用户名: 密码: 验证码:
基于遗传神经网络的电子鼻系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子鼻是一种由具有部分选择性的气体传感器阵列和适当的模式识别技术组成,能够识别简单或复杂气体的仪器。它在环境监测、食品工业、化学工业等领域有广泛的应用前景。因此,这一研究领域受到广泛关注和普遍重视,近年来发展迅速。
     作为检测气体的电子仪器,电子鼻是气体传感器阵列和信息处理技术的有效结合,因此对模式识别技术的研究显得尤为重要。本论文从生物嗅觉系统的结构和嗅觉机理出发,研究了电子鼻的原理和结构,探讨了传感器阵列的组成,特别是在模式识别方法的选择和改进上,对传统的BP神经网络进行优化改进,提出了基于遗传神经网络的电子鼻系统方案,以提高混合气体检测的速度和精度。主要进行了以下四大方面的研究:
     (1)研制了一套电子鼻测试系统。主要包括气体传感器阵列、配气系统、气体检测系统硬件及气体检测系统软件。在分析了气体传感器的检测原理和构成阵列的准则的基础上,构建了气体传感器阵列;设计了配制混合气体(H2S, CO, CH4 )的配气系统(所测的气体浓度范围是H2S:0-100ppm,CO:0-100ppm,CH4:0-500ppm);自行配置的数据采集装置,为混合气体的检测打下了基础。
     (2)模式识别方法的选择。深入分析了BP神经网络的基本工作原理,结合本电子鼻系统的特点,将BP神经网络应用于混合气体的检测中,并进行了定性分析和定量分析。
     (3)提出了一种遗传算法优化神经网络(GANN)的气体检测方案。针对BP算法的不足,提出了遗传算法改进神经网络的方案,分两步对神经网络进行权值优化,第一步用遗传算法内嵌神经网络,搜索出神经网络权值大致范围内的最优个体;第二步以遗传算法搜索出的最优个体作为神经网络的初始权值,训练网络。实验证明,采用此气体检测方案,可以充分结合遗传算法的全局搜索能力和BP算法的局部搜索能力,加快收敛速度(迭代次数从144降到52),提高气体检测精度(三种气体平均误差分别从6.54ppm、6.82ppm和28.83ppm降到4.64ppm、4.37ppm和17.13ppm)。
     (4)设计了一种改进的遗传算法自适应变异(IAGA)气体检测算法。在理论分析遗传算法各参数对性能的影响基础上,提出改进自适应变异算法,通过计算进化效率,自适应调整变异率和变异量。只需考虑进化代数这一个因素,而不必考虑影响遗传算法性能的诸多复杂因素。计算量小、通用性强且效率高。实验结果表明,该气体检测方法可以进一步增强神经网络对训练样本的收敛性(收敛成功率从40%提高到75%)和对测试样本检测的准确性(三种气体平均误差分别降为3.72ppm、4.22ppm和15.78ppm),提高了气体检测的效果。
Electronic Nose (EN) is an instrument, which comprises an array of gas sensors with partial specificity and an appropriate pattern recognition system, capable of recognizing simple or complex odours and gases. EN technology is a cross field with the technologies of sensors, electronic technique, computer, pattern recognition. EN is applied wide in the fields of environmental detection, food and chemistry industry etc with its unique function. What’s more, it is getting attention with more domains.
     As an electronic instrument of detecting gas, EN is the combination of gas sensor array and information processing; therefore the research of pattern recognition technology is of great value. The EN is researched roundly in this paper from the four aspects: the basic principle of EN, the implementation program, the choice and improvement of pattern recognition technology in gas detection.
     The principle, implementation and design though of the EN were generalized overall from the mechanism of biologic olfactory system. After analyzing the pattern recognition methods, the artificial neural network and genetic algorithm was chosen as the gas detection method of the EN system.
     A set of EN detection system was designed and realized including the gas sensors array, gas distribution device, test hardware and software. The detection principle of gas sensors and guideline of composing sensor array were analyzed emphatically; the gas distribution device was ready for the preparation of mix-gas(H2S, CO, CH4), the concentration ranges of the three gases are 0-100ppm, 0-100ppm, 0-500ppm respectively. The software of data acquisition is the foundation of mix-gas detection.
