
    [10]Bedja I, Kanat P V. Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO_2 Capped SnO2 Nanocrystallites[J]. J Phys Chem, 1995, 99 (22): 9182-9188.
    [11] Okte A N, Resat M S. Quantum yields and relative photonic efficiencies of substituted1, 3-dihydroxybenzenes [J]. J. Photochem. Photobiol. A: Chem., 2000, 134: 59-70.
    [12] Swarnalatha B, Anjaneyulu Y. Studies on the heterogeneous photocatalytic oxidation of 2,6-dinitrophenol in aqueous TiO_2 suspension[J]. J. Mol. Catal. A: Chem., 2004, 223: 161-165.
    [13]盛国栋、李家星、王所伟、王祥科。提高TiO_2可见光催化性能的改性方法。[J].化学进展, 2009,(21): 2492-2504.
    [14] Zhang JZ. Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles[J]. J. Phys. Chem. B, 2000, 104:7239-7253
    [15] Rajeshwar K, Tacconi N R, Chenthamarakshan C R. Semiconductor based composite materials: preparation, properties, and performance [J]. Chem. Mater., 2001, 13(9): 2765-2782.
    [16]虞丽生.半导体异质结物理[M].北京:科学出版社, 2007,257-268
    [17]吴欢文,张宁,钟金莲. p-n复合半导体光催化剂研究进展[J].化工进展, 2007, 26(12):1669-1674.
    [18] Chen Y S, Crittenden J C, Hackney S, et al. Preparation of a Novel TiO_2-Based p-n Junction Nanotube Photo-catalyst[J]. Environ. Sci. Tech., 2005, 39(5): 1201-1208.
    [19] Hwang D W, Cha K Y, Kim J. Photocatalytic degradation of CH3Cl over a nickel-loaded layered perovskite[J]. Ind. Eng. Chem. Res., 2003, 42(6): 1184-1189.
    [20]靳治良,吕功煊.光催化分解水制氢研究进展[J].分子催化, 2004, 18: 310-320.
    [21] Kim H G, Borse P H, Lee J S, et al. Photocatalytic nanodiodes for visible-light photocatalysis[J]. Angew. Chem. Int. Ed, 2005, 44(29): 4585-4589.
    [22] Long M, Cai W, Cai J, et al. Efficient photocatalytic degradation of phenol over Co_3O_4/BiVO_4 composite under visible light irradiation [J]. J. Phys. Chem. B, 2006, 110(41): 20211-20216.
    [23] Kim H G, Borse P H, Choi WY, Lee J S. Photocatalytic Nanodiodes for Visible-Light Photocatalysis[J]. Angew. Chem. Int. Ed, 2005, 44: 4585-4589.
    [24] Devi L G, Krishnamurthy G. TiO_2/BaTiO_3-assisted photocatalytic mineralization of diclofop-methyl on UV-light irradiation in the presence of oxidizing agents [J].J. Hazard. Mater, 2009, 162(2-3): 899-905.
    [25] Saadi S, Bouguelia A, Trari M. Photocatalytic hydrogen evolution over CuCrO2[J]. Solar Energy, 2006, 80(3): 272-280.
    [26] Kudo A, Yanagi H, Hosono H, et al. Appl. Phys. Lett,1998, 73(2): 220-222.
    [27] Arai T, Yanagida M, Konishi Y. Efficient Complete Oxidation of Acetaldehyde into CO_2 over CuBi_2O_4/WO_3 Composite Photocatalyst under Visible and UV Light Irradiation [J]. J Phys Chem.C, 2007, 111: 7574-7577.
    [28] Kim H G, Borse P H, Wonyong Choi , Lee J S. Photocatalytic Nanodiodes for Visible-Light Photocatalysis[J]. Angew. Chem. Int. Ed, 2005, 44 (29): 4585-4589.
    [29] Jang JS, Choi SH, Shin N, Yu CJ, Lee JS. AgGaS2-type photocatalysts for hydrogen production under visible light: Effects of post-synthetic H2S treatment [J].Solid State Chem, 2007, 180(3): 1110-1118.
    [30]余小玲复合光催化剂的制备、表征及其光催化活性研究淮北师范大学2010届毕业论文
    [31] Asahi R, Morikawa T, Ohwaki T, et al. Visible light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293: 269-271.
    [32] H. Park, W.Choi, Effects of TiO_2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors, J. Phys. Chem. B 108 (2004) 4086-4093.
    [33] W.Y Choi, Pure and modified TiO_2 photocatalysts and their environmental applications, Catal. Surv. Asia. 10 (2006) 16-28.
