用户名: 密码: 验证码:
Cr-Ce/TiO_2催化处理NO性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了有效脱除烟气中的NOx,本论文研究了Cr-Ce/TiO_2催化剂对NO的催化氧化和催化还原性能,主要开展了以下方面的工作:
     (1)考察了Cr/Ce摩尔比、活性组分负载量、载体种类、焙烧温度对Cr-Ce/TiO_2催化氧化NO性能的影响。用BET、XRD技术对不同温度焙烧的催化剂进行表征,研究催化剂的微观结构和物相。结果表明,Cr/Ce摩尔比为2/1、Cr_2O_3和CeO_2的总负载量为载体重量的30%、350℃焙烧6 h制备的Cr-Ce/TiO_2催化剂上活性组分以不定态存在,具有最佳的催化氧化活性。空速10,000 h-1、330℃下NO转化率为80.7%。
     (2)研究了操作条件对催化剂催化氧化NO性能的影响,NO转化率随O2含量的增加而增大;随着NO进口体积分数的升高和空速的增大而下降。
     (3)对NO催化氧化反应的动力学进行了分析,得到速率方程: r_(NO)=kY_(NO)~aY_(O_2)~b=332.62exp(-19968.93/RT)[NO]~(0.93)[O_2]~(0.21)
     (4)通过阶跃应答实验和FTIR分析技术考察了H2O和SO_2对Cr-Ce/TiO_2催化氧化NO性能的影响和催化剂的中毒机理。H2O对催化剂的毒化作用是可逆的。在H2O和SO_2同时存在的情况下进行NO氧化反应时,催化剂表面形成少量硫酸盐和亚硫酸盐,使活性降低,且不可逆。对中毒后的催化剂进行热处理后,活性虽未能达到原有水平,但在很大程度上得到恢复。
     (5)考察了Cr/Ce摩尔比、活性组分负载量、焙烧温度对Cr-Ce/TiO_2低温SCR活性的影响。结果表明具有最佳催化氧化活性的催化剂同时具有最佳的催化还原活性,空速10,000 h-1、180℃下NO转化率为99.6%。并考察了操作工况对催化剂SCR活性的影响,NO转化率随NH3/NO、O2含量的增加而升高,并逐渐趋于平缓;随着进口NO浓度、空速的升高而降低。SCR反应过程主要遵循Eley-Rideal机理。
     (6)通过阶跃应答实验和FTIR分析技术考察了H_2O和SO_2对Cr-Ce/TiO_2催化还原NO性能的影响和催化剂的中毒机理。10%(φ)的H_2O对该催化剂的活性影响很小,NO转化率保持在97.7%以上;反应气中存在SO_2的情况下,催化剂被毒化,表面生成(NH_4)_2SO_4、NH_4HSO_4、金属硫酸盐和亚硫酸盐,致使活性降低。该催化剂有望应用于基本不含SO_2的燃气锅炉烟气和不含SO_2的硝酸尾气等NOx工业废气的低温脱硝。
In order to remove the nitrogen oxides from flue gas, Cr-Ce/TiO_2 catalysts were studied for the oxidation and reduction of NO in this paper. The following tasks were carried out:
     (1) The effects of molar ratio, loading of active component and calcination temperature along with the nature of supports on the performance of the catalytic oxidation of NO were examined. The microstructure of the catalysts calcined at different temperature was characterized by XRD and BET. The Cr-Ce/TiO_2 which was calcined at 350 oC with total loading 30% and molar ratio Cr/Ce=2/1 showed perfect dispersity and stability. The high NO conversion of 80.7% was observed over it at 330 oC and space velocity 10,000 h-1.
     (2) The effects of operating condition on the catalytic oxidation of NO were also investigated. It was found that NO conversion increased with the enhancement of O_2 concentration and decreased with the rise of NO concentration and GHSV.
     (3) The reaction kinetic equation was expressed as: r_(NO)=kY_(NO)~aY_(O_2)~b=332.62exp(-19968.93/RT)[NO]~(0.93)[O_2]~(0.21)
     (4) The effects of H_2O and SO_2 on the catalytic oxidation of NO were studied by step transient response experiments and FTIR. H_2O poisoning is reversible. After NO oxidation reaction in the presence of H_2O and SO_2, a few sulfates and sulfites were formed causing the irreversible deactivation of catalyst. The catalytic activity of deactivated Cr–Ce/TiO_2 could recover mostly after heat treatment.