     As for the research of the pattern recognition, the neural network based on the back propagation (BP) neural network was applied in the mix-gas detection, the qualitative and quantitative analysis showed that the neural network can used in the mix-gas detection. The shortage of BP algorithm and the revised measure were analyzed. The BP algorithm is the local search method based on the gradient descent, to overcome the local search character,the genetic algorithm was applied to optimize the BP neural network.
     The genetic algorithm optimizing neural network was put forward to optimize the neural network weigh coefficient with two steps. The first step was to embed the neural network with genetic algorithm, searching the optimum individual in the approximate range of neural network weigh coefficient; the second step was to use the optimum individual as the initial weigh value, then training the network. The experiment shows that the genetic algorithm optimizing neural network can combine with the global search character of genetic algorithm and local search character of BP algorithm. The genetic neural network can accelerate the speed of convergence (the iterative number descended form 144 to 52) and improve the accuracy (the average error of three gases descended from 6.54ppm,6.82ppm,28.83ppm to 4.64ppm,4.37ppm,17.13ppm respectively).
     An improved self-adaptive mutation of genetic algorithm was designed with the theory analysis of the parameters of genetic algorithm affecting the work performance. The self-adaptive mutation operate has the ability of jumping over the local minimum point and maintaining the diversity of population to realize the global search. Accordingly the modified self-adaptive mutation operate was put forward. It was a self-adaptive algorithm based on evolution efficiency, during computing the efficiency, the mutation ratio and mutation quantity can self adapt. The algorithm can be only thought about the evolution generations, which is simple and easy to manipulate. Applying the modified algorithm into the mix-gas detection shows that the network accelerates the convergence performence (the success rate increased from 40% to 75%) and improves the detection accuracy (the average error of three gases descended to 3.72ppm, 4.22ppm, 15.78ppm respectively).
引文
[1] Korenman Y I, Kalach A V. Application of multi-sensor system for determination of nitro ethane in the air. Sensors and Actuators B, 2003, 88: 324-334
    [2]陈长庆,胡明.气敏传感器的发展.材料导报, 2003, 1: 33-35
    [3] Sauter D, Weimar U, Noetzel G., et al. Development of modular ozone sensor System for application in practical use. Sensors and Actuators B, 2001, 69: 1-9
    [4] Claude D, Martine L, Maryam S. Discrimination and identification of a refriger- ant gas in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic nose. Sensors and Actuators B, 2004, 98: 46-53
    [5] Young R C, Buttner W J, Linnell B R, et al. Electronic nose for space program applications. Sensors and Actuators B, 2003, 93: 7-16
    [6] Dutta R, Hines E L, Gardner J W, et al. Tea quality prediction using a tin oxide- based electronic nose: an artificial intelligence approach. Sensors and Actuators B, 2003, 94: 228– 237
    [7]高大启,杨根兴.电子鼻技术新进展及其应用前景.传感器技术, 2001, 20(9): 1-5
    [8] Du C J, Sun D W. Learning techniques used in computer vision for food quality evaluation: a review. Journal of Food Engineering, 2006, 72: 39-55
    [9] Mart M P, Boqu R, Busto O, et al. Electronic noses in the quality control of alcoholic beverages. Trends in Analytical Chemistry, 2005, 24(1): 132-139
