用户名: 密码: 验证码:
Cu-Cr-Ce/TiO_2-SiO_2和CuSO_4-V_2O_5/TiO_2低温催化还原NO_x性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NO_x)是大气的主要污染物之一,严重危害生态环境和人类健康。以NH_3为还原剂的选择性催化还原法(NH_3 selective catalytic reduction,NH_3-SCR)是运用最为广泛的固定源脱硝技术,通常采用V_2O_5-(WO_3)/TiO_2催化剂,该类催化剂必须在350℃以上的高温区操作,催化剂受到高浓度烟尘、SO_2的冲刷、磨损和污染,寿命缩短。因此开发能将SCR装置配置于湿法脱硫除尘装置之后,与我国现有锅炉系统匹配的低温SCR工艺,特别是研发高活性和高抗SO_2、H_2O毒化性能的低温SCR催化剂,具有十分重要的意义。
     本文采用共沉淀法制备了载体TiO_2-SiO_2(TS),用浸渍法制备了新型催化剂Cu-Cr-Ce/TS,研究了活性组分配比、负载量、焙烧温度等制备条件和反应温度、NH_3/NO_x摩尔比、进口NO_x体积分数、空间速度和O_2含量等操作条件对该催化剂NH_3低温还原NO_x活性的影响,并探讨了催化剂抗H_2O、SO_2毒化性能。结果表明,n(Cu):n(Cr):n(Ce)为1:1:3,负载量为30%,450℃焙烧的催化剂,在进口NO_x体积分数为0.08%,O_2含量为6%,空间速度为5000 h~(-1),反应温度为180℃,NH_3/NO_x摩尔比为1.1的条件下,NO_x转化率达到98.9%,具有良好的低温活性;在35 h的稳定性实验中,NO_x转化率始终保持在98%以上,稳定性能良好;在200℃以上的单独抗水实验中,催化剂的活性不受影响;而进行单独抗硫和同时抗硫、水实验时,催化剂中毒现象明显,且中毒后活性不可恢复。
     采用比表面积(BET)、X射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)、热重(TG)对催化剂进行了表征。结果表明,当Cu和Cr同时存在时,有CuCr_2O_4尖晶石生成,它的存在对催化剂的活性有一定促进作用。催化剂中毒的原因是:(1)硫酸铵盐的生成覆盖了催化剂的反应活性位;(2)催化剂自身活性组分被硫酸盐化。
     本文还对另一催化剂CuSO_4-V_2O_5/TiO_2的低温活性和抗硫水能力进行了初步探讨,结果表明:当CuSO_4和V_2O_5的负载量均为5%,焙烧温度为350℃,在标准反应条件下,反应温度为210℃时,其NO_x转化率高达97.3%,催化剂具有较好的低温活性;在反应温度为220℃下,此催化剂具有较好的单独抗水和单独抗硫性能,可长时间保持高活性;催化剂进行同时抗硫水实验时,水蒸汽的存在加快了硫酸氨盐的生成,反应6 h后,其转化率开始下降,22 h后转化率低于40%;实验结果还表明,CuSO_4的存在能提高催化剂自身的抗硫水性能。
NO_x is one of the major air pollutants, which jeopardize the ecological environment and human health badly. The selective catalytic reduction (SCR) of NO_x with NH_3 is used widely to reduce nitrogen oxide emissions from stationary sources. V_2O_5-(WO_3)/TiO_2 catalyst operate at temperature above 350℃, where catalyst was eroded, wore and contaminated by high concentrations of dust and SO_2, so its life expectancy is shortened. Therefore developing the low-temperature SCR catalyst which can configure SCR device following with the flue gas desulfurization (FGD) and match with our existing boiler system, especially low temperature SCR catalyst of high activity and high resistance to SO_2, H_2O poisoning properties is of great significance.
     TiO_2-SiO_2 (TS) support was prepared by the co-precipitation method and a novel Cu-Cr-Ce/TS catalyst was prepared by impregnation method. The effects of preparation conditions including active component ratio, loading along with calcination temperature and operating conditions as reaction temperature, NH_3/NO_x molar ratio, NO_x input concentrations, space velocity and O_2 concentrations on activity of catalyst Cu-Cr-Ce/TS for selective catalytic reduction of nitric oxides by NH_3 at low temperature were investigated. The influences of H_2O, SO_2 were also discussed. The results showed that catalyst with n(Cu):n(Cr):n(Ce) 1:1:3, loading 30%, calcination temperature 450℃? performed high NO_x conversion of over 98.9% at the conditions of NO_x input concentrations 0.08%, O_2 concentrations 6%, space velocity 5000 h~(-1), reaction temperature 180℃and NH_3/NO_x molar ratio 1.1. NO_x conversion could be kept over 98% in 35 h stability test. The catalyst activity was unaffected in a separate anti-water experiment above 200℃, while at the same time in a separate anti-sulfur or sulfur and water resistance test, the catalyst was poisoned quickly, and the activity was unrecoverable.
