用户名: 密码: 验证码:
基于分数阶Fourier变换的RFID定位系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以实现人与人,人与物以及物与物之间随时随地进行数据通信为目标的物联网成为一项新兴的产业。然而在物联网应用中,没有地理位置信息的数据往往是无意义的,故对联网个体的定位问题成为研究的热点。目前,基于GPS、无线传感器网络、超宽带、射频识别等物联网支撑技术的定位研究开展得如火如荼,其中射频识别技术,凭借非接触、非视距、短时延、高精度、传输范围大、成本低和易实现等优点已成为物联网定位技术研究的重要载体。
     线性调频(LFM)信号是一类重要的非平稳信号,被广泛应用于雷达、声纳、通信等领域。由于LFM信号的瞬时频率随传播时间线性变化,其抗多普勒频移干扰的能力较强,且该信号本身的两个重要参数都包含有目标的位置信息,所以非常适合于定位、跟踪等需要目标位置信息的应用。分数阶Fourier变换(FRFT)作为传统Fourier变换的广义形式,具有明确的物理意义、统一的描述方法、优良的数学性质以及高效的离散算法,能同时反映信号在时、频域的信息,适于处理非平稳信号。
     一个出色的射频识别定位系统其关键技术包括面向工程应用背景,精度高、效率高、易实现的定位算法,小型化、多频段、可重构的读写器和标签天线,稳定可靠、低功耗、低成本的读写器和标签嵌入式系统软硬件设计。本文结合分数阶Fourier变换理论以及微带天线理论,对基于分数阶Fourier变换的RFID定位算法,小型化多频段可重构RFID天线设计以及针对实际工程应用可移植算法的RFID技术嵌入式系统平台设计与实现进行了较为深入的研究,所作的主要贡献及创新性成果包括以下几个方面:
     提出了一种针对单个移动读写器对多个LFM射频标签目标的检测及定位算法。将分数阶Fourier变换理论引入了RFID定位研究。考虑到实际应用中天线阵列几何形状的均匀性要受到设备内部空间、阵列资源以及校正技术的限制,对非均匀天线阵列进行了分析。针对工程实用背景,建立了分数阶Fourier域天线阵列数据模型。考虑移动读写器接收信号的多普勒频移,构造了子空间阵列旋转矩阵,结合常规ESPRIT子空间算法,实现了多个宽带LFM信号的DOA估计。在移动读写器位置已知条件下,根据估计的波达方向,利用简单的几何关系实现定位,并进行了仿真实验。
     提出了一种适用于RFID系统,同时也适用于蓝牙,WLAN和WiMAX通信系统的小型化多频段单极子微带天线。在研究微带天线理论的基础上,结合RFID天线设计要求,创新的提出了一种带缺陷地结构的天线形状。该天线具备尺寸小,重量轻,易集成,多频段,结构紧凑,馈电方便的特点。给出了天线设计流程和天线设计准则,并进行了仿真、实际制作与测试,测试结果表明该天线符合RFID系统通信应用要求,适合工程应用。
     针对多频段天线相邻工作频段存在干扰问题,提出了一种适用于RFID系统,同时也适用于蓝牙,WLAN和WiMAX通信系统的的小型化多频段可重构单极子微带天线。创新的提出了一种带缺陷地结构的可重构天线形状。该天线依然具备尺寸小,重量轻,易集成,多频段,结构紧凑,馈电方便的特点,同时根据电子开关的通断,可以实现频率可重构。给出了天线设计流程和天线设计准则,并进行了仿真、实际制作与测试,测试结果表明该天线符合RFID系统通信应用要求,适合工程应用。
     提出了一种可工作在高频频段(HF)的RFID嵌入式系统平台。该平台以采用ARM Cortex-M3核的STM32微控制器为核心,符合ISO14443,ISO15693标准,可工作在13.56MHz高频频段。论文完成了系统硬件设计与制作,开发了系统软件,并在此平台基础上进行了与RFID关键技术相关的开发与测试。
     提出了一种可工作在超高频频段(UHF)和微波频段(Microwave)的RFID嵌入式系统平台。该平台依然以采用ARM Cortex-M3核的STM32微控制器为核心,可工作在433MHz/868MHZ/915MHz超高频频段和2.4GHz,5.8GHz微波频段,同时为3.5GHz微波频段预留了开发接口。论文完成了系统硬件设计与制作,开发了系统软件,并在此平台基础上进行了与RFID关键技术相关的开发与测试。该平台采用了本文设计的天线,其处理器可实现本文算法的移植,同时为其他算法和天线的开发与实测构筑了一个基础的嵌入式平台。
In recent years, in order to realize the communication between person and person, person and ting, thing and thing, whenever and wherever possible, the Internet of things has become an emerging industry. However, in the Internet of things, no geographic information data is often meaningless, so the location problem of network becomes the focus of research. At present, as the support technologies of the Internet of things, the localization research of GPS, wireless sensor networks, ultra-wideband and radio frequency identification develops fast. The radio frequency identification technology, with the advantages of non-contact, non-line-of-sight, short time delay, high precision, large transmission range, low cost and easy to implement, has become a hot topic technology of positioning research of Internet of things.