    [34] J.G. Yu, W.G. Wang, B. Cheng, B.L. Su, Enhancement of photocatalytic activity of mesporous TiO_2 powders by hydrothermal surface fluorination treatment, J. Phys. Chem. C 113 (2009) 6743–6750.
    [35]赵秀峰,张志红,孟宪锋等. B掺杂TiO_2/AC光催化剂的制备及活性[J].分子催化, 2003, 17(4): 292-296.
    [36]吴树新,马智,秦永宁。掺杂TiO_2光催化剂性能的研究。物理化学学报,2004,(2):138-143
    [37] Choi W,Termin A,Hoffmann M R.The role of metalion dapants in quantum-sized TiO_2:correlation between photoreactivity and charge carried recombination dynamics.J Phys Chem,1994(5): 13669-13679
    [38] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalsis,2003,(2364): 505-516
    [39] Sung-Suh H M, Choi J R, Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO_2 under visible and UV light irradiation. Journal of Photochemistry and Photobiology A: 2004(163):37-44
    [40] Xiao Q, Zhang J, Xia C, Tan XK. Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation[J]. Catalysis Communications, 2008, 9: 1247–1253.
    [41] Long M, Cai WM, Cai J, Zhou BX, Chai XY, Wu YH. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J]. J. Phys. Chem. B, 2006, 110: 20211-20216.
    [42] Zhao W, Ma WH, Chen CC, Zhao JC, Shuai ZG. Efficient degradation of toxic organic pollutants with Ni2O3/TiO_2-xBx under visible irradiation[J]. J. Am.Chem. Soc, 2004, 126: 4782-4783.
    [43] Chen SF, Zhao W, Liu W, Zhang SJ. Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO_2[J]. Appl. Surf. Sci, 2008, 255: 2478-2484.
    [44] Wang ZY, Huang BB, Dai Y, Qin XY, Zhang XY, Wang P, Liu HX, Yu JX. Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method[J]. J. Phys. Chem. C, 2009, 113: 4612–4617.
    [45] Huang HJ, D Li Z, Lin Q, Zhang WJ, Shao Y, Chen YB, Sun M, Fu XZ. Efficient Degradation of Benzene over LaVO4/TiO_2 nanocrystalline heterojunction photocatalyst under visible light irradiation[J]. Environ. Sci. Technol, 2009, 43: 4164–4168
    [1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
    [2] C. Zhang, Y.F. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, Chem. Mater. 17 (2005) 3537-3545.
    [3] Q. Wang, C. Chen, D. Zhao, W. Ma, J. Zhao, Change of adsorption modes of dyes on fluorinated TiO_2 and its effect on photocatalytic degradation of dyes under visible irradiation, Langmuir 24 (2008) 7338-7345.
    [4] X. Wang, W. Lian, X. Fu, J. M. Basset, F. Lefebvre, Structure, preparation and photocatalytic activity of titanium oxides on MCM-41 surface, J. Catal. 238 (2006) 13-20.
    [5] J.G. Yu, L.J. Zhang, B. Cheng, Y.R. Su, Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-mesoporous titania, J. Phys. Chem. C 111 (2007) 10582–10589.
    [6] C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang. Ag/AgBr/TiO_2 visible light photocatalyst for destruction of azodyes and bacteria. J. Phys. Chem. B 110 (2006) 4066-407.
    [7] J.G. Yu, W. Liu, H.G. Yu, A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity. Cryst. Growth. Des 8 (2008) 930-934.
    [8] Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K. Wei, J.F. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property, J. Phys. Chem. C 112 (2008) 10773–10777.
    [9] H. Tang, J.C. Chang, Y.Y. Shan, S.T. Lee, Surfactant-assisted alignment of ZnO nanocrystals to superstructures, J. Phys. Chem. B 112 (2008) 4016–4021.
    [10] Z.H. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang, J.H. Li, Enhanced photocatalytic properties of mesoporous SnO2 induced by low concentration ZnO doping,Cryst. Growth. Des. 7 (2007) 1722–1725.
    [11] R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Mater. Res. Bull. 43 (2008) 2457–2468.
    [12] C.K.S.J. Doh, S.G. Lee, S.J. Lee, H.Y. Kim, Visible-light absorptivity of a zincoxysulfide (ZnOxS1?x) composite semiconductor and its photocatalytic activities for degradation of organic pollutants under visible-light irradiation, Appl. Catal. A 330 (2007) 127-133.
    [13] X. Wang, P. Hu, Y.F. Li, and L.J. Yu,Preparation and characterization of ZnO hollow spheres and ZnO?Carbon composite materials using colloidal carbon spheres as templates,J. Phys. Chem. C 111 (2007) 6706–6712.