     The catalysts were characterized by specific surface area (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TG). Results indicated that when Cu and Cr existed at the same time, there would generate CuCr_2O_4 spinel, which had some role on promoting the catalytic activity. The reasons for catalyst poisoning were: (1) the formation of ammonium sulfate salt covered catalyst active sites; (2) the sulfation of catalyst active component.
     The low-temperature activity and resistance ability to sulfur and water of CuSO_4-V_2O_5/TiO_2 catalyst was also study preliminarily. Results showed that when the loading of CuSO_4 and V_2O_5 were 5%, calcination temperature was 350℃, reaction temperature was 210℃, the NO_x conversion rate was 97.3%. The catalyst had good resistance to water or sulfur separately and can maintain high activity for a long time at 220℃. When the catalyst was examined under sulfur and water simultaneously condition, its conversion rate started to decline after 6 h because of the formation of ammonium sulfate salt. The conversion rate was less than 40% after 22 h. The results also suggested that the presence of CuSO_4 can improve the catalyst own performance of resistance to sulfur and water.
引文
[1]童志权.大气污染控制工程[M].北京:机械工业出版社, 2006.
    [2]马涛.汽车尾气排放与大气污染[J].油气田环境保护, 2007, 17(2): 52-53.
    [3]戴树桂.环境化学[M].北京:高等教育出版社, 1997.
    [4]赵拉.浅谈汽车与环境污染[J].内蒙古石油化工, 2007, 12: 40-41.
    [5]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社, 2005.
    [6]大连理工大学无机化学教研组.无机化学第三版(上册)[M].北京:高等教育出版社, 1990.
    [7]中国环境保护产业协会.中国火电厂氮氧化物排放控制技术方案研究[R].北京: 2008.
    [8]崔民选,霍小龙. 2009中国能源发展报告[M].北京:社会科学文献出版社, 2009.
    [9]李恒远.中国能源环保与政策法规[S].环境与科学, 2001, 10: 24-25.
    [10]国家环境保护总局.国家质量监督检验检疫总局.火电厂大气污染排放标准[S]. GB13223-2003.
    [11]环保部:将加大火电厂氮氧化物排放力度[N].中国环境报, 2010. 2.
    [12]赵惠富.污染气体NO_x的形成和控制[M].北京:科学出版社, 1993.
    [13]申泮文.无机化学简明教程[M].北京:人民教育出版社, 1960.
    [14]童志权,陈焕钦.工业废气污染控制与利用[M].北京:化学工业出版社, 1989.
    [15]吴碧君.燃烧过程中氮氧化物的生成机理[J].电力环境保护, 2003, 19(4): 9-12.
    [16] Hein K, Spliethoff H. Vebrennungsablauf and schadst offentstehung in Der Koh lenstaubfeuerung[M]. Magdeburg: DVV-Kolloquium, 1994.
    [17]付国民.煤燃烧过程中NO_x的形成机理及控制技术[J].能源环境保护, 2005, 19(3): 1-4.
    [18]曲虹霞.催化脱除燃煤烟气中NO的研究[D].南京:南京理工大学, 2004.
    [19]沈伯雄,姚强.天然气再燃脱硝的原理和技术[J].热能动力工程, 2002, 17(1): 7-9.
    [20]侯建鹏,朱去涛,唐燕萍.烟气脱硝技术的研究[J].电力环境保护, 2007. 23(3): 24-27.
    [21]张强.燃煤电站SCR烟气脱硝技术及工程应用[M].北京:化学工业出版社, 2007.
    [22] An W Z, Zhang Q L, Chuang K T, et al. A hydrophobic Pt-fluorinate carbon catalyst for reaction of NO with NH_3[J]. Ind Eng Chem Res, 2002, 41(1): 27-31.
    [23]朱景利,张金昌,马润宇,等.改性贵金属催化剂催化还原脱除NO[J].环境科学, 2006, 27(8): 1508-1511.