     Linear frequency modulated (LFM) signal is an important class of non-stationary signal, is widely used in radar, sonar, communication etc. Because of the instantaneous frequency of the LFM signal with the propagation time linearly, the Doppler frequency shift interference ability is strong, and the two important parameters of the signal itself contains the position information of the target, so is very suitable for positioning, tracking the target position information. The fractional Fourier transform, as a generalized form of conventional Fourier transform, is essentially a unified time-frequency representation, which reflects the characteristics of a signal in time domain and frequency domain simultaneously, has definite physical meaning, unified description method, excellent mathematical property and efficient discrete algorithm, and is suitable for non-stationary signal processing.
     The key technologies of a good radio frequency identification and positioning system include positioning algorithm of high precision, high efficiency, easy implementation, for engineering application background; miniaturization, multi-band, reconfigurable reader and tag antenna; the hardware and software of embedded system design of reader and tag which is stable and reliable, low power consumption, low cost.
     Based on the fractional Fourier transform theory and the theory of microstrip antenna, the RFID localization algorithm based on the fractional Fourier transform, miniaturized multiband reconfigurable RFID antenna and aiming at the practical engineering application of portable algorithms for RFID technology in embedded system platform design and realization are studied, the main contributions and innovative achievements include the following:
     Presens an algorithm for detecting and locating a plurality of RFID tag target transmitting LFM signal by the mobile reader.The fractional Fourier transform theory is introduced into the RFID position, taking into account the uniformity of practice antenna array geometry to be inside the space equipment, array resources and correction technology limited, so combined with the practical background of non-uniform antenna array is analyzed, established the fractional Fourier domain antenna array data model, consider mobile reading writing device receives the signal Doppler frequency shift, construct spatial array rotation matrix, combined with conventional ESPRIT subspace algorithm for one-dimensional DOA multiple wideband LFM signal estimation, in the mobile reader position known conditions, according to the direction of arrival estimation, for positioning by simple geometry, simulation experiment is carried out.
     A multi-band monopole microstrip antenna is presented for the RFID system, but also suitable for Bluetooth, WLAN and WiMAX communication system. In the study of microstrip antenna theory, combined with the RFID antenna design requirements, this article innovates a shape of multi-band antenna with a defected ground structure. The antenna has small size, light weight, easy integration, multi-band, compact structure, easy to feed. Antenna design cycle and criterion, the simulation, the actual production and test are proposed, the test results show that the antenna meets the requirements of communication application of the RFID system, suitable for engineering application.
     A multi-band reconfigurable monopole microstrip antenna is presented for the RFID system, but also suitable for Bluetooth, WLAN and WiMAX communication system. In the study of microstrip antenna theory, combined with the RFID antenna design requirements, this article innovates a shape of reconfigurable antenna with a defected ground structure. The antenna has small size, light weight, easy integration, multi-band, compact structure, easy to feed. Antenna design cycle and criterion, the simulation, the actual production and test are proposed, the test results show that the antenna meets the requirements of communication application of the RFID system, suitable for engineering application.
     This paper puts forward one RFID embedded system platform working in high frequency range. The platform processor uses ARM Cortex-M3nuclear for STM32micro-controller, which can work in the13.56MHz frequency band, this paper designs independently and produces the hardware and software system, tests the key technologies of RFID based on this platform.
     This paper puts forward the other RFID embedded system platform working in ultra-high frequency and microwave frequency range. The platform processor also uses ARM Cortex-M3nuclear for STM32micro-controller, which can work in the433MHz/868MHZ/915MHz ultra-high frequency band and2.4GHz,5.8GHz microwave frequency band, this paper designs independently and produces the hardware and software system, test the key technologies of RFID based on this platform. The platform can realize the algorithm transplantation and use the antennas which are designed in this paper, so a foundation embedded platform is built for development and testing for other algorithms and antenna.
引文
[1]单承赣,单玉峰,姚磊.射频识别(RFID)原理与应用.北京:电子工业出版社,2008,1~37
    [2]丁治国. RFID关键技术研究与实现:[博士学位论文],合肥:中国科技大学,2009.
    [3]裴静.小型多频段平面单极天线的设计:[硕士学位论文],天津:天津大学,2011.
    [4]赵涤燹,闰娜,徐雯.适用于无源射频标签的低功耗单栅非挥发性存储器,半导体学报,2008,29(1):99~104.
    [5]沈少武,程仕意,徐斌富.一种用于电子标签的低功耗高精度时钟电路设计,电路设计,2008,265:54~57.
    [6]刁裕博.浅谈RFID及其封装技术,科技咨询.2007.
    [7]胡圣波,郑志平.一种井下RFID定位系统的读卡器防碰撞算法.微计算机信息,2006,22(9~2):185~187.
    [8] Xu B, Gang W. Random sampling algorithm in RFID indoor locationsystem.3rd IEEE International Workshop on Electronic Design, Test andApplications,2006,168~173.
    [9]周非.基于时延估计的无线定位技术研究:[博士学位论文],成都:电子科技大学,2006.