    [10] Andrea B, Paola S, Marcela, et al. Electronic nose based discrimination of a per- fumery compound in a fragrance. Sensors and Actuators B, 2003, 92: 222-227
    [11]田先亮,殷勇,刘红俊.人工嗅觉技术在酒类鉴别中的应用.传感器技术, 2004, 23(2): 47-50
    [12] Santos J P, Arroyo T, Aleixandre M, et al. A comparative study of sensor array and GC-MS: application to Madrid wines characterization. Sensors and Actuators B, 2004, 102: 299-307
    [13]胡国栋.气相色谱法在白酒分析中的应用现状与回顾.食品与发酵工业, 2003,29(10): 65-69
    [14] Hansen T, Petersen M A, Byrne D V. Sensory based quality control utilizing an electronic nose and GC-MS analyses to predict end-product quality from raw materials. Meat Science, 2005, 69: 621-634
    [15] Ragazzo S J A, Chalier P, Ghommidh C. Coupling gas chromatography and electronic nose for dehydration and desalcoholization of alcoholized beverages application to off-flavour detection in wine. Sensors and Actuators B, 2005, 106: 253-257
    [16] Garrigues S, Talou T, Nesa D. Comparative study between gas sensors arrays device, sensory evaluation and GC/MS analysis for QC in automotive industry. Sensors and Actuators B, 2004, 103: 55-68
    [17]刘崇进,郑大昉,陈明光等.气体传感器的发展概况和发展方向.计算机自动测量与控制, 1999, 7(2): 54-56
    [18] Hanns E, Hildegard D, Jander W. A test system for gas sensors. Sensors and Actuators B, 1995, 23: 163-172
    [19] Mikko U, Esko K, Heikki P. Combining miniaturized ion mobility spectrometer and metal oxide gas sensor for the fast detection of toxic chemical vapors Sensors and Actuators B, 2003, 93: 17-24
    [20]王岚,何敬文,刘雅言等.常温一氧化碳气敏元件制备及气敏机理研究.传感器技术, 2001, 20(9): 16-17
    [21] Burresi A, Fort A, Rocchi S, et al. Dynamic CO recognition in presence of interfering gases by using one MOX sensor and a selected temperature profile. Sensors and Actuators B, 2005, 106: 40-43
    [22]魏少红,牛新书,蒋凯. WO3纳米材料的NO2气敏特性.传感器技术, 2002, 21(11): 11-14
    [23] Omar H, Maryam S, Martine L. Qualitative and quantitative identification of H2S/NO2 gaseous components in different reference atmospheres using a metal oxide sensor array. Sensors and Actuators B, 2004, 103: 403-408
    [24] Stewart G, Tandy C, Moodie D, et al. Design of a fibred optic multi-point sensor for gas detection. Sensors and Actuators B, 1998, 51: 227-232
    [25] Zampollia S, Elmia I, Sturmann J, et al. Selectivity enhancement of metal oxide gas sensors using a micro machined gas chromatographic column. Sensors and Actuators B, 2005, 105: 400-406
    [26] Nagle H. Troy S, Susan S. et al. How and why of electronic noses. IEEE Spectrum, 1998, 35(9): 22-23
    [27] Gardner J W, Bartlett N. A brief history of electronic nose. Sensors and Actuators B, 1994, 18(1): 211- 220
    [28] Wilkens W F, Hatman T. An electronic analog for the olfactory process. Ann. NY. Sci. 1964, 116: 608
    [29] Persaud K, Dodd G. Analysis of discrimination mechanism in the mammalian olfactory system using a model nose. Nature, 1982, 299(5881): 352-355
    [30]闫军.国外电子鼻的研究开发动态.自动化博览, 1997, 2: 22-23
    [31]曲建岭.人工嗅觉系统中的信息处理技术[博士学位论文].西安:西北工业大学, 2000
    [32]张覃轶.电子鼻:传感器阵列、系统及应用研究[博士学位论文].武汉:华中科技大学, 2005
    [33] Liao F, Chen C, Subramanian V. Organic TFTs as gas sensors for electronic nose applications. Sensors and Actuators B, 2005, 107: 849-855
    [34] Carmel L, Sever N, Harel D. On predicting responses to mixtures in quartz microbalance sensors. Sensors and Actuators B, 2005, 106: 128-135
    [35] Hinkers H. An amperometric microsensor array with 1024 individually addressable elements for two-dimensional concentration mapping. Sensors and Actuators B, 1995, 24-25: 300-303.