     (5) The effects of calcination temperature, molar ratio and loading of active component as well as operating condition on the performance of SCR were examined. The Cr–Ce/TiO_2 catalyst showing high activity for catalytic oxidation of NO also performed high activity for NH3-SCR. The NO conversion of 99.6% was observed at 180℃and space velocity 10,000 h-1. NO conversion increased with the enhancement of O_2 concentration and NH3/NO, and decreased with the rise of NO concentration and GHSV. The reaction of SCR followed Eley-Rideal mechanism.
     (6) The effects of H_2O and SO_2 on the performance of SCR were studied by step transient response experiments and FTIR. The 10% (φ) H_2O had little negative effect on catalytic activity, and the NO conversion was kept at level of 97.7%. The catalyst was deactivated irreversiblly in the presence of SO_2 due to the generation of excess amount of sulfate salts. The catalyst is expected to be applied to the removal of NOx from exhaust gas without SO_2 at low temperature.
引文
[1]童志权主编.大气污染控制工程[M].北京:机械工业出版社, 2006: 305.
    [2]童志权主编.工业废气净化与利用[M].北京:化学工业出版社, 2001: 280-281.
    [3] Zeldovich J. The oxidation of nitrogen in combustion and explosions [J]. Acta Physicochim URSS, 1946, 21 (4): 577-628.
    [4] Miller J A, Bowman C T. Mechanism and Modeling of Nitrogen Chemistry in Combustion [J]. Progress in Energy and Combustion Science, 1989, 15 (4): 287-338.
    [5] Fenimore C P. Formation of nitric oxide from fuel nitrogen in flame [J]. Combusion and Flame, 1972, 19 (2): 289-296.
    [6]稂小洛,曹国良,黄学敏.中国区域氮氧化物排放清单[J].环境与可持续发展, 2008, 6: 19-21.
    [7]杜兴胜.氮氧化物净化技术研究现状及发展趋势[J].江西化工, 2008, 12 (4): 39-42.
    [8]宋华丰,徐俭.烟气中氮氧化物的处理技术[J].中国科技信息, 2008, 8 (16): 20-21.
    [9] Olbregets J. Termolecular reaction of nitrogen monoxide and oxygen: a still unsolved problem [J]. International Journal of Chemical Kinetics, 1985, 17(8): 835-848.
    [10] Yahiro H, Iwamoto M. Copper ion-exchanged zeolite catalysts in deNOx reaction [J]. Applied Catalysis A: General, 2001, 222 (1-2): 163-181
    [11] Coq B, Tachon D, Figuéras F, et al. Selective catalytic reduction of nitrogen monoxide by decane on copper-exchanged mordenites [J]. Applied Catalysis B: Environmental, 1995, 6 (3): 271-289.
    [12] Brandin J G M, Andersson L A H, Odenbrand C U I. Catalytic reduction of nitrogen oxides on mordenite [J]. Catalysis Today, 1989, 4(2): 187-203.
    [13] Giles R, Cant N W, K?gel M, et al. The effect of SO2 on the oxidation of NO over Fe-MFI and Fe-ferrierite catalysts made by solid-state ion exchange [J]. Applied Catalysis B: Environmental, 2000, 25 (2-3): L75-L81.
    [14]陈忠伟,余爱萍,饶薇薇. SO2对Y型分分子筛选择性催化氧化NO的影响[J].河南化工, 2002, 3: 13-15.
    [15] Mochida I, Kisamori S, Hironaka M, et al. Oxidation of NO into NO2 over active carbon fibers [J]. Energy Fuels, 1994, 8(6): 1341-1344.
    [16] Mochida I, Kawabuchi Y, Kawano S, et al. High catalytic activity of pitch-based activated carbon fibres of moderate surface area for oxidation of NO to NO2 at room temperature [J]. Fule, 1997. 76 (6): 543-548.
    [17] Jang B W L, Spivey J J, Kung M C, et al. Low-Temperature NOx Removal for Flue Gas Cleanup [J]. Energy&Fuels, 1997, 11 (2): 299-306.