    [14] S. Moribe, T. Ikoma, K. Akiyama, Q.W. Zhang, F. Saito, and S.T. Kubota , EPR study on paramagnetic species in nitrogen-doped ZnO powders prepared by a mechanochemical method, Chem. Phys. Lett. 436 (2007) 4-6.
    [15] J. Lin, J. Lin, and Y.F. Zhu, Controlled synthesis of the ZnWO_4 nanostructure and effects on the photocatalytic performance, Inorg. Chem. 46 (2007) 8372–8378.
    [16] B. Doggett, S. Chakrabarti, R. O’Haire, A. Meaney, E. McGlynn, M.O. Henry, and J.P. Mosnier, Electrical characterisation of phosphorus-doped ZnO thin films grown by pulsed laser deposition, Superlattices. Microstruct. 42 (2007) 74-78.
    [17] J.H Liu, R. Yang, S.M. Li, Preparation and characterization of the TiO_2-V_2O_5 photocatalyst with visible-light activity, Rare Metals. 25, (2006) 636-642.
    [18] Lin-Rui Hou, Chang-Zhou Yuan, Yang Peng, Synthesis and photocatalytic property of SnO2/TiO_2 nanotubes composites, J. Hazard. Mater. B 139 (2007) 310–315.
    [19] W.Liu, S.F. Chen, S.J. Zhang, W. Zhao, H.Y. Zhang, X.L. Yu, Preparation and characterization of p–n heterojunction photocatalyst p-CuBi2O4/n-TiO_2 with high photocatalytic activity under visible and UV light irradiation,J. Nanopart. Res. 12 (2010) 1355–1366.
    [20] S.F. Chen, W. Zhao, W. Liu, and S.J. Zhang, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO_2, Appl. Surf. Sci. 255 (2008) 2478–2484.
    [21] H. Park, W.Choi, Effects of TiO_2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors, J. Phys. Chem. B 108 (2004) 4086-4093.
    [22] W.Y Choi, Pure and modified TiO_2 photocatalysts and their environmentalapplications, Catal. Surv. Asia. 10 (2006) 16-28.
    [23] J.G. Yu, W.G. Wang, B. Cheng, B.L. Su, Enhancement of photocatalytic activity of mesporous TiO_2 powders by hydrothermal surface fluorination treatment, J. Phys. Chem. C 113 (2009) 6743–6750.
    [24] S.X. Liu, Z.P. Qu, X.W. Han, C.L. Sun, A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide, Catal.Today. 93 (2004) 877-884.
    [25] S.F. Chen, L. Chen, S. Gao, G.Y. Cao, The preparation of nitrogen-doped photocatalyst TiO_2-xNx by ball milling. Chem. Phys. Lett. 413 (2005) 404-409.
    [26] S.F. Chen, S.J. Zhang, W. Liu, W. Zhao, Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO_2. J. Hazard. Mater. 155 (2008) 320-326.
    [27] T.J. Cai, M. Yue, X.W. Wang, Q. Deng, Preparation, characterization, and photocatalytic performance of NdPW_(12)O_(40)/TiO_2 compositecatalyst, Chin. J. Catal. 28 (2007) 10–16.
    [28] J.W. Tang, Z.G. Zou, and J.H. Ye, Photophysical and photocatalytic properties of AgInW2O8, J. Phys. Chem. B 107 (2003) 14265–14269.
    [29] K. Seungmo, S. Kyoungchul, P. Kandasamy, Chongmu L, Optical and electrical properties of ZnO doped with nitrogen, Phys. Stat. Sol(b). 12 (2004) 2830-283.
    [30] S.F. Chen, W. Zhao, W. Liu, S.J. Zhang, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO_2, Appl. Surf. Sci. 255 (2008) 2478–2484.
    [31] Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO_2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111 (2007) 6976-6982.
    [32] J.G. Yu; M.H. Zhou, B. Cheng, X.J. Zhao, Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO_2 powders, J. Mol. Catal. A 246(2006) 176–184.
    [33] A. Vijayabalan, K. Selvam, R. Velmurugan, M. Swaminathan, Photocatalytic activity of surface fluorinated TiO_2-P25 in the degradation of Reactive Orange 4, J. Hazard. Mater. 172 (2009) 914–921.
    [34]Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO_2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111 (2007) 6976-6982.
    [35] T.J. Cai, M. Yue, X.W. Wang, and Q. Deng, Preparation, Characterization, and photocatalytic performance of NdPW12O40/TiO_2 compositecatalyst, Chin. J. Catal. 28 (2007), pp. 10–16.
    [36] J.W. Tang, Z.G. Zou, and J.H. Ye, Photophysical and photocatalytic properties of AgInW_2O_8, J. Phys. Chem. B 107 (2003), pp. 14265–14269.