    [10] LIU Hui, DARABI H. Survey of Wireless Indoor Positioning Techniques andSystems. IEEE Transaction on Systems, Man, and Cybernetics Ⅲ,2007,37(6):1067~1080.
    [11] J. Zhou, J. Shi. RFID Localization Algorithms and Applications—a Review,Journal of International Manufacturing, Netherlands, Springer Press,2008.695~707.
    [12] T. Sanpechuda, L. Kovavisaruch, A Review of RFID Localization:Applications and Techniques, In: Proceedings of5th International Conferenceon Electrical Engineering/Electronics, Computer, Telecommunications andInformation Technology, Krabi, Thailand,2008(2):768~772.
    [13] L. Ni, Y. Liu, Y. Lau, et al. LANDMARC: Indoor Location Sensing UsingActive RFID, In: Proceeding of the1st International Conference on PervasiveComputing, Texas, USA,2003.407~415.
    [14]倪海燕,应祥岳,简家文等,无线传感器网络的自身定位算法研究,宁波大学学报,2009,22(1):7~11.
    [15] D. Joho, C. Plagemann, W. Burgard, Modeling RFID Signal Strength and TagDetection for Localization and Mapping, In: Proceedings of IEEE InternationalConference on Robotics and Automation, Kobe, Japan,2009.3160~3165.
    [16] J. Yin, Q. Yang, L.M. Ni. Adaptive Temporal Radio Maps for Indoor LocationEstimation, In: Proceedings of2005IEEE Annual Conference on PervasiveComputing and Communications, Hawaii, USA,2005.85~94.
    [17]范平志,邓平,刘林,蜂窝网无线定位,北京:电子工业出版社,2002.45~78.
    [18] J. Ma, Q. Chen, D. Zhang. An Empirical Study of Radio Signal Strength inSensor Networks. Technical Report, Dept. of Computer Science andEngineering, Hong Kong University of Science and Technology, March25,2006.
    [19] Homayoun Hashemi, The Indoor Radio Propagation Channel, Proceeding ofthe IEEE,1993,81(7):943~968.
    [20] Yimin Zhang, Moeness G. Amin, Shashank Kaushik. Localization andTracking of Passive RFID Tags Based on Direction Estimation, InternationalJournal of Antennas and Propagation,2007.
    [21] Junru Zhou, Hongjian Zhang, Lingfei Mo, Two-dimension localization ofpassive RFID tags using AOA estimation, In: Proceedings of2011IEEEInternational Instrumentation and Measurement Technology Conference,Binjiang, China,2011.511~515.
    [22] Cory Hekimian-Williams, Brandon Grant, Xiuwen Liu, et al. AccurateLocalization of RFID Tags Using Phase Difference, RFID,2010IEEEInternational Conference on,2010.89~96.
    [23] Salah Azzouzi, Markus Cremer, Uwe Dettmar, et al. New MeasurementResults for the Localization of UHF RFID Transponders Using an Angle ofArrival(AoA) Approach, In: Proceedings of2011IEEE InternationalConference on RFID,Florida,USA,2011.91~97.
    [24] Wille.A, Broll,M, Winter,S, Phase difference based RFID navigation formedical applications,2011IEEE International Conference on RFID, Florida,USA,2011.98~105.
    [25]谭民,刘禹,曾隽芳,RFID技术系统工程及应用指南,北京:机械工业出版社,2007.32~53.
    [26] Jari-Pascal Curty,无源超高频RFID系统设计与优化(陈力颖,毛陆虹)北京:科学出版社,2008.31~52.
    [27]李彬,王文杰,殷勤业,杨荣.一种利用天线旋转的无线传感器网络定位算法.西安交通大学学报,2011,45(4):60~66.
    [28]罗蓬.基于分数阶Fourier变换的非平稳信号处理技术研究:[博士学位论文],天津:天津大学,2011.