    [18] Guo Z C, Xie Y S, Ikpyo H, et al. Catalytic oxidation of NO to NO2 on activated carbon [J]. Energy Conversion and Management, 2001, 42(2): 2005-2018.
    [19] Adapa S, Gaur V, Verma N. Catalytic oxidation of NO by activated carbon fiber (ACF) [J]. Chemical Engineering Journal, 2006, 116(1): 25-37.
    [20] Xue E, Seshan K, Ross J R H. Catalytic control of diesel engine particulate emission: Studies on model reactions over a EuroPt-1 (Pt/SiO2) catalyst [J]. Applied Catalysis B: Environmental, 1993, 2 (2-3): 183-197.
    [21] Xue E, Seshan K, Ross J R H. Roles of supports, Pt loading and Pt dispersion in the oxidation of NO to NO2 and of SO_2 to SO3 [J]. Applied Catalysis B: Environmental, 1996, 11(1): 65-79.
    [22] Xue E, Seshan K, Mercera P, et al. Pt-ZrO2 catalysts for the oxidation of NO and SO_2: Effect of sulfate [J]. Environmental Catalysis, 1994, 20(2): 250-267.
    [23] Kikuyama S, Matsukuma I, Kikuchi R, et al. A role of components in Pt-ZrO2/Al_2O_3 as a sorbent for removal of NO and NO2 [J]. Applied Catalysis A: General, 2002, 226 (1-2): 23-30.
    [24] Després J, Elsener M, Koebel M, et al. Catalytic oxidation of nitrogen monoxide over Pt/SiO2 [J]. Applied Catalysis B: Environmental, 2004, 50(2): 73-82.
    [25] Dawody J, Skoglundh M, EFridell E. The effect of metal oxide additives (WO3, MoO3, V2O5, Ga2O3) on the oxidation of NO and SO_2 over Pt/Al_2O_3 and Pt/BaO/Al_2O_3 catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2004, 209(1-2): 259-269.
    [26] Crocoll M, Kureti S, Weisweiler W. Mean field modeling of NO oxidation over Pt/Al_2O_3 catalyst under oxygen-rich conditions [J]. Journal of Catalysis, 2005, 229 (2): 480-489.
    [27]王录平,杨锡尧,庞礼.担体酸性对铂催化剂的表面性质和催化性能的电子调变效应[J].物理化学学报, 1986, 2(5): 424-427.
    [28]王辉. NO选择催化氧化的催化剂和反应机理研究[D].上海:华东理工大学, 1999
    [29]李平,赵越,卢冠忠,等. SO_2对NO催化氧化过程的影响[J].华东理工大学学报, 2002, 28 (4): 397-440.
    [30]赵迎宪,危凤,张艳辉,等. NO在Pt/γ-Al_2O_3上催化氧化反应机理和动力学[J].化工学报, 2008, 5(59): 1156-1164.
    [31]曲玲玲,周铁桥,解强,等. Ru/ZrO2催化剂高温焙烧对NO催化氧化反应性能的影响[J].环境科学学报, 2009, 9(9): 1891-1896.
    [32] Li L, Qu L, Cheng J, et al. Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts [J]. Applied Catalysis B: Environmental, 2009, 88 (1-2): 224-231.
    [33] Karlsson H T, Rosenberg H S. Flue gas denitrification: selective catalytic oxidation of NO to NO2 [J]. Industrial and Engineering Chemistry: Process Design and Development, 1984, 23(4): 808-814.
    [34]赵秀阁,王辉,肖文德,等. SO_2对Co3O4/Al_2O_3选择性催化氧化NO的影响[J].催化学报, 2000, 21 (3): 239-242.
    [35]李平,赵越,卢冠忠,等. SO_2对低温NO催化氧化活性的增强效应[J].宁夏大学学学报, 2001, 22(2): 175-177.
    [36]黄明,蒋红彬. Cu-Mn/SiO2催化氧化NO性能研究[J].环境工程学报, 2008, 2(4): 532-535
    [37] Yung M M, Holmgreen E M, Ozkan U S. Cobalt-based catalysts supported on titania and zirconia for the oxidation of nitric oxide to nitrogen dioxide [J]. Journal of Catalysis, 2007, 247 (2): 356-367.