    [37] K.S. Guan, B.J. Lu, and Y.S. Yin,Enhanced effect and mechanism of SiO_2 addition in super-hydrophilic property of TiO_2 films,Surf. Coat. Technol. 173 (2003), pp. 219–223.
    [1] X. Wang, W. Lian, X. Fu, J. M. Basset, F. Lefebvre, Structure, preparation and photocatalytic activity of titanium oxides on MCM-41 surface, J. Catal. 238 (2006) 13-20.
    [2] J.G. Yu, L.J. Zhang, B. Cheng, Y.R. Su, Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-mesoporous titania, J. Phys. Chem. C 111 (2007) 10582–10589.
    [3] Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K. Wei, J.F. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property, J. Phys. Chem. C 112 (2008) 10773–10777.
    [4] H. Tang, J.C. Chang, Y.Y. Shan, S.T. Lee, Surfactant-assisted alignment of ZnO nanocrystals to superstructures, J. Phys. Chem. B 112 (2008) 4016–4021.
    [5] Z.H. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang, J.H. Li, Enhanced photocatalytic properties of mesoporous SnO2 induced by low concentration ZnO doping,Cryst. Growth. Des. 7 (2007) 1722–1725.
    [6] R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Mater. Res. Bull. 43 (2008) 2457–2468.
    [7] Tong T, et al. J. Hazard. Mater., 2008, 155: 572-579
    [8] Bryan J D; Heald S M, Chambers S A, et al. J. Am. Chem. Soc. 2004, 126: 11640-11647
    [9] Sathish M, Viswanathan B, Viswanath R P, et al. Chem. Mater., 2005, 17: 6349–6353
    [10] Fitzmaurice D, Frei H.; Rabani J. J. Phys. Chem., 1995, 99: 9176
    [11] Bedja I, Kanat P V. J Phys Chem., 1995, 99 (22): 918229188
    [12] C.K.S.J. Doh, S.G. Lee, S.J. Lee, H.Y. Kim, Visible-light absorptivity of a zincoxysulfide (ZnOxS1?x) composite semiconductor and its photocatalytic activities for degradation of organic pollutants under visible-light irradiation, Appl. Catal. A 330 (2007) 127-133.
    [13] X. Wang, P. Hu, Y.F. Li, and L.J. Yu,Preparation and characterization of ZnO hollow spheres and ZnO?Carbon composite materials using colloidal carbon spheres as templates,J. Phys. Chem. C 111 (2007) 6706–6712.
    [14] S. Moribe, T. Ikoma, K. Akiyama, Q.W. Zhang, F. Saito, and S.T. Kubota , EPR study on paramagnetic species in nitrogen-doped ZnO powders prepared by amechanochemical method, Chem. Phys. Lett. 436 (2007) 4-6.
    [15] J. Lin, J. Lin, and Y.F. Zhu, Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem. 46 (2007) 8372–8378.
    [16] B. Doggett, S. Chakrabarti, R. O’Haire, A. Meaney, E. McGlynn, M.O. Henry, and J.P. Mosnier, Electrical characterisation of phosphorus-doped ZnO thin films grown by pulsed laser deposition, Superlattices. Microstruct. 42 (2007) 74-78.
    [17] J.H Liu, R. Yang, S.M. Li, Preparation and characterization of the TiO_2-V_2O_5 photocatalyst with visible-light activity, Rare Metals. 25, (2006) 636-642.
    [18] Lin-Rui Hou, Chang-Zhou Yuan, Yang Peng, Synthesis and photocatalytic property of SnO2/TiO_2 nanotubes composites, J. Hazard. Mater. B 139 (2007) 310–315.
    [19] W.Liu, S.F. Chen, S.J. Zhang, W. Zhao, H.Y. Zhang, X.L. Yu, Preparation and characterization of p–n heterojunction photocatalyst p-CuBi2O4/n-TiO_2 with high photocatalytic activity under visible and UV light irradiation,J. Nanopart. Res. 12 (2010) 1355–1366.
    [20] S.F. Chen, W. Zhao, W. Liu, and S.J. Zhang, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO_2, Appl. Surf. Sci. 255 (2008) 2478–2484.
    [21] Guodong Jiang , Zhifen Lin , Chao Chen , Lihua Zhu , Qing Chang , Nan Wang , Wei Wei. Heqing Tang, TiO_2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon 2 0 1 1 (4 9) 2 6 9 3–2 7 0 1
    [22] Bin Gao , George Z. Chen , Gianluca Li Puma。Carbon nanotubes/titanium dioxide (CNTs/TiO_2) nanocomposites prepared by conventional and novel surfactant rapping sol–gel methods exhibiting enhanced photocatalytic activity, Applied Catalysis B: Environmental
    [23]张琼,贺蕴秋,陈小刚,胡栋虎,李林江,季伶俐,尹婷。氧化钛/氧化石墨烯复合结构及其光催化性能。[J]科学通讯2010 (7):620~628
    [24] K. Seungmo, S. Kyoungchul, P. Kandasamy, Chongmu L, Optical and electricalproperties of ZnO doped with nitrogen, Phys. Stat. Sol(b). 12 (2004) 2830-283.