    [29]董永强,陶然,周思永,等.基于分数阶傅里叶变换的SAR运动目标检测与成像.兵工学报,1999,20(2):132~136
    [30]赵兴浩,陶然.基于分数阶相关的无源雷达运动目标检测新算法.电子学报,2005,33(9):1567~1570
    [31] Sun H B, Liu G S, Gu H, et al. Application of the fractional Fourier transformto moving target detection in airborne SAR. IEEE Transactions on Aerospaceand Electronic Systems,2002,38(4):1416~1424
    [32] Du L P, Su G C. Adaptive inverse synthetic aperture radar imaging fornonuniformly moving targets. IEEE Geoscience and Remote Sensing Letters,2005,2(3):247~249
    [33] Amein A S, Soraghan J J. A new chirp scaling algorithm based on thefractional Fourier transform. IEEE Signal Processing Letters,2005,12(10):705~708
    [34] Musha T, Uchida H, Nagashima M. Self-monitoring sonar transducer arraywith internal accelerometers. IEEE Journal of Oceanic Engineering,2002,27(1):28~34
    [35] Bennett M J, McLaughlin S, Anderson T, et al. The use of the fraction Fouriertransform with coded excitation in ultrasound imaging. IEEE Transactions onBiomedical Engineering,2006,53(4):754~756
    [36]齐林,陶然,周思永,等. DSSS系统中基于分数阶傅里叶变换的扫频干扰抑制算法.电子学报,2004,32(5):799~802
    [37]邓兵,陶然,齐林,等.基于分数阶傅里叶变换的混响抑制方法研究.兵工学报,2005,26(6):761~765
    [38]邓兵,陶然,平殿发,等.基于分数阶傅里叶变换补偿多普勒徙动的动目标检测算法.兵工学报,2009,30(10):1303~1309
    [39]陈恩庆,陶然,张卫强.一种基于分数阶傅里叶变换的时变信道参数估计方法.电子学报,2005,33(12):2101~2104
    [40]陈恩庆,陶然,张卫强,等.一种基于分数阶傅里叶变换的OFDM系统及其均衡算法.电子学报,2007,35(3):409~414
    [41]邓兵,陶然,平殿发.基于分数阶Fourier变换的chirp-rate调制解调方法研究.电子学报,2008,36(6):1078~1083
    [42] Martone M. A multicarrier system based on the fractional Fourier transform fortime-frequency-selective channels. IEEE Transactions on Communications,2001,49(6):1011~1020
    [43] Ju Y, Barkat B, Attallah S. Analysis of peak-to-average power ratio of amulticarrier system based on the fractional Fourier transform. The9thInternational Conference on Communications Systems,2004:165~168
    [44] Namias V. The fractional order Fourier transform and its application toquantum mechanics. IMA Journal of Applied Mathematics,1980,25(3):241~265
    [45] McBride A C, Kerr F H. On Namias’ fractional Fourier transforms. IMAJournal of Applied Mathematics,1987,39(2):159~175
    [46] Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their opticalimplementation:Ⅰ. Journal of the Optical Society of America. A,1993,10(9):1875~1881
    [47] Ozaktas H M, Mendlovic D. Fractional Fourier transforms and their opticalimplementation:Ⅱ. Journal of the Optical Society of America. A,1993,10(12):2522~2531
    [48] Ozaktas H M. The fractional Fourier transform with applications in optics andsignal processing. New York: John Wiley&Sons,2000
    [49] Almeida L B. The fractional Fourier transform and time-frequencyrepresentations. IEEE Transactions on Signal Processing,1994,42(11):3084~3091
    [50] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of thefractional Fourier transform. IEEE Transactions on Signal Processing,1996,44(9):2141~2150
    [51] Kutay M A, Ozaktas H M, Arikan O, et al. Optimal filtering in fractionalFourier domains. IEEE Transactions on Signal Processing,1997,45(5):1129~1143
    [52] Erden M F, Kutay M A, Ozaktas H M. Repeated filtering in consecutivefractional Fourier domains and its application to signal restoration. IEEETransactions on Signal Processing,1999,47(5):1458~1462
    [53]邓兵,陶然,齐林,等.分数阶Fourier变换与时频滤波.系统工程与电子技术,2004,26(10):1357~1359
    [54]齐林,周丽晓.变换域自适应滤波算法的研究.郑州大学学报,2007,39(1):61~66
    [55]孟祥意,陶然,王越.分数阶傅里叶域两通道滤波器组.电子学报,2008,36(5):919~926
    [56]孟祥意,陶然,王越.分数阶傅里叶域滤波器组的一般化设计方法.电子学报,2009,37(9):2046~2051
    [57]邓兵,陶然,尹德强.分数阶傅里叶域的阵列信号盲分离方法.兵工学报,2009,30(11):1451~1456
    [58] Chan Y K, Koo V C. An introduction to synthetic aperture radar. Progress InElectromagnetics Research B,2008,2:27~60
    [59] Gudra T, Herman K. Some problems of analyzing bio-sonar echolocationsignals generated by echolocating animals living in the water and in the air.The Journal of the Acoustical Society of America,2008,123(5):5941~5946
    [60] Jang S, Choi W, Sarkar T K, et al. Exploiting early time response using thefractional Fourier transform for analyzing transient radar returns. IEEETransactions on Antennas and Propagation,2004,52(11):3109~3121
    [61] Jouny I I. Radar backscatter analysis using fractional Fourier transform. IEEEAntennas and Propagation Society International Symposium,2004,2:2115~2118