    [36] Yoland G. M, Concepcion C O, Jose P P, et al. Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterization of vegetable oils. Analytica Chimica Acta, 2001, 449: 69-80
    [37] Parekh R, Yang J, Honavar V. Constructive neural-network learning algorithms for pattern classification. IEEE Trans. Neural Networks, 2000, 11: 436-450
    [38] Rafael C, Mrinal K M., Peter A, et al. An electronic nose for multimedia Applications. IEEE Rransactions on Consumer Electronics, 2003, 49(4): 1431-1437
    [39] Gan H L, Che Y B, Tan C P, et al. Characterisation of vegetable oils by surface acoustic wave sensing electronic nose. Food Chemistry, 2005, 89: 507-518
    [40] Ohmori S, Ohno Y, Makino T. Application of an electronic nose system for evaluation of unpleasant odor in coated tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59: 289-297
    [41] Canhoto O, Magan N. Electronic nose technology for the detection of microbial and chemical contamination of potable water. Sensors and Actuators B, 2005, 106: 3-6
    [42] Shaffer R E, Rose-Pehrsson S L, McGill R A. A comparison study of chemical sensor array pattern recognition algorithms. Analytica Chimica Acta, 1999, 384: 305 - 317
    [43] Kim E K, Wu J T. Comparison of neural network and KNN classification methods in vowel and pattern subluxation image recognitions. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(4): 775-782
    [44] Penza M, Cassano G, Tortorella F, et al. Classification of food, beverages and perfumes by WO3 thin-film sensors array and pattern recognition techniques. Sensors and Actuators B, 2001, 73: 76-87
    [45] Kim Y S, Ha S C, Yang Y. Portable electronic nose system based on the carbon black–polymer composite sensor array. Sensors and Actuators B, 2005, 108: 285-291
    [46] Eugenio M, Giorgio P, Corrado D N, et al. Chemical sensors clustering with the dynamic moments approach. Sensors and Actuators B, 2004, 101: 346-352
    [47] Kim B W, Kim S M. GA-optimized back-propagation neural network with multi-parameterized gradients and applications to predicting plasma etch data. Chemometrics and Intelligent Laboratory Systems, 2005, 79: 123-128
    [48] Kim K J. Artificial neural networks with evolutionary instance selection for financial forecasting. Expert Systems with Applications, 2006, 30: 519-526
    [49] Bicego M. Odor classification using similarity-based representation. Sensors and Actuators B, 2005, 110: 225-230
    [50] Marzia Z, Cosimo D, Pietro S, et al. Drift counteraction with multiple self-organising maps for an electronic nose. Sensors and Actuators B, 2004, 98: 305-317
    [51] Lavine B K, Davidson C E, Moores A J. Genetic algorithms for spectral pattern recognition. Vibrational Spectroscopy, 2002, 28: 83-95
    [52] Tetsuo A. Correlating sensory attributes to gas chromatography–mass spectrometry profiles and e-nose responses using partial least squares regression analysis. Journal of Chromatography A, 2004, 1054: 39-46
    [53] Boilot P, Hines E L, Gongora M A, et al. Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions. Sensors and Actuators B, 2003, 88: 80-88
    [54] Roland L, Siegfried J. A new neural network approach classifies olfactory signals with high accuracy. Food Quality and Preference, 2003, 14: 435-440
    [55] Hassan M E, Dowdeswell R M, Payne P A. An intelligent gas sensing system. Sensors and Actuators B, 1997, 44: 512-516
    [56] Sang H F, Wang F L, Liu L M, et al. Detection of element content in coal by pulsed neutron method based on an optimized back-propagation neural network. Nuclear Instruments and Methods in Physics Research B, 2005, 239: 202-208