    [25] S.F. Chen, W. Zhao, W. Liu, S.J. Zhang, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO_2, Appl. Surf. Sci. 255 (2008) 2478–2484.
    [26] Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO_2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111 (2007) 6976-6982.
    [27] T.J. Cai, M. Yue, X.W. Wang, and Q. Deng, Preparation, Characterization, and photocatalytic performance of NdPW12O40/TiO_2 compositecatalyst, Chin. J. Catal. 28 (2007), pp. 10–16.
    [28] J.W. Tang, Z.G. Zou, and J.H. Ye, Photophysical and photocatalytic properties of AgInW2O8, J. Phys. Chem. B 107 (2003), pp. 14265–14269.
    [29] K.S. Guan, B.J. Lu, and Y.S. Yin,Enhanced effect and mechanism of SiO_2 addition in super-hydrophilic property of TiO_2 films,Surf. Coat. Technol. 173 (2003), pp. 219–223.
    [1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.
    [2] Ting Jian, Yan , Jin Lin, Ling , Xi Cheng, Shi, Dong Hui, Wang , Zhao Hui Li , and XuXu Wang,Efficient Photocatalytic Degradation of Volatile Organic Compounds by Porous Indium Hydroxide Nanocrystals,Environ. Sci. Technol. 2010, 44, 1380–1385
    [3] Wenxin Dai, Xuxu Wang, Ping Liu, Yiming Xu, Guangshe Li, and Xianzhi Fu, Effects of Electron Transfer between TiO_2 Films and Conducting Substrates on the Photocatalytic Oxidation of Organic Pollutants, J. Phys. Chem. B 2006, 110, 13470-13476
    [4] Jianchun Wang, Ping Liu, Xianzhi Fu, Zhaohui Li, Wei Han, and Xuxu Wang, Multivalency Relationship between Oxygen Defects and the Photocatalytic Property of ZnO Nanocrystals in Nafion Membranes,Langmuir 2009, 25, 1218-1223
    [5] Shengwei Liu, Jiaguo Yu, and Mietek Jaroniec, Tunable Photocatalytic Selectivity of Hollow TiO_2 Microspheres Composed of Anatase Polyhedra with Exposed {001} Facets, J. AM. CHEM. SOC. 2010, 132, 11914–11916
    [6] Jiaguo Yu, Gaopeng Dai, and Bei Cheng, Effect of Crystallization Methods on Morphology and Photocatalytic Activity of Anodized TiO_2 Nanotube Array Films, J. Phys. Chem. C 2010, 114, 19378–19385
    [7] Dan Zhao, Chuncheng Chen, Cailan Yu, Wanhong Ma, and Jincai Zhao, Photoinduced Electron Storage in WO3/TiO_2 Nanohybrid Material in the Presence of Oxygen and Postirradiated Reduction of Heavy Metal Ions, J. Phys. Chem. C 2009, 113, 13160–13165
    [8] Yifeng Wang, Dan Zhao, Hongwei Ji, Guilin Liu, Chuncheng Chen, Wanhong Ma,Huaiyong Zhu, and Jincai Zhao, Sonochemical Hydrogen Production Efficiently Catalyzed by Au/TiO_2, J. Phys. Chem. C 2010, 114, 17728–17733
    [9] Rui Shi, Jie Lin, Yajun Wang, Jing Xu, and Yongfa Zhu, Visible-Light Photocatalytic Degradation of BiTaO4 Photocatalyst and Mechanism of Photocorrosion Suppression, J. Phys. Chem. C 2010, 114, 6472–6477
    [10] C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang. Ag/AgBr/TiO_2 visible light photocatalyst for destruction of azodyes and bacteria. J. Phys. Chem. B 110 (2006) 4066-407.
    [11] J.G. Yu, W. Liu, H.G. Yu, A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity. Cryst. Growth. Des 8 (2008) 930-934.
    [12] Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K. Wei, J.F. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property, J. Phys. Chem. C 112 (2008) 10773–10777.
    [13] H. Tang, J.C. Chang, Y.Y. Shan, S.T. Lee, Surfactant-assisted alignment of ZnO nanocrystals to superstructures, J. Phys. Chem. B 112 (2008) 4016–4021.
    [14] Z.H. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang, J.H. Li, Enhanced photocatalytic properties of mesoporous SnO2 induced by low concentration ZnO doping,Cryst. Growth. Des. 7 (2007) 1722–1725.