    [24]郭建军,杨美华,陈昭平,等.镧对混合型贵金属尾气净化催化剂性能的影响[J].江西科学, 2002, 20 (1): 27-30.
    [25] Winter E R S. The decomposition if nitric oxide by metallic oxides[J]. J Catal, 1971, 22(2): 158-167.
    [26] Pe?a D A, Uphade B S, Smirniotis P G. TiO_2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH_3: I. Evaluation and characterization of first row transition metals[J]. J Catal, 2004, 221(2): 421-431.
    [27] Min K. Manganese oxide catalysts for NO_x reduction with NH_3 at low temperatures[J]. Appl Catal A: Gen, 2007, 327 (2): 261-269.
    [28]伍斌,童志权,黄妍. MnO_2/NaY催化剂上NH_3低温选择催化还原NO_x[J].石油化工, 2006, 35(2): 178-182.
    [29] Qi G S, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH_3 over MnOx-CeO_2 catalyst[J]. J Catal, 2003, 217(2): 434-441.
    [30]山中龙雄,催化剂的有效实际应用[M].北京:化学工业出版社, 1988.
    [31] Salker A V, Weisweiler W. Catalytic behaviour of metal based ZSM-5 catalysts for NO_x reduction with NH_3 in dry and humid conditions[J]. Appl Catal A: Gen, 2000, 203(2): 221-229.
    [32] Liu C C, Teng H. Cu/MCM-41 for selective catalytic NO reduction with NH_3-comparison of different Cu-loading methods[J]. Appl Catal B: Environ, 2005, 58(1/2), 69-77.
    [33] Daniela P, Diana S, Alessandro M, et al. The catalytic activity of CuSO_4/ZrO_2 for the selective catalytic reduction of NO_x with NH_3 in the presence of excess O_2[J]. Appl Catal B: Environ, 2002, 36(3): 217-230.
    [34] Indovina V, Campa M, Pietrogiacomi D. Proceedings of the 12th international congress on catalysis, studies in surface science and catalysis[R]. 2000, 130 B, 1439-1444.
    [35] Min K, Eun D P, Kim J M, et al. Cu-Mn mixed oxides for low temperature NO reduction with NH_3[J]. Catal Today, 2006, 111(3/4): 236-241.
    [36] Jin Y, Adachi K, Takeuchi T, et al. Microstuctual evolution of a heavily cold-rolled Cu-Cr in situ metal composite[J]. Mater Sci Eng, A, 1996, A212(1): 149-156.
    [37]陈霞,张俊丰,童志权. CuCoOx/TiO_2催化氧化NO性能研究[J].环境工程学报, 2009, 3(5): 869-874.
    [38]高志明,杨向光,吴越.活性炭表面含氧基团的生成及对NO的还原作用[J].催化学报, 1996, 17(4): 327-329.
    [39]杨超,张俊丰,童志权,等.活性炭低温催化还原NO_x影响因素及反应机理分析[J].环境科学研究, 2006, 19(4): 86-90.
    [40]郭占成.活性炭选择性催化还原(SCR)烟道气中NO_x[J].环境工程, 1999, 17(4): 35-39.
    [41]吕莹. CaH2修饰的M-ZSM-5上C2H4选择还原NO活性研究[J].辽宁师范大学学报(自然科学版), 2006, 29(1): 62-64.
    [42] Richter M, Eckelt R, Parlitz B, et al. Low-temperature conversion of NO_x to N2 by zeolite-fixed ammonium ions[J]. Appl Catal B: Environ, 1998, 15(1/2): 129-146.
    [43] Zhang F, Zhang S, Guan N, et al. NO SCR with propane and propene on Co-based alumina catalysts prepared by co-precipitation[J]. Appl Catal B: Environ, 2007, 73(3/4): 209-219.
    [44] He C H, Paulus M, Chu W, et al. Selective catalytic reduction of NO by C3H8 over CoOx/Al2O3: an investigation of structure-activity relationships[J]. Catal Today, 2008, 131(1/2/3/4): 305-313.
    [45]李平,赵越,卢冠忠,等. SO_2对NO催化氧化过程的影响(Ⅱ)——载体γ-Al2O3与SO_2的相互作用[J].高等学校化学学报, 2001, 22(12): 2072-2075.
    [46] Jang B, Spivey J. Low-temperature NO_x removal for flue gas cleanup[J]. Energy Fuels, 1997, 11(2): 299-306.