    [57] Takahiro H, Haruhiko K, Takashi O. Recognition of human activities by gas sensor response using genetic algorithm. Scrip Technical, 2001, 85: 50 - 61
    [58] Yao X. An empirical study of genetic operators in genetic algorithms. Microprocessing and Microprogramming, 1993, 38: 707-714
    [59] Frank D, Birgit K, Gunter G. Genetic algorithms and neural networks for the quantitative analysis of ternary mixtures using surface plasma resonance. Chemo metrics and Intelligent Laboratory Systems, 2003, 65: 67 - 81
    [60] Manojit D, Deoki N. Design of neural networks using genetic algorithm for on-line property estimation of crude fractionator products. Computers and Chemical Engineering, 2006, 30: 722-729
    [61] Srivastava A K, Shukla K K, Srivastava S K. Exploring neuro-genetic processing of electronic nose data. Microelectronics Journal, 1998, 29: 921-931
    [62] Lee M. Evolution of behaviors in autonomous robot using artificial neural network and genetic algorithm. Information Sciences, 2003, 155: 43-60
    [63] Frank M, Hermle T, Ulmer H, et al. Quality tests of electronic noses: the influence of sample dilution and sensor drifts on the pattern recognition for selected casestudies. Sensors and Actuators B, 2000, 65: 88-90
    [64] Yas A A, Musbah M A. Pattern recognition using multilayer neural-genetic algorithm. Neurocomputing, 2003, 51: 237-247
    [65]李建平,高晓光,朱敏慧.微结构气敏传感器的热分析与结构设计.传感技术学报, 2000, 3: 193-198
    [66] Ortega A, Marco S, Perera A, et al. An intelligent detector based on temperature modulation of a gas sensor with a digital signal process. Sensors and Actuators B, 2001, 78: 32-39
    [67] Llobet E, Brezmes J, Vilanova X, et al. Qualitative and quantitave analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array. Sensors and Actuators B, 1997, 41: 13-21
    [68] Sauter D, Weimar U, Noetzel G, et al. Development of Modular Ozone Sensor System for application in practical use. Sensors and Actuators B, 2000, 69: 1-9
    [69] Gualdron O, Llobet E, Brezmes J, et al. Coupling fast variable selection methods to neural network-based classifiers: Application to multisensor systems. Sensors and Actuators B, 2006, 114: 522-529
    [70] Liu Y, Yao X, Ensemble learning via negative correlation. Neural Networks, 1999, 12: 1399-1404
    [71] Gardner J W, Bartlett P N. Performance definition and standardizations of electronic noses. Sensors and Actuators B, 1996, 33: 60-67
    [72]唐向阳,张勇,丁锐等.电子鼻技术的发展及展望.机电一体化, 2006, 4: 11-15
    [73]田敬民,李守志.金属氧化物半导体气敏机理探析.西安理工大学学报, 2002, 18(2): 144-147
    [74]薛天锋,胡季帆,秦宏伟等.掺铝ZnO纳米粉的制备与气敏特性研究.金属功能材料, 2003, 10(4): 20-23
    [75]李强,程晓丽,高山等.椭球形α-Fe2O3纳米薄膜的制备与气敏性能.应用化学, 2003, 20(8): 794-796
    [76] Meakawa T, Suzuki K, Takada T. Odor identification using a SnO2-based sensor array. Sensors and Actuators B, 2001, 80: 51-58
    [77] Taurino A M, Distante C, Siciliano P, et al. Quantitative and qualitative analysis of VOCs mixtures by means of a microsensors array and different evaluation methods. Sensors and Actuators B, 2003, 93: 117-125
    [78] Pardo M, Kwong L G, Sberveglieri G, et al. Data analysis for a hybrid sensor array. Sensors and Actuators B, 2005, 106: 136-143
    [79] Zhou Z B, He B S, Feng L D, et al. Multi-sensor technique and solid-state electrochemical sensor system for real-time and dynamic monitoring of multi-component gases. Sensors and Actuators B, 2005, 108: 379-383
    [80] Maziarz W, Potempa P, Sutor A, et al. Dynamic response of a semiconductor gas sensor analysed with the help of fuzzy logic. Thin Solid Films, 2003, 436: 127-131