    [38]郑足红,童华,童志权,等.低温高活性NO氧化催化剂Mn-V-Ce/TiO2的制备与活性[J].过程工程学报, 2008, 8 (6): 1204-1212.
    [39]陈霞,张俊丰,童志权,等. CuCoOx/TiO2催化氧化NO性能研究[J].环境工程学报, 2009, 5 (3): 869-874
    [40] Wang Q, Park S Y, Choi J S, et al. Co/KxTi2O5 catalysts prepared by ion exchange methodfor NO oxidation to NO2 [J]. Applied Catalysis B: Environmental, 2008, 79 (2): 101-107.
    [41]高安正躬,安念芳昭,神崎恭一等.金属氧化物催化剂上NO的氧化及CO对反应的影响[J].燃料协会志, 1975, 54(577): 314-318.
    [42]王辉,赵秀阁,肖文德等. NO在负载型金属金属氧化物催化剂上的氧化反应机理[J].华东理工大学学报, 2001, 27 (1): 6-10.
    [43]罗立新,刘敏,李绍箕. NO催化氧化的初步研究[J].环境工程, 1997, 15(4): 30-33.
    [44]莫建红,童志权,张俊丰. Mn/Co-Ba-Al-O催化氧化NO性能研究[J].环境科学学报, 2007, 27(11): 1793-1798.
    [45] Huang Y. Gao D. Tong Z, et al. Oxidation of NO over cobalt oxide supported on mesoporous silica[J]. Journal of Natural Gas Chemistry. 2009, 18 (4): 421-428.
    [46]高安正躬,安念芳昭,森田义郎. SO2和H2O对NO氧化反应的影响[J].燃料协会志, 1975, 54: 930-937.
    [47] Shiba K, Hinode H, Wakihara M. Catalytic oxidation of NO to NO2 over Cr/TiO2 and Cu/TiO2 under oxidizing atmosphere [J]. Reaction Kinetics Catalysis Letters, 1996, 58(1): 133-137.
    [48]鲁文质,赵秀阁,王辉,等. NO的催化氧化[J].催化学报, 2000, 21(5): 423-427.
    [49] Hillard J C, Wheeler R W. Catalysed oxidation of nitric oxide to nitrogen dioxide [J]. Combusion and Flame, 1977, 29: 15-19.
    [50] Parvulescu V I, Grange P, Delmon B. Catalytic removal of NO [J]. Catalysis Today, 1998 (46): 233-316.
    [51] Seiyama T, Arakawa T, Matsuda T. Catalytic activity of transition metal ion exchanged Y zeolites in the reduction of nitric oxide with ammonia [J]. Journal of catalysis, 1977.48 (1-2): 1-7
    [52] Salker A V, Weisweiler W. Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions [J].Applied Catalysis A: General, 2000, 203 (2): 221-229.
    [53] Wallin M, Karlsson C J, Palmqvist A. Selective catalytic reduction of NOx over H-ZSM-5 under lean conditions using transient NH3 supply [J]. Topics in Catalysis, 2004, 31 (1): 107-113.
    [54] Yoshikawa M, Yasutake A, Mochida I. Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers [J]. Applied Catalysis A: General, 1998, 73 (2): 239-245.
    [55] Tang X. Hao J. Yi H, et al. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts [J]. Catalysis Today, 2007, 126 (3-4): 406-411.
    [56]黄荣.低温选择性催化还原烟气氮氧化物的催化剂研究[D].广州:华南理工大学环境科学与工程学院, 2005.
    [57] Valdés-Solís T, Marbán G, Fuertes A B. Low temperature SCR of NOx with NH3 over carbon–ceramic supported catalysts [J]. Applied Catalysis B: Environmental, 2003, 46 (2): 261-271.
    [58] Marbán G, Antu?a R, Fuertes A B. Low–temperature SCR of NOx with NH3 over activated carbon fiber composite–supported metal oxides [J]. Applied Catalysis B: Environmental, 2003, 41 (3): 323-338.
    [59] Mu?iz J, Marbán G, Furtes A B. Low temperature selective catalytic reduction of NO over modified activated carbon fibres [J]. Applied Catalysis B: Environmental, 2000, 27 (1): 27-36.