    [62] Mason S, Berger C, Zhou S, et al. Detection, synchronization, and Dopplerscale estimation with multicarrier waveforms in underwater acousticcommunication. IEEE Journal on Selected Areas in Communications,2008,26(9):1638~1649
    [63] Alieva T, Bastiaans M J, Stankovic L. Signal reconstruction form two closefractional Fourier power spectra. IEEE Transactions on Signal Processing,2003,51(1):112~123
    [64] Zhang F, Bi G, Chen Y Q. Tomography time-frequency transform. IEEETransactions on Signal Processing,2002,50(6):1289~1297
    [65]陈光化,马世伟,曹家麟,等.基于分数阶傅立叶变换的自适应时频表示.系统工程与电子技术,2001,23(4):69~71
    [66] Djurovic I, Stankovic S, Pitas I. Digital watermarking in the fractional Fouriertransformation domain. Journal of Network and Computer Applications.2001,24:167~173
    [67] Liu S, Yu L, Zhu B. Optical image encryption by cascaded fractional Fouriertransforms with random phase filtering. Optics Communications,2001,187:57~63
    [68] Zhu B, Liu S. Optical image encryption based on the generalized fractionalconvolution operation. Optics Communications,2001,195:371~381
    [69] Zhang Y, Zheng C H, Tanno N. Optical encryption based on iterative fractionalFourier transform. Optics Communications,2002,202:277~285
    [70] Hennelly B, Sheridan J T. Fractional Fourier transform-based image encryption:phase retrieval algorithm. Optics Communications,2003,226:61~80
    [71] Nishchal N K, Joseph J, Singh K. Securing information using fractionalFourier transform in digital holography. Optics Communications,2004,235:253~259
    [72]张南,陶然,单涛,等.基于分数阶傅里叶变换的线性调频信号分辨率分析.电子学报,2007,35(12A):8~13
    [73]刘峰,黄宇,陶然,等.分数阶Fourier变换对多分量Chirp信号中心频率的分辨能力.兵工学报,2009,30(1):14~18
    [74]邓兵,陶然,曲长文.分数阶Fourier域中多分量chirp信号的遮蔽分析.电子学报,2007,35(6):1094~1098
    [75] Lohmann A W, Mendlovic D, Zalevsky Z, et al. Some important fractionaltransformations for signal processing. Optics Communications,1996,125:18~20
    [76] Kraniauskas P, Cariolaro G, Erseghe T. Method for defining a class offractional operations. IEEE Transactions on Signal Processing,1998,46(10):2804~2807
    [77] Akay O, Boudreaux-Bartels G F. Fractional convolution and correlation viaoperator methods and an application to detection of linear FM signals. IEEETransactions on Signal Processing,2001,49(5):979~993
    [78] Pei S C, Ding J J. Fractional cosine, sine, and Hartley transforms. IEEETransactions on Signal Processing,2002,50(7):1661~1680
    [79]田孝华,廖桂生,吴云韬. LFM脉冲雷达回波Doppler与多径时延的联合估计.电子学报,2002,30(6):857~860
    [80] Qi L, Tao R, Zhou S. Detection and parameter estimation of multicomponentLFM signal based on the fractional Fourier transform. Science in China Ser. FInformation Sciences,2004,47(2):184~198
    [81]赵兴浩,陶然,周思永,等.基于Radon-Ambiguity变换和分数阶傅里叶变换的chirp信号检测及多参数估计.北京理工大学学报,2003,23(3):371~374
    [82]王宏禹.现代谱估计.南京:东南大学出版社,1990
    [83] Krim H, Viberg M. Two decades of array processing research: the parametricapproach. IEEE Signal Processing Magazine,1996,13(4):67~94
    [84] Burg J P. Maximum entropy spectral analysis.37th Annual InternationalMeeting of Society of Exploration Geophysics,1967
    [85] Capon J. High-resolution frequency-wavenumber spectrum analysis.Proceeding of the IEEE,1969,57(8):1408~1418
    [86] Kay S M, Marple S L. Spectrum analysis—A modern perspective. Proceedingsof the IEEE,1981,69(11):1380~1419
    [87] Schmidt R. Multiple emitter location and signal parameter estimation. IEEETransactions on Antennas and Propagation,1986,34(3):276~280
    [88] Roy R, Paulraj A, Kailath T. ESPRIT—A subspace rotation approach toestimation of parameters of cisoids in noise. IEEE Transactions on Acoustics,Speech and Signal Processing,1986,34(5):1340~1342
    [89] Belouchrani A, Amin M G. Blind source separation based on time-frequencysignal representation. IEEE Transactions on Signal Processing,1998,46(11):2888~2897
    [90] Belouchrani A, Amin M G. Time-frequency MUSIC. IEEE Signal ProcessingLetters,1999,6(5):109~110
    [91] Wang Q, Wu C. A high reliability DOA estimation method—TF-ESPRITmethod.6th International Conference on Signal Processing,2002,1:374~377