    [81] Yang Y S, Ha S C, Kim Y S. A matched-profile method for simple and robust vapor recognition in electronic nose (E-nose) system. Sensors and Actuators B, 2005, 106: 263-270
    [82] Denise M W, Kevin D, Thaddeus R, et al. Rank extraction in tin-oxide sensor arrays. Sensors and Actuators B, 2000, 62: 199-210
    [83] Shurmer H V, Gardner J W, Corcoran P. Intelligent vapour discrimination using a composite 12-element sensor array. Sensors and Actuators B, 1990, 1(1-6): 256-260
    [84]周泽义,盖良京,梁建平.标准气体静态容量法配气方法研究.计量学报, 2003, 24(3): 236-239
    [85]史志存,李建平,崔大付等.电子鼻数据融合的软件实现.仪表技术与传感器, 2000, 10: 23-25
    [86] Hines E L, Llobet E, Gardner J W. Electronic noses: a review of signal processing techniques. IEE Proc-Circuits Devices System, 1999, 146(6): 297-310
    [87] Chueh H T, Hatfield J V. A real-time data acquisition system for a hand-held electronic nose Sensors and Actuators B, 2002, 83: 262-269
    [88]研华公司.数据采集应用与编程.台湾:研华科技公司, 2004. 10-98
    [89]胡峪,刘静. VC++编程技巧与示例.西安:电子科技大学出版社, 2001. 60-259
    [90]金昊,柯冬香.如何实现计算机数据采集系统的信号调理.电子技术应用, 1998, 11: 13-15
    [91]刘玉玺,桑会平,汤楠等. PCI-1711数据采集卡及其应用.今日电子, 2004, 2:25-26
    [92]飞思科技. MATLAB6. 5辅助神经网络设计与分析.北京:电子工业出版社, 2003. 64-69
    [93]丛爽.面向MATLAB工具箱的神经网络理论与应用.合肥:中国科学技术大学出版社, 1998. 45-73
    [94] Brudzewski K, Osowski S, Markiewicz T. Classification of milk by means of an electronic nose and SVM neural network. Sensors and Actuators B, 2004, 98: 291-298
    [95] Alexandros K P, Naresh M J, Meecham J. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosensors and Bioelectronics, 2004, 20: 538-544
    [96] Onkal E G, Demira I, Engin S N. Determination of the relationship between sewage odour and BOD by neural networks. Environmental Modelling and Software, 2005, 20: 843-850
    [97] Garcia P N, Hervas M C, Munoz P J. Multi objective cooperative co-evolution of artificial neural networks. Neural Networks, 2002, 15(10): 1255-1274
    [98] Carmel L, Sever N, Lancet D, et al. An ENose algorithm for identifying chemicals and determining their concentration. Sensors and Actuators B, 2003, 93: 77-83
    [99] Taurino A M, Monaco D D, Capone S, et al. Analysis of dry salami by means of an electronic nose and correlation with microbiological methods. Sensors and Actuators B, 2003, 95: 123-131
    [100] Niebling G., Schlachter A. Qualitative and quantitative gas analysis with non-linear interdigital sensor array and artificial neural networks. Sensors and Actuators B, 1995 (26-27): 289-292
    [101] Wang W J, Xu Z B, Lu W Z. Three improved neural network models for air quality forecasting. Engineering Computations, 2003, 20(2): 192-210
    [102] Zurada J M. Introduction to artificial neural systems. New York: West Publishing Company, 1992. 53-55
    [103] Marco S, Ortego A, Pardo A, et al. Gas identification with tin oxide sensor array and self-organizing map: adaptive correction of sensor drifts, IEEE Trans. Instrum.Measurement, 1998, (47)1: 316–320
    [104] Nguyen H H, Chan C W. Applications of artificial intelligence for optimization of compressor scheduling. Engineering Applications of Artificial Intelligence, 2006, 19: 113-126
    [105] Gao D Q, Chen M M, Yan J. Simultaneous estimation of classes and concentrations of odors by an electronic nose using combinative and modular multilayer perceptrons. Sensors and Actuators B, 2005, 107: 773–781
    [106] Nicolas G P, Cesar H M, Jose M P. COVNET: A Cooperative Coevolutionary Model for Evolving Artificial Neural Networks. IEEE Transations on Neural Networks, 2003, 14(3): 575-596
    [107] Lu Q Z, Shen G L, Yu R Q. A chaotic approach to maintain the population diversity of genetic algorithm in network training. Computational Biology and Chemistry, 2003, 27: 363-371
