用户名: 密码: 验证码:
多接口无线MESH网络动态信道资源分配关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线MESH网络(Wireless Mesh Network,WMN)是一种具有分层结构的新型无线网络。在无线MESH网络中存在多种不同的通信系统,如蜂窝网、WiFi、WiMAX,以及Ad Hoc网络等。无线MESH网络具有覆盖范围广、可靠性强、高带宽、高利用率、维护方便,以及投资成本低、风险小等优点。因此,无线Mesh网络被广泛视为下一代无线通信系统的关键网络结构。但是,多系统共存的局面也使得无线MESH网络中存在很多挑战。一方面,无线MESH网络必须解决如何将多种不同的通信系统集成到一个体系的问题。另一方面,无线MESH网络中的流量从多个不同的网络集成而来。这要求无线Mesh网络必须具有非常大的容量。但是,从多种通信系统集成来的流量却极大地加重了无线Mesh网络的干扰程度。由于无线网络的可用信道数非常有限,邻近的节点不得不使用同一条信道进行通信。无线介质的广播特性使得这些通信链路间存在干扰。此外,无线Mesh网络中的流量需要经过多跳的转发才能到达目的节点。并且,相邻的无线节点倾向于采用同一条信道进行通信。这进一步增加了无线Mesh网络链路间的干扰。因此,链路间的干扰程度是影响网络吞吐量的重要因素。如何提高无线信道的利用率,增加系统的容量是设计无线Mesh网络的一个关键问题。
     信道分配是增加无线网络系统容量的最有效措施之一。为了充分利用有限的无线信道资源,无线Mesh网络也采用了一些新技术和措施。比如,为每个节点配置多接口,采用动态接口切换协议,多信道MAC协议,以及智能天线等。上述措施从不同方面提高了无线Mesh网络的性能。但是,在提高无线网络性能的同时这些新技术也带来了新的问题和挑战。例如,当前大多数协议基于单接口/静态信道分配的网络模型。因此,这些协议不能直接应用于多接口以及接口的信道动态变化的网络环境。本文主要研究了动态信道分配多接口无线Mesh网络信道资源分配相关问题。具体包括干扰估计策略、广播机制,信道分配协议的设计与实现,无线Mesh网络的流量特征及其对信道分配的影响,以及基于NS2的多接口无线Mesh网络仿真平台的搭建等。并取得了如下研究成果:
     (1)为多接口无线Mesh网络提出了一个信道干扰估计策略。在动态信道分配网络中,接口的信道在通信过程中动态的改变。这使得网络的干扰问题变得更加复杂。而现有模型并没有考虑节点的动态信道切换对网络干扰的影响。本文提出的干扰估计策略不依赖于网络的实时负载。但是,该策略考虑了无线Mesh网络流量的特点,以及无线信号的传输特性对节点间干扰的影响。实验证明,该干扰估计策略不仅容易实现,而且适应性强。
     (2)为采用动态接口切换协议的多接口无线Mesh网络提出了一个高效的广播机制。由于不存在恒定的通信链路,无线信道的广播特性在采用动态信道分配策略的网络中不再适用。现有的广播方案要么需要额外的广播接口,要么极大的增加网络的广播开销。本文提出的广播策略不需为节点配置额外的广播接口,却将信道切换开销限制在容许的范围内。该策略还极大地减少了无线Mesh网络的广播冗余。因此,该策略为动态信道分配的网络提供了有效的广播支持。
     (3)利用排队论理论分析了基础模式无线Mesh网络(I-WMN)的流量特征及其影响。在此基础上,提出并实现了一个混合的信道分配协议。本文提出的流量模型把网关节点和处于最外层的路由节点看作是一些具有无限大的容量的排队系统,而把其余的路由器节点看作容量有限的排队系统。与以往模型不同,该模型还考虑了无线信道的带宽和干扰对无线Mesh网络性能的影响。利用该模型分析了稳定状态下无线Mesh网络的吞吐量、包丢失率和数据包的排队延迟等问题。根据分析,各路由器节点相对网关的位置决定了其上的流量。考虑到I-WMN的上述流量特征,本文提出的协议为处于不同层的路由器节点采取了不同的接口分配策略:网关节点采用静态信道分配策略,而其它节点采用混合信道分配策略。实验结果表明,该协议大大提高了无线Mesh网络的容量、适应能力和可扩展性等。
     此外,本文对开源仿真工具NS2进行了扩展,以使之支持多接口和实时地信道切换功能。在扩展后的NS2上搭建了一个无线Mesh网络平台,并在该平台实现了本研究所提出的所有协议。本文的扩展不与具体的协议绑定,可以应用到一般的动态信道切换策略。
Wireless mesh network (WMN) is a hybrid wireless network that has layered struc-ture. As a key technology of the next generation, WMN has several advantages such as high?exibility, wide coverage, high reliability, broad bandwidth, high utilization, facility, andetc..Therefore, WMNs can fulfil the proliferative requirements of wireless users. However,traffic loads in WMNs are aggregated from multiple communication systems, such as cel-luar, WiFi, WiMAX, Ad Hoc, and etc. Then, high capacity is required by WMNs. However,aggregated loads aggravate the interference problem of WMNs. This is because availablewireless channels in wireless communication systems are very limited. Furthermore, traf-fic loads sent from source nodes are usually relayed by several nodes before they arrive atdestination nodes. Since adjacent wireless nodes are inclined to take the same channel, longrouting paths further aggravate the interference level of WMNs. High interference decreasesthe capacity and performance of WMNs. As a consequence, enhancing the network capac-ity is one critical issue of WMNs. The utilization rate of wireless channel can be greatlyimproved by proper channel assignment. Therefore, channel assignment is one of the mosteffective strategies to improve the network capacity of WMNs.
     WMNs adopt several new techniques and strategies to take full advantage of preciouswireless channels to improve the network capacity. These new techniques include equippingeach node with multiple wireless interfaces, adopting interface switching strategies, multi-channel MAC, directional/adaptive antenna, and so on. These strategies improve the perfor-mance of WMNs to some extent, whereas, they induce new problems and challenges. Forinstance, most protocols assume that every node is equipped with single interface and adoptsstatic channel assignment protocols. Thereby, these