    [92] Zhang Y, Mu W, Amin M G. Time-frequency maximum likelihood methods fordirection finding. Journal of Franklin Institute,2000,337(4):483~497
    [93] Jin L, In Q Y, Wang W J. Time-frequency signal subspace fitting method fordirection-of-arrival estimation. IEEE International Symposium on Circuits andSystems,2000,3:375~378
    [94]李丽萍,黄克骥,陈天麒.基于STFT的相干宽带调频信号2-D到达角估计.电子与信息学报,2005,27(11):1760~1764
    [95]王永良,陈辉,彭应宁,等.空间谱估计理论与算法.北京:清华大学出版社,2004
    [96] Kay S M. Fundamentals of statistical signal processing: estimation theory.New Jersey: Prentice Hall,1992
    [97] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound.IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(5):720~741
    [98]茆诗松,王静龙,濮晓龙,等.高等数理统计.北京:高等教育出版社,1998
    [99] Rao B D, Hari K V S. Performance analysis of Root-MUSIC. IEEETransactions on Acoustics, Speech and Signal Processing,1989,37(12):1939~1949
    [100]金梁,殷勤业.时空DOA矩阵方法.电子学报,2000,28(6):8~12
    [101] Qu H, Qi L, Mu X, et al. DOA estimation of coherent wideband LFM signalsbased on fractional Fourier transform. International Conference on InnovativeComputing, Information and Control,2006:18~21
    [102]刘小河,王建英,杨美英.基于分数阶傅里叶变换的宽带LFM相干信号的DOA估计.数据采集与处理,2008,23(5):547~550
    [103]陶然,周云松.基于分数阶傅里叶变换的宽带LFM信号波达方向估计新算法.北京理工大学学报,2005,25(10):895~899
    [104]杨小明,陶然.基于分数阶傅里叶变换的线性调频信号二维波达方向估计.电子学报,2008,36(9):1737~1740
    [105]杨小明,陶然.基于分数阶Fourier变换和ESPRIT算法的LFM信号2D波达方向估计.兵工学报,2007,28(12):1438~1442
    [106] Yang Xiaoming, Tao Ran.2D DOA estimation of LFM signals based onfractional Fourier transform and ESPRIT algorithm. Acta Armamentarii,2007,28(12):1438~1442
    [107] Qu Haitao, Qi Lin, Mu Xiaomin, et al. DOA estimation of coherent widebandLFM signals based on fractional Fourier transform. International Conferenceon Innovative Computing, Information and Control. Beijing, China,2006:6~9
    [108]陶然,齐林,王越.分数阶Fourier变换的原理与应用.北京:清华大学出版社,2004
    [109]陶然,邓兵,王越.分数阶傅里叶变换及其应用.北京:清华大学出版社,2009
    [110]罗蓬,刘开华,黄翔东,于洁潇.非规则几何结构阵列下的宽带线性调频信号波达方向估计.天津大学学报,2011,44(10):878~883
    [111]何伟艳,金荣洪,耿军平,梁仙灵.一种基于分数阶傅里叶变换域加权MUSIC算法的移动单站多目标无源定位方法.上海交通大学学报,2011,45(3):345~349
    [112] Qi Lin, Tao Ran, Zhou Siyong, et al. Detection and parameter estimation ofmulticomponent LFM signal based on the fractional Fourier transform. Sciencein China, Ser.E,2003,33(8):749~759
    [113] Zhao Xinghao, Deng Bing, Tao Ran. Dimensional normalization in the digitalcomputation of the fractional Fourier transform. Transactions of BeijingInstitute of Technology,2005,25(4):360~364
    [114]史伟光.基于射频识别技术的室内定位算法研究:[博士学位论文],天津:天津大学,2011.
    [115]房志江.小型化及多频段天线技术研究:[博士学位论文],上海:上海交通大学,2009.
    [116] C.-Y. Huang and P.-Y. Chiu,“Dual-band monopole antenna with shortedparasitic element,” Electron. Lett.,2005,41:1154~1155,.
    [117] H. Ma, Q.-X. Chu, and Q. Zhang,“Compact dual-band printed monopoleantenna for WLAN application,” Electron. Letter,2008,44:834~835.
    [118] X. He, H. Xiong, Q. Zhang, and E. M. M. Tentzeris,“Design of a novelhigh-gain dual-band antenna for WLAN applications,” IEEE AntennasWireless Propagation. Letter,2009,8:798~801.
    [119] L. Y. Cai, G. Zeng, and H. C. Yang,“Compact triple band antenna forBluetooth/WiMAX/WLAN applications,” in Proc. Int. Symp. Signals, System.Electronic, Nanjing, China,2010.1~4.
    [120] H.-W. Liu, C.-H. Ku, and C.-F. Yang,“Novel CPW-fed planar monopoleantenna for WiMAX/WLAN applications,” IEEE Antennas WirelessPropagation. Letter,2010,9:240~243.
    [121] W.-S. Chen and K.-Y. Ku,“Band-rejected design of the printed open slotantenna for WLAN/WiMAX operation,” IEEE Transactions. AntennasPropagation,2008,56(4):1163~1169.
    [122] T. and M. Sreenivasan,“Compact triple band antenna for WLAN/WiMAXapplications,” Electronic. Letters,2009,45(16):811~813.
    [123] D. D. Krishna, M. Gopikrishna, and C. K. Aanandan,“A CPW-fed triple bandmonopole antenna for WiMAX/WLAN applications,” in Proc.38th Eur.Microw. Conference, Amsterdam. The Netherlands,2008.897~900.
    [124] R. L. Li, T. Wu, and M. M. Tentzeris,“A triple-band unidirectional coplanarantenna for2.4/3.5/5-GHz WLAN/WiMax applications,” in Proc. AntennasPropagation. Soc. Int. Symp., Charleston, SC,2009,1~3.
    [125] D. Parkash and R. Khanna,“Design of a dual band monopole antenna forWLAN/WiMAX applications,” in Proc.7thWOCN,2010,1~2.