    [47]何选盟,朱振峰,任强.用于SCR技术的负载型催化剂研究进展[J].陕西科技大学学报, 2008, 1(26): 159-162.
    [48] Okazaki S, Kumasaka M, Yoshida J, et al. Effect of sulfate ion on the catalytic activity of MoOx-TiO_2 for the reduction of NO with NH_3[J]. Ind Eng Chem Res, 1981, 20(2): 301-304.
    [49] Gao X T, Wachs I E. Titania-silica as catalysts: Molecular structural characteristics and physico- chemical properties[J]. Catal Today, 1999, 51(2): 233-254.
    [50] Zhao Y, Xu L, Wang Y, et al. Preparation of Ti-Si mixed oxides by sol-gel one step hydrolysis[J]. Catal Today, 2004, 1(93/94/95): 583-588.
    [51]张义华,王祥生,郭新闻.钛硅催化材料的研究进展[J].化学进展, 2001, 13(1): 19-24.
    [52]张绍金,周亚松,徐春明. TiO_2-SiO_2复合氧化物的理化性质及其对柴油加氢精制性能的影响[J].化工学报, 2006, 57(4): 769-774.
    [53] Yang C, Chen C. Synthesis and characterization of silica-capped titania nanorods: An enhanced photocatalyst[J]. Appl Catal A: Gen, 2005, 294(1): 40-48.
    [54] Hu S G, J Ronald, Willey, et al. An investingation on the catalytic propertyes of titania-silica materials[J]. J Catal, 2003, 220(1): 240-248.
    [55] Liu Z F, Tabora J, Davis R J.Relationships between microstructure and surface acidity of Ti-Si mixed oxide catalysts[J]. J Catal, 1994, 149(1): 117-126.
    [56] Oki A, Xu Q, Shpeizer B, et al. Synthesis, characterization and activity in cyclohexene epoxidation of mesoporous TiO_2-SiO_2 mixed oxides[J]. Catal Commun, 2007, 8(6): 950-956.
    [57]何勇,童华,童志权,等.新型CuSO_4-CeO_2/TS催化剂低温NH_3还原NO及抗中毒性能[J].过程工程学报, 2009, 9(2): 360-367.
    [58] Singoredjo L, Slagt M, Kapteijn F, et al. Selective catalytic reduction of NO with NH_3 over carbon supported copper catalysts[J]. Catal Today, 1990, 7(2): 157-165.
    [59] Kantcheva M. FT-IR Spectroscopic investigation of the reactivity of NO_x species adsorbed on Cu2+/ZrO_2 and CuSO_4/ZrO_2 catalysts toward decane[J]. Appl Catal B: Environ, 2003, 42(1): 89-109.
    [60] Long R, Yang R. The promoting role of rare earth oxides on Fe-exchanged TiO_2-pillared clay for selective catalytic reduction of nitric oxide by ammonia[J]. Appl Catal B: Environ, 2000, 27(2): 87-95.
    [61] Xu W, Yu Y, Zhang C, et al. Selective catalytic reduction of NO by NH_3 over Ce/TiO_2 catalyst[J]. Catal Commun, 2008, 9(6): 1453-1457.
    [62] Wu Z, Jin R, Liu Y, et al. Ceria modified MnOx/TiO_2 as a superior catalyst for NO reduction with NH_3 at low temperature[J]. Catal Commun, 2008, 9(13): 2217-2220.
    [63] Amin N A S, Tan E F, Manan Z A. Selective reduction of NO_x with C3H6 over Cu and Cr promoted CeO_2 catalysts[J]. Appl Catal B: Environ, 2003, 43(1): 57-69.
    [64] Paul W P, Jeffrey J L. Characterization and CO oxidation activity of Cu/Cr/Al2O3 catalysts[J]. Ind Eng Chem Res, 1998, 37(3): 887-893.
    [65] Chien C C, Chuang W P, Huang T J. Effect of heat-treatment conditions on Cu-Cr/γ-alumina catalyst for carbon monoxide and propene oxidation[J]. Appl Catal A: Gen, 1995, 131: 73-87.
    [66] Motonobu K, Ryoji K, Sinyuki M, el at. TiO_2-SiO_2 and V_2O_5/TiO_2-SiO_2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH_3[J]. Appl Catal B: Environ, 2005, 60(3/4): 173-179.