    [15] R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Mater. Res. Bull. 43 (2008) 2457–2468.
    [16] C.K.S.J. Doh, S.G. Lee, S.J. Lee, H.Y. Kim, Visible-light absorptivity of a zincoxysulfide (ZnO_xS_(1-x)) composite semiconductor and its photocatalytic activities for degradation of organic pollutants under visible-light irradiation, Appl. Catal. A 330 (2007) 127-133.
    [17] X. Wang, P. Hu, Y.F. Li, and L.J. Yu,Preparation and characterization of ZnO hollow s pheres and ZnO?Carbon composite materials using colloidal carbon spheres as templates,J. Phys. Chem. C 111 (2007) 6706–6712.
    [18] S. Moribe, T. Ikoma, K. Akiyama, Q.W. Zhang, F. Saito, and S.T. Kubota , EPR study on paramagnetic species in nitrogen-doped ZnO powders prepared by amechanochemical method, Chem. Phys. Lett. 436 (2007) 4-6.
    [19] J. Lin, J. Lin, and Y.F. Zhu, Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem. 46 (2007) 8372–8378.
    [20] B. Doggett, S. Chakrabarti, R. O’Haire, A. Meaney, E. McGlynn, M.O. Henry, and J.P. Mosnier, Electrical characterisation of phosphorus-doped ZnO thin films grown by pulsed laser deposition, Superlattices. Microstruct. 42 (2007) 74-78.
    [21] J.H Liu, R. Yang, S.M. Li, Preparation and characterization of the TiO_2-V_2O_5 photocatalyst with visible-light activity, Rare Metals. 25, (2006) 636-642.
    [22] Lin-Rui Hou, Chang-Zhou Yuan, Yang Peng, Synthesis and photocatalytic property of SnO_2/TiO_2 nanotubes composites, J. Hazard. Mater. B 139 (2007) 310–315.
    [23] W. Liu, S.F. Chen, S.J. Zhang, W. Zhao, H.Y. Zhang, X.L. Yu, Preparation and characterization of p–n heterojunction photocatalyst p-CuBi2O4/n-TiO_2 with high photocatalytic activity under visible and UV light irradiation,J. Nanopart. Res. 12 (2010) 1355–1366.
    [24] S.F. Chen, W. Zhao, W. Liu, and S.J. Zhang, Preparation, characterization and activity evaluation of p–n p-ZnO/n-TiO_2, Appl. Surf. Sci. 255 (2008) 2478–2484.
    [25] H. Park, W.Choi, Effects of TiO_2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors, J. Phys. Chem. B 108 (2004) 4086-4093.
    [26] W.Y Choi, Pure and modified TiO_2 photocatalysts and their environmental applications, Catal. Surv. Asia. 10 (2006) 16-28.
    [27] J.G. Yu, W.G. Wang, B. Cheng, B.L. Su, Enhancement of photocatalytic activity of mesporous TiO_2 powders by hydrothermal surface fluorination treatment, J. Phys. Chem.C 113 (2009) 6743–6750.
    [28]. S.F. Chen, S.J. Zhang, W. Liu, W. Zhao, Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO_2. J. Hazard. Mater. 155 (2008) 320-326.
    [29] Huogen Yu, Jiaguo Yu, Shengwei Liu, and Stephen Mann, Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres, Chem. Mater. 2007, 19, 4327-4334
    [30] S.F. Chen, L. Chen, S. Gao, G.Y. Cao, The preparation of nitrogen-doped photocatalyst TiO_2-xNx by ball milling. Chem. Phys. Lett. 413 (2005) 404-409.
    [31] T.J. Cai, M. Yue, X.W. Wang, Q. Deng, Preparation, characterization, and photocatalytic performance of NdPW12O40/TiO_2 compositecatalyst, Chin. J. Catal. 28 (2007) 10–16.
    [32] J.W. Tang, Z.G. Zou, and J.H. Ye, Photophysical and photocatalytic properties of AgInW2O8, J. Phys. Chem. B 107 (2003) 14265–14269.
    [33] K. Seungmo, S. Kyoungchul, P. Kandasamy, Chongmu L, Optical and electrical properties of ZnO doped with nitrogen, Phys. Stat. Sol (b). 12 (2004) 2830-283.
    [34] Chen SF, Yu XL, Zhang HY, Liu W. Preparation and photocatalytic activity evaluation of composite Fe-TiO_2/TiO_2[J]. Journal of Electrochemical Society, 2010, 157: K96-K102
    [35] A. Lohner, M. Woerner, T. Elsaesser, and W. Kaiser, Picosecond capture of photoexcited holes by shallow acceptors in p-type GaAs, Phys. Rev. Lett. 68, 3920–3923 (1992)
    [36] S.F. Chen, L. Chen, The preparation of coupled WO3/TiO_2 photocatalyst by ball milling, Powder Technol. 160 (2005) 198–202.