    [60] García–BordejéE, Pinilla J L, Lázaro M J, et al. Role of sulphates on the mechanism of NH3–SCR of NO at low temperatures over presulphated vanadium supported on carbon–coated monoliths [J].Journal of Catalysis, 2005, 233 (1): 166-175.
    [61] Lee I Y, Kim D W, Lee J B, et al. A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3 [J]. Chemical Engineering Journal, 2002, 90 (3): 267-272.
    [62] Djerad S, Tifouti L, Crocoll M, et al. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2004, 208 (1-2): 257-265.
    [63] Casagrande L, Lietti L, Nova I, et al. SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts: reactivity and redox behavior [J]. Applied Catalysis B: Environmental, 1999, 22 (1): 63-77.
    [64] Huang Y, Tong Z, Wu B, et al. Low temperature selective catalytic reduction of NO by ammonia over V2O5-CeO2/TiO2 [J]. Journal of Fuel Chemistry and Technology, 2008, 36 (5): 616-620.
    [65] Li J, Chen J, Ke R, et al. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts [J]. Catalysis Communications, 2007, 8 (12): 1896-1900.
    [66] Wu Z, Jin R, Liu Y, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature [J]. Catalysis Communications, 2008, 9 (13): 2217-2220.
    [67]伍斌,黄妍,郑毅,等. SO_2对Mn-Cu-Ce/TiO2低温选择催化还原NO的影响[J].环境科学学报. 2008, 28(5): 960-964.
    [68]刘守军,刘振宇,朱珍平,等. CuO/AC低温脱除烟气中SOx和NOx的研究[J].燃料化学学报, 1999. 27(增刊): 192-198.
    [69] Pasel J, K??ner P, Montanari B, et al. Transition metal oxides supported active carbons as low temperature catalysts for the selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 1998 (3-4): 199-213.
    [70]吴碧君,刘晓勤,肖萍,等. Mn-Fe/TiO2低温NH3选择性还原NO催化活性及其反应机制[J].中国电机工程学报, 2007, 27(17): 51-56.
    [71] Ordó?ez S, Paredes J R, D?ez F V. Sulphur poisoning of transition metal oxides used as catalysts for methane combustion [J]. Applied Catalysis A: General, 2008, 341 (1-2): 174-180.
    [72] Pe?a D A, Uphade B S, Smirniotis P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals [J]. Journal of Catalysis, 2004, 211 (2): 421-431.
    [73] Wu Z, Jiang B, Liu Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia [J]. Applied Catalysis B: Environmental, 2008, 79 (4): 347-355.
    [74]陈志航,李雪辉,高翔,等.新型铬锰复合氧化物低温选择性催化氨还原NOx [J].催化学报, 2009, 30 (1): 4-6.
    [75] Schneider H, Maciejewski M, Kohler K, et al. Chromia Supported on Titania VI. Properties of Chromium Oxide Phases in the Catalytic Reduction of NO by NH3 Studied by in Situ Diffuse Reflectance FTIR Spectroscopy [J]. Journal of Catalysis, 1995, 157 (2): 312-320.
    [76] Liu H, Wei L, Yue R, et al. CrOx–CeO2 binary oxide as a superior catalyst for NO reduction with NH3 at low temperature in presence of CO [J]. Catalysis Communications, 2010, 11(9): 829-833.
    [77] Krishna K, Bueno-Lopez A, Makkee M, et al. Potential rare-earth modified CeO2 catalysts for soot oxidation Part III. Effect of dopant loading and calcination temperature on catalytic activity with O2and NO+O_2 [J]. Applied Catalysis B: Environmental, 2007, 75 (3-4): 210-220.
    [78] Moriceau P, Grzybowska B, Barbaux Y, et al. Oxidative dehydrogenation of isobutane on Cr?Ce?O oxide: I. Effect of the preparation method and of the Cr content [J]. Applied Catalysis A: General, 1998, 168 (2): 269-277.
    [79]谢有畅,杨乃芳,刘英骏,等.某些催化剂活性组分在载体表面分散的自发倾向[J].中国科学B, 1982, (8): 673-682.
    [80]李鹏,童志权,黄妍,等.新型CuMn/TiO_2苯类催化燃烧催化剂的研制及活性实验[J].环境科学学报, 2008, 28(3): 468-475.