    [67]卢晗锋,袁泉东,黄海凤,等.共沉淀法制备多孔TiO_2-SiO_2复合氧化物的结构特点[J].材料科学与工程学报, 2008, 26(5): 713-715, 738.
    [68]吴淑杰,刘钢,李雪梅,等. Ti-Si复合氧化物催化剂的合成,表征及邻苯二酚O_2单醚化反应性能[J].吉林大学学报(理学版), 2006, 44(2): 265-268.
    [69] Garc?′a-Bordeje′E, Pinilla J L, La′zaro M J, et al. NH_3-SCR of NO at low temperatures over sulphated vanadia on carboncoated monoliths: Effect of H_2O and SO_2 traces in the gas feed[J].Appl Catal B: Environ, 2006, 66(3/4): 281-287.
    [70]侯隽,许影,田从学,等.微孔-介孔钛硅氧化物复合材料的合成与表征[J].硅酸盐学报, 2007, 35(4): 435-441.
    [71] Sreekanth P M, Pen? D A, Smirniotis P G. Titania supported bimetallic transition metal oxides for low-temperature SCR of NO with NH_3[J]. Ind Eng Chem Res, 2006, 45(19): 6444-6449.
    [72] Smirniotis P G, Sreekanth P M, Pen? D A, et al. Manganese oxide catalysts supported on TiO_2, Al2O3, and SiO_2: A comparison for low-temperature SCR of NO with NH_3[J]. Ind Eng Chem Res, 2006, 45(19): 6436-6443.
    [73] Law H Y, Kung M C, Kung H H. Low temperature NO_x removal from diesel exhaust by coupling ethylene glycol reforming with SCR[J]. Catal Today, 2008, 136(1/2): 40-45.
    [74]徐友明,沈本贤,何金海,等.用PASCA及NH_3-TPD法表征Al2O3载体表面酸度[J].分析测试学报, 2006, 25(1): 41-44.
    [75] Ma Z, Yue Y, Deng X, et al. Nanosized anatase TiO_2 as precursor for preparation of sulfated titania catalysts[J]. J Mol Catal A: Chem, 2002, 178(1/2): 97-104.
    [76] Masaru W, Aizawa Y, Toru I, et al. Catalytic glucose and fructose conversions with TiO_2 and ZrO_2 in water at 473K: Relationship between reactivity and acid-base property determined by TPD measurement[J]. Appl Catal A: Gen, 2005, 295(2): 150-156.
    [77] Liu Y, Ma X, Wang S, et al. The nature of surface acidity and reactivity of MoO3/SiO_2 and MoO3/TiO_2-SiO_2 for transesterification of dimethyl oxalate with phenol: A comparative investigation[J]. Appl Catal B: Environ, 2007, 77(1/2): 125-134.
    [78] Gaia P, Devadas M, Kr?cher O, et al. Isocyanic acid hydrolysis over Fe-ZSM5 in urea-SCR[J]. Catal Commun, 2006, 7(8): 600-603.
    [79] Michael S, Santhosh K M, Ursula B, et al. The role of Br?sted acidity in the SCR of NO over Fe-MFI catalysts[J]. Microporous Mesoporous Mater, 2008, 111(1/2/3): 124-133.
    [80] Yamazoe S, Masutani Y, Teramura K, et al. Promotion effect of tungsten oxide on photo-assisted selective catalytic reduction of NO with NH_3 over TiO_2[J]. Appl Catal B: Environ, 2008, 83(1/2): 123-130.
    [81] Xie G, Liu Z, Zhu Z, et al. Simultaneous removal of SO_2 and NO_x from flue gas using a CuO/Al2O3catalyst sorbent. I. Deactivation of SCR activity by SO_2 at low temperatures[J]. J Catal, 2004, 224(1): 36-41.
    [82] Lu H, Pradier C M, FlodstrGm A S. Catalytic reduction of nitric oxide over copper. Part II: Influence of sulfur dioxide[J]. J Mol Catal A: Chem, 1996, 112(3): 459-467.
    [83] Clark P D, Dowling N I, Huang M. Catalytic destruction of NH_3 and SO_2 over alumina supported transition metal oxides[J]. Appl Catal A: Gen, 2004, 274(1/2): 219-227.
    [84] Marbán G, Antu?a R, Fuertes A. Low-temperature SCR of NO_x with NH_3 over activated carbon fiber composite-supported metal oxides[J]. Appl Catal B: Environ, 2003, 41(3): 323-338.