    [126] Pan Chien-Yuan, HorngTzyy-Sheng, Chen Wen-Shan, Huang Chien-Hsiang.Dual wideband printed monopole antenna for WLAN/WiMAX applications.IEEE Antennas and Wireless Propagation Letters,2007,6:149~151.
    [127] Chen Kang-Kang, Zhao Ji-Xiang. Band-notched design of the planarmonopole antenna for WLAN/WiMAX applications. Microwave and OpticalTechnology Letters,2007,52(12):2782~2786.
    [128] Koohestani M., Akbari, M., Khalilpour J. A new compact dual-widebandprinted monopole antenna for WLAN/WiMAX applications. InternationalJournal of RF and Microwave Computer-Aided Engineering,2011,21(6):674~679.
    [129] Ren Xueshi, Yin Yingzeng, Zheng Shufeng, Zuo Shaoli, Liu Bowen.Triple-band rectangular ring monopole antenna for WLAN/WiMAXapplications. Microwave and Optical Technology Letters,2011,53(5):974~978.
    [130] Chen I.-Fong, Peng Chia-Mei. Printed broadband monopole antenna forWLAN/WiMAX applications. IEEE Antennas and Wireless PropagationLetters,2009,8:472~474.
    [131] Zhang Qiu-Yi, Chu Qing-Xin. Triple-band dual rectangular ring printedmonopole antenna for WLAN/WiMAX applications. Microwave and OpticalTechnology Letters,2009,51(12):2845~2848.
    [132] Cao J., Zhao X., Liu C., Yan Liping. A planar compact triple-band monopoleantenna for WLAN/WiMAX applications. Progress in ElectromagneticsResearch Letters,2012,29:15~23.
    [133] Lavakhamseh H., Ghobadi Ch., Nourinia J., Ojaroudi M.. Multiresonanceprinted monopole antenna for DCS/WLAN/WIMAX applications. Microwaveand Optical Technology Letters,2012,54(2):297~300.
    [134] Wong Kin-Lu, Lee Cheng-Tse. Small-size wideband monopole antenna closelycoupled with a chip-inductor-loaded shorted strip for11-bandWWAN/WLAN/WiMAX operation in the slim mobile phone. Microwave andOptical Technology Letters,2011,53(2):361~366.
    [135] Li Xin, Hu Wei, Wang Ya Fang, Shi Xiao Wei, Gu Xin Tao. Printed triple-bandrectangular ring monopole antenna with symmetrical L-strips forWLAN/WiMAX applications. Microwave and Optical Technology Letters,2012,54(4):1049~1052.
    [136] Liu Hsien-Wen, Ku Chia-Hao. Novel planar triple band monopole antenna forWiMAX/WLAN applications. Microwave and Optical Technology Letters,2010,52(11):2405~2408.
    [137] Panda Jyoti Ranjan, Kshetrimayum Rakhesh Singh. An F-shaped printedmonopole antenna for dual-band RFID and WLAN applications. Microwaveand Optical Technology Letters,2011,53(7):1478~1481.
    [138] Yang Hanhua, Yan Shu. A novel p-shaped printed monopole antenna for RFIDapplications. Microwave and Optical Technology Letters,2009,51(2):554~556.
    [139] Yang Tang, Tian Xiao-Jian. A novel heart-shaped monopole antenna for UWBand RFID applications. Microwave and Optical Technology Letters,2011,53(10):2288~2291.
    [140]王安国,刘楠,兰航.方向图可重构宽带准八木天线的设计.天津大学学报,2011,44(10):872~877
    [141]肖绍球,王秉中.微带可重构天线的初步探讨.电波科学学报,2002,17(4):386~390.
    [142]杨雪松,王秉中.可重构天线的研究进展.系统工程与电子技术,2003,25(4):417~421.
    [143]王安国,张佳杰,王鹏.可重构天线的研究现状与发展趋势.电波科学学报,2008,23(5):997~1003
    [144] S. Yang, C. Zhang, H. K. Pan, A. E. Fathy, and V. K. Nair, Frequencyreconfigurable antennas for multiradio wireless platforms, IEEE Microw.Mag.,2009,10(1):66~83
    [145] Chunna Zhang, Songnan Yang, Samir El-Ghazaly, et al. A low-profile branchedmonopole laptop reconfigurable multiband antenna for wireless applications.IEEE Trans. Antennas Propagate,2009,8:216~219.
    [146] Rashid Ahmad Bhatti, Yun-Taek Im, Seong-Ook Park. Compact PIFA formobile terminals supporting multiple cellular and non-cellular standards. IEEETrans. Antennas Propagate,2009,9:2535~2540.
    [147] C. Gopakumar and K. T. Mathew, A microstrip-line-fed isosceles-trapezoidaldielectric resonator antenna with slotted ground plane for2.4GHz WLANoperation, Microwave and Optical Technology Letters,2011,53(3):553~557.
    [148] I. Tekin, M. Knox, Reconfigurable Microstrip patch antenna for WLANsoftware defined radio applications, Microwave and Optical TechnologyLetters,2012,54(3):644~649.