    [81] Huang J H, Tong Z Q, Huang Y, et al. Selective Catalytic Reduction of NO with NH3 at Low Temperatures over Iron and Manganese Oxides Supported on Mesoporous Silica [J]. Applied Catalysis B: Environmental, 2008, 78(3-4): 309-314.
    [82] Kobayashi M, Kuma R, Sinyuki, et al. TiO_2?SiO_2 and V2O5/TiO_2?SiO_2 Catalyst: Physico-chemical Characteristics and Catalytic Behavior in Selective Catalytic Reduction of NO by NH3 [J]. Applied Catalysis B: Environmental, 2005, 60(3-4): 173-179.
    [83] Iwamoto M, Yoda Y, Yamazoe N, et al. Study of metal oxide catalysts by temperature programmed desorption 4. Oxygen adsorption on various metal oxides [J]. Journal of Physical Chemistry, 1978, 82 (24): 2564.
    [84] Bond G C. Heterogeneous catalysis: principles and applications [M]. Oxford UK: Clarendon Press, 1987. 150-151.
    [85] Capek L, Vradman L, Sazama P, et al. Kinetic experiments and modeling of NO oxidation and SCR of NOx with decane over Cu- and Fe-MFI catalysts [J]. Applied Catalysis B: Environmental, 2007, 70 (1-4): 53-57.
    [86] Goo J H, Irfan M F, Kim S D, et al. Effects of NO_2 and SO_2 on selective catalytic reduction of nitrogen oxides by ammonia [J]. Chemosphere, 2007, 67 (4): 718-723.
    [87]梁汝军,金积铨,王金秋,等.固定床反应器中银催化剂外扩散效率因子数值计算[J].石油炼制与化工, 2006, 9(37): 50-54.
    [88]袁一主编.化学工程师手册[M].北京:机械工业出版社, 1999: 474-479.
    [89]史密斯.化工动力学[M].王建华译.北京;成都:化学工业出版社;成都科技大学出版社, 1988: 331.
    [90] Kantcheva M, Vakkasoglu A S. Cobalt supported on zirconia and sulfated zirconia I. FT-IR spectroscopic characterization of the NOx species formed upon NO adsorption and NO/O_2 coadsorption [J]. Journal of Catalysis, 2004, 223 (2): 352-363.
    [91] Qi G, Yang R T, Chang R. MnOx-CeO_2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J]. Applied Catalysis B: Environmental, 2004, 51 (2): 93-106.
    [92] Pretsch E, Seibl J, Simon W, et al. Tabellen zur Strukturaufkl?rung Organischer Verbindungen mit Spektroskopischen Methoden [M]. Berlin: Springer–Verlag, 1981: H60.
    [93] Madia G, Koebel M, Elsener M, et al. Side reactions in the selective catalytic reduction of NOx with various NO_2 fractions [J]. Industrial and Engineering Chemistry Research, 2002, 41 (16): 4008-4015.
    [94] Kijlstra W S, Brands D S, Smit H I, et al. Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 II. reactivity of adsorbed NH3 and NO complexes [J]. Journal of catalysis,1997, 171(1): 219-230.
    [95] Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH_3 over MnOx–CeO_2 catalyst [J]. Journal of catalysis, 2003, 217(2): 434-441.
    [96] Koebel M, Madia G, Elsener M. Selective catalytic reduction of NO and NO_2 at low temperatures [J]. Catalysis Today, 2002, 73 (3-4): 239-247.
    [97] Takagi M, Kawai T, Soma M, et al. Mechanism of catalytic reaction between nitric oxide and ammonia on vanadium pentoxide in the presence of oxygen [J]. Journal of Physical Chemistry, 1976, 80 (4): 430-431.
    [98] Lin C H, Bai H. Surface acidity over vanadia/titania catalyst in the selective catalytic reduction for NO removal—in situ DRIFTS study [J]. Applied Catalysis B: Environmental, 2003, 42 (3): 279-287.
    [99] Kulkarni A P, Muggli D S. The effect of water on the acidity of TiO_2 and sulfated titania [J]. Applied Catalysis A: General, 2006, 302 (2): 274-282.
    [100]刘清雅,刘振宇,李成岳. NH3在选择性催化还原NO过程中的吸附与活化[J].催化学报, 2006, 7 (27): 636-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700