    [85] Olbregets J. Termolecular reaction of nitrogen monoxide and oxygen: a still unsolved problem[J]. Int J Chem Kinet, 1985, 17(8): 835-848.
    [86] Koebel M, Madia G. Selective catalytic reduction of NO and NO_2 at low temperatures[J]. Catal Today, 2002, 73(3/4): 239-247.
    [87] Curry-Hyde E, Baiker A. Amorphous chromia for low-temperature selective catalytic reduction of nitric oxide[J]. Ind Eng Chem Res, 1990, 29(10): 1985-1989.
    [88] Miyamoto A, Yamazaki Y, Hattori T, et al. Study on the Pulse Reaction Technique: VI Kinetics of the reaction of NO with NH_3 on a V_2O_5 catalyst[J]. J Catal, 1982, 74(1): 144-155.
    [89] Richter M, Trunschke A, Bentrup U, et al. Selective Catalytic Reduction of Nitric Oxide by Ammonia over Egg-Shell MnOx/NaY Composite Catalysts[J]. J Catal, 2002, 206(1): 98-113.
    [90] Ramis G, Busca G, Bregani F, et al. Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction[J]. Appl Catal B: Environ, 1990, 64(12): 259-278.
    [91] Qi G S, Yang R T, Chang R. MnOx-CeO_2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH_3 at low temperatures[J]. Appl Catal B: Environ, 2004, 51(2): 93-106.
    [92] Centi G, Perathoner S. Adsorption and reactivity of NO on copper-on-alumina catalysts: II. Adsorbed species and competitive pathways in the reaction of NO with NH_3 and O_2[J]. J Catal, 1995, 152(1): 93-102.
    [93] Ramis G, Larrubia A. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3/Al2O3 SCR catalysts[J]. J Mol Catal A: Chem, 2004, 215(1/2): 161-169.
    [94] Komatsu T, Ogawa T, Yashima T. Nitrate species on Cu-ZSM-5 catalyst as an intermediate for the reduction of nitric oxide with ammonia[J]. J Phys Chem, 1995, 99(35): 13053-13055.
    [95] Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B: Environ, 1994, 3(2/3): 173-189.
    [96] Koebel M, Elsener M, Madia G. Reaction Pathways in the selective catalytic reduction process with NO and NO_2 at low temperatures[J]. Ind Eng Chem Res, 2001, 40(1): 52-59.
    [97]王辉. NO选择催化氧化的催化剂和反应机理研究[D].上海:华东理工大学, 1999.
    [98] Goo J H, Irfan M F, Kim S D, et al. Effects of NO_2 and SO_2 on selective catalytic reduction of nitrogen oxides by ammonia[J]. Chemosphere, 2007, 67(4): 718-723.
    [99] H.斯科特.福格勒.化学反应工程(原著第三版)[M].李术元,朱建华译.北京:化学工业出版社, 2005: 581-582.
    [100]袁一.化学工程师手册[M].北京:机械工业出版社, 1999: 474-479.
    [101]郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003.
    [102]黄张根,朱珍平,刘振宇.水对V_2O_5/AC催化剂低温还原NO的影响[J].催化学报, 2001, 22(6): 532-536.
    [103]刘炜,童志权,罗婕. Ce?Mn/TiO_2催化剂选择性催化还原NO的低温活性及抗毒化性能[J].环境科学学报, 2006, 26(8): 1240-1245.
    [104] Zhu Z, Liu Z, Niu H, et al. Mechanism of SO_2 promotion for NO reduction with NH_3 over activated carbon-supported vanadium oxide catalyst[J]. J Catal, 2001, 197(1): 6-16.
    [105] Zhu Z, Liu Z, Liu S, et al. Catalytic NO reduction with ammonia at low temperatures on V_2O_5/AC catalysts: effect of metal oxides addition and SO_2[J]. Appl Catal B: Environ, 2001, 30(3/4): 267-276.
    [106]朱崇兵,金保升,李锋,等. SO_2氧化对SCR法烟气脱硝的影响[J].锅炉技术, 2008, 5, 39(5): 68-72.
    [107]朱珍平,刘振宇,牛宏贤,等. V_2O_5/AC催化剂低温催化的NO-NH_3-O_2反应—SO_2,V_2O_5担载量和反应温度的影响[J].中国科学, 2000, 4, 30(4): 154-159.
    [108]程振民,蒋正兴,袁渭康. SO_2在活性炭床层中的透过曲线[J].化工学报, 1996, 47(5): 515-521.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700