    [149] Saghati, Alireza Pourghorban, A novel switchable single-and multi-frequencytriple-slot antenna for2.4-GHz Bluetooth,3.5-GHz WiMax, and5.8-GHzWLAN, IEEE Antennas and Wireless Propagation Letters,2010,9:534~537.
    [150] M. A. Antoniades and G. V. Eleftheriades,“A compact monopole antenna witha defected ground plane for multi-band applications,” in Proc. AntennasPropag. Soc. Int. Symp.,2008,1~4.
    [151] Jing Pei, An-Guo Wang, Shun Gao and Wen Leng, Miniaturized Triple-Band Antenna with a Defected Ground Plane for WLAN/WiMAX Applications,IEEE Antennas and Wireless Propagation Letters,2011,10:298~301.
    [152]章坚武,颜欢,包建荣.智能家庭网关设计及其物联网应用.计算机工程,2011,37(18):246~248
    [153]张航.面向物联网的RFID技术研究[硕士学位论文].上海:东华大学,2011
    [154]符云密.物联网实验网的设计及实现[硕士学位论文].广州:华南理工大学,2012.
    [155]孙其博,刘杰,黎羴.物联网:概念、架构与关键技术研究综述.北京邮电大学学报,2010,3:1~9
    [156]宁焕生,徐群玉.全球物联网发展及中国物联网建设若干思考.电子学报,2010,38(11):2590~2595.
    [157]王保云.物联网技术研究综述.电子测量与仪器学报.2009,23(12):1~5
    [158] Miao Wu, Tingjie Lu. Research on the architecture of Internet of Things.20103rd International Conference on Advanced Computer Theory and Engineering,Proceedings,(ICACTE)2010:5484~5487
    [159] Lu Tan, Neng Wang. Future Internet: The Internet of Things.20103rdInternational Conference on Advanced Computer Theory and Engineering,Proceedings,2010(5):5376~5380
    [160] Zhanbo Lei, Feng Xu, Jianfeng Wei. Development status, the existingproblems and development trends of the Internet of things.2011InternationalConference on E-Business and E-Government,2011:6872~6875.
    [161]潘勇.短距离无线数据网络应用研究[硕士学位论文].天津:天津大学.2009.
    [162]张捍东,朱林.物联网中的RFID技术及物联网的构建.计算机技术与发展.2011,21(5):56~60
    [163]李如年.基于RFID技术的物联网研究.中国电子科学研究院学报.2009,4(6):594~598
    [164]沈苏彬,范曲立,宗平.物联网的体系结构与相关技术研究.南京邮电大学学报(自然科学版),2009,29(6):1~11
    [165]胡清,詹宜巨,黄小虎.基于RFID企业物联网及中间件技术研究.微计算机信息,2009,20:158~160
    [166]戴刚,刘沅杰,郝俊华.基于RFID的物联网研究与应用.广东通信技术,2010,10:15~17
    [167]李洋. RFID技术与在物联网中的应用.电子设计工程,2011,19(17):47~50
    [168]于洁潇,刘开华,史伟光.基于RFID的高速公路车辆测速及定位方法.计算机工程,2010,36(24):1~3
    [169]平先军,陶然,周思永.一种新的分数阶傅里叶变换快速算法.电子学报,2001,29(3):406~408
    [170] Santhanam B, McClellan J H. The discrete rotational Fourier transform. IEEETransactions on Signal Processing,1996,44(4):994~998
    [171] Yeh M H, Pei S C. A method for the discrete fractional Fourier transformcomputation. IEEE Transactions on Signal Processing,2003,51(3):889~891
    [172] Huang D F, Chen B S. A multi-input-multi-output system approach for thecomputation of discrete fractional Fourier transform. Signal Processing,2000,80(8):1501~1513
    [173] Nick, Theresa; G tze, Jürgen. Localization of UHF RFID labels with referencetags and Unscented KalmanFilter.2011IEEE International Conference onRFID-Technologies and Applications,2011:168~173
    [174] Hailan Ding. RFID indoor positioning using RBFNN with L-GEM.2010International Conference on Machine Learning and Cybernetics,2010,(3):1147~1152
    [175] Bekkali, Abdelmoula.RFID indoor tracking system based on inter-tags distancemeasurements.Lecture Notes in Electrical Engineering,2009,(44):41-62
    [176] Hui Tan. Short Distance Wireless Application and Practice, Beihang UniversityPress, Beijing,2009.
    [177] YuanshengLiu, Xi Han. Analysis of the maximal transmission rate based onNRF24L01chip system.2nd International Conference on InformationEngineering and Computer Science,(ICIECS)2010:95~108
    [178] Xun Huang,Guoan Zhang,Qiang Sun. Container transportation system using2.45GHz active RFID technology.2011International Conference on RemoteSensing, Environment and Transportation Engineering,2011:3030~3033
    [179] Yinghui, Huang, Xun Huang,Qiang Sun.The Design of the managementsystem for parking lot based on2.45GHz active RFID.2011InternationalConference on Computer Science and Service System,2011:850~853
    [180]
    [181]
    [182]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700