    [37]J. Wang, S. Yin, M. Komatsu, Preparation and characterization of nitrogen-doped SrTiO_3 photocatalyst, J. Photochem. Photobiol. A: Chem. 165 (2004) 149–156.
    [1] X.Q. Qiu, L.P. Li, J. Zheng, J.J. Liu, X.F. Sun, and G.S. Li, Origin of the enhanced photocatalytic activities of semiconductors: A case study of ZnO doped with Mg2+, J. Phys. Chem. C 112 (2008), pp.12242–12248.
    [2] T. Pauporte and J. Rathousky, Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants, J. Phys. Chem. C 111 (2007), pp. 7639-7644.
    [3] J.G. Yu and X.X. Yu, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres, Environ. Sci. Technol. 42 (2008), pp. 4902–4907.
    [4] C.C. Chen, H.J. Fan, and J.L. Jan, Degradation pathways and efficiencies of acid blue 1 by photocatalytic reaction with ZnO nanopowder, J. Phys. Chem. C 112 (2008), pp. 11962–11972.
    [5] G. Marcì, V. Augugliaro, M.J. López-Mu?oz, C. Martín, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, and A.M. Venezia, Preparation characterization and photocatalytic cctivity of polycrystalline ZnO/TiO_2 systems. 1. surface and bulk characterization, J. Phys. Chem. B 105 (2001), pp. 1026–1032.
    [6] Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K. Wei, and J.F. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property, J. Phys. Chem. C 112 (2008), pp. 10773–10777.
    [7] H. Tang, J.C. Chang, Y.Y. Shan, and S.T. Lee, Surfactant-assisted alignment of ZnO nanocrystals to superstructures, J. Phys. Chem. B 112 (2008), pp. 4016–4021.
    [8] Z.H. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang, and J.H. Li, Enhanced photocatalytic properties of mesoporous SnO2 induced by low concentration ZnO doping,Cryst. Growth Des. 7 (2007), pp. 1722–1725.
    [9] R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, and D.G. Wei, Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Mater. Res. Bull. 43 (2008), pp.2457–2468.
    [10] C.K.S.J. Doh, S.G. Lee, S.J. Lee, and H.Y. Kim, Visible-light absorptivity of a zincoxysulfide (ZnO_xS_(1-x)) composite semiconductor and its photocatalytic activities for degradation of organic pollutants under visible-light irradiation, Applied Catalysis A. 330 (2007), pp. 127-133.
    [11] X. Wang, P. Hu, Y.F. Li, and L.J. Yu,Preparation and characterization of ZnO hollow spheres and ZnO-Carbon composite materials using colloidal carbon spheres as templates,J. Phys. Chem. C 111 (2007), pp. 6706–6712.
    [12] S. Moribe, T. Ikoma, K. Akiyama, Q.W. Zhang, F. Saito, and S.T. Kubota , EPR study on paramagnetic species in nitrogen-doped ZnO powders prepared by a mechanochemical method, Chem. Phys. Lett. 436 (2007), pp. 4-6.
    [13] J. Lin, J. Lin, and Y.F. Zhu, Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem. 46 (2007), pp. 8372–8378.
    [14] B. Doggett, S. Chakrabarti, R. O’Haire, A. Meaney, E. McGlynn, M.O. Henry, and J.P. Mosnier, Electrical characterisation of phosphorus-doped ZnO thin films grown by pulsed laser deposition, Superlattices Microstruct. 42 (2007), pp. 74-78.
    [15] Z.Y. Wang, B.B. Huang, Y. Dai, X.Y. Qin, X.Y. Zhang, P. Wang, H.X Liu, and J.X. Yu, Highly. photocatalytic ZnO/In_2O_3 heteronanostructures synthesized by a coprecipitation method, J. Phys. Chem. C 113 (2009), pp. 4612–4617.
    [16] S.F. Chen and L. Chen, The preparation of coupled SnO_2/TiO_2 photocatalyst by ball milling, Mater. Chem. Phys. 98 (2006), pp. 116–120.
    [17] S.F. Chen, S.J. Zhang, W. Liu, and W. Zhao, Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO_2, J. Hazard. Mater. 155 (2008), pp. 320–326.
    [18] S.F. Chen, W. Zhao, W. Liu, and S.J. Zhang, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO_2, Appl. Surf. Sci. 255 (2008), pp. 2478–2484.