    [108] Ydstie B E. Forecasting and control using adaptive connectionist networks. Computers and Chemical Engineering, 1990(14): 583–600
    [109] Narendra K S, Parthasarathy K. Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Transaction on Neural Networks, 1991(2): 252–262
    [110] Specht D F. A generalized regression neural network, IEEE Transaction on Neural Networks, 1991 (2): 568–576
    [111] Rummelhart D E, McClelland J L. Parallel distributed processing, M. I. T. Press, Cambridge, 1986
    [112] Montagno R, Sexton R S, Smith B N. Using neural networks for identifying organizational improvement strategies. European Journal of Operational Research, 2002, 142: 382-395
    [113] Liu Y, Yao X, Higuchi T. Evolutionary ensembles with negative correlation learning. IEEE Transaction on Evolution Computer, 2000, 4: 380-387
    [114] Lu Y, Bian L, Yang P. Quantitative artificial neural network for electronic noses. Analytica Chimica Acta, 2000(417): 101-110
    [115] Yao X, Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Networks, 1997, 8: 697-713
    [116] Gardner J W, Boilot P, Hines E L. Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach. Sensors and Actuators B, 2005, 106: 114-121
    [117] Adem E A, Melih G K. A PWR reload optimisation code (XCore) using artificial neural networks and genetic algorithms. Annals of Nuclear Energy, 2003, 30: 35-53
    [118] Chih-hsien K, Michael J D, Chung-ming H, Chih-ming K. An Adaptive Power System Load Forecasting Scheme Using A Genetic Algorithm Embedded Neural Network. IEEE Instrumentation and Measurement Technology Conference, St. Paul. Minnesota, USA, May 18-20, 1998
    [119] Hao Z, Qian X P, Cen K, Fan J R. Optimizing pulverized coal combustion performance based on ANN and GA. Fuel Processing Technology, 2003, 85: 113- 124
    [120]周明,孙数栋.遗传算法原理及应用.北京:国防工业出版社, 1999. 32-64
    [121]张文修,梁怡.遗传算法的数学基础. (第二版)西安:西安交通大学出版社, 2003. 67-108
    [122] Javadi A A, Farmani R, Tan T P. A hybrid intelligent genetic algorithm. Advanced Engineering Informatics, 2005, 19: 255-262
    [123] Tsukimotoa H, Hatano H. The functional localization of neural networks using genetic algorithms. Neural Networks, 2003, 16: 55-67
    [124] Fang B S, Chen H W, Xie X L, et al. Using genetic algorithms coupling neural networks in a study of xylitol production: medium optimization. Process Biochemistry, 2003, 38: 979-985
    [125] Chen C R, Ramaswamy H S. Modeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithms. Journal of Food Engineering, 2002, 53: 209-220
    [126] Jiang N, Zhao Z Y, Ren L Q. Design of structural modular neural networks with genetic algorithm. Advances in Engineering Software, 2003, 34: 17-24
    [127] Aleixandre M, Sayago I, Horrillo M C, et al. Analysis of neural networks and analysis of feature selection with genetic algorithm to discriminate among pollutant gas. Sensors and Actuators B, 2004, 103: 122-128
    [128] Kima K J, Han I. Application of a hybrid genetic algorithm and neural network approach in activity-based costing. Expert Systems with Applications, 2003, 24: 73-77
    [129] Fogel D B. An introduction to simulated evolutionary optimization. IEEE Trans. On Neural Networks, 1994, 5(1): 85-95
    [130]张晓缋,戴冠中,徐乃平.遗传算法种群多样性的分析研究.控制理论与应用, 1998, 15(1): 17-22
    [131]郑志军,郑守淇.用基于实数编码的自适应遗传算法进化神经网络.计算机工程与应用, 2000, 9: 36-37
    [132] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. On Systems, Man and Cybernetics, 1994, 24(4): 656-665

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700