    [19] X.Q. Qiu, L.P. Li, X.Z. Fu, and G.S. Li, Size-induced variations in lattice dimension, photoluminescence, and photocatalytic activity of ZnO nanorods, J Nanosci Nanotechnol. 8 (2008), p. 1301.
    [20] Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, and J. Zhu, Photocatalytic cctivity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property, J Phys Chem. 112 (2008), p. 10773.
    [21] H. Tang, J.C. Chang, Y. Shan, and S.T. Lee, Surfactant-assisted alignment of ZnO nanocrystals to superstructures. J. Phys. Chem. B 112 (2008), p.4016.
    [22] Z. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang, and J. Li, Enhanced photocatalytic properties of mesoporous SnO_2 induced by low concentration ZnO doping, Cryst. Growth Des. 7 (2007), p. 1722.
    [23] R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, and D.G. Wei, Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Mater. Res. Bull. 43 (2008), pp. 2457–2468.
    [24] C. Wang, J.C. Zhao, X.M. Wang, B.X. Mai, G.Y. Sheng, and J.M. Fu, Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO_2 coupled photocatalysts, Appl. Catal. B: Environ. 39 (2002), pp. 269–279.
    [25] E.Y. Kim, C.M. Whang, W.I. Lee, and Y.H. Kim, Photocatalytic property of SiO_2/TiO_2 nanoparticles prepared by sol-hydrothermal process, J. Electroceram. 17 (2006), pp. 899–902.
    [26] G.G. Chen, G.S. Luo, X.R. Yang, Y.W. Sun, and J.D. Wang, Preparation and photocatalysis performance of BaSO4/TiO_2 composite particles, Chin. J. Process. Eng. 5 (2005), pp. 66–69.
    [27] S.M. Lei, G.L. Guo, B.H. Xiong, W.Q. Gong, and G.J. Mei,Disruption of bacterial cells by photocatalysis of montmorillonite supported titanium dioxide, Journal of Wuhan University of Technolotgy-Mater. Sci. Ed. 24 (2009), pp. 557–561.
    [28] C.D. Valentin, G. Pacchioni, and A. Selloni,Theory of carbon doping of titanium dioxide,Chem. Mater. 17 (2005), pp. 6656-6665.
    [29] J.G. Yu, G.P. Dai, and B.B. Huang, Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO_2 nanotube arrays, J. Phys. Chem. C 113 (2009), pp.16394–16401.
    [30] Pillai, C. Suresh, Kelly, M. John, M. Cormack, E. Declan, Ramesh, and Raghavendra, Self-assembled arrays of ZnO nanoparticles and their application as varistor materials, J. Mater. Chem. 14 (2004), pp. 1572-1578.
    [31]. M.K. Seery, R. George, P. Floris, and S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol.Chem. 189 (2007), pp. 258–263.
    [32] J.G. Yu, W.G. Wang, B. Cheng, and B.L. Su, Enhancement of photocatalytic activity of mesporous TiO_2 powders by hydrothermal surface fluorination treatment, J. Phys. Chem. C 113 (2009), pp. 6743–6750.
    [33] J.G. Yu, G.P. Dai, and B.B. Huang, Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO_2 nanotube arrays, J. Phys Chem. C 113 (2009), pp. 16394–16401.
    [34] S.F. Chen, W. Zhao, W. Liu, and S.J. Zhang, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-NiO/n-ZnO J Sol-Gel Sci Technol. 50 (2009), pp. 387–396.
    [35] T.J. Cai, M. Yue, X.W. Wang, and Q. Deng, Preparation, Characterization, and photocatalytic performance of NdPW12O40/TiO_2 compositecatalyst, Chin. J. Catal. 28 (2007), pp. 10–16.
    [36] J.W. Tang, Z.G. Zou, and J.H. Ye, Photophysical and photocatalytic properties ofAgInW_2O_8, J. Phys. Chem. B 107 (2003), pp. 14265–14269.
    [37] K.S. Guan, B.J. Lu, and Y.S. Yin,Enhanced effect and mechanism of SiO_2 addition in super-hydrophilic property of TiO_2 films,Surf. Coat. Technol. 173 (2003), pp. 219–223.
    [38] W. Liu, S.F. Chen, S.J. Zhang, W. Zhao, H.Y. Zhang, and X.L. Yu, Preparation and characterization of p–n heterojunction photocatalyst p-CuBi_2O_4/n-TiO_2 with high photocatalytic activity under visible and UV light irradiation, J. Nanopart. Res. (Online) DOI 10.1007/s11051-009-9672-4
    [39] S.F. Chen, W. Liu, S.J. Zhang, W. Zhao, H.Y. Zhang, and X.L. Yu, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe_2O_4/n-ZnO, Chem. Eng. J. 155 (2009), pp.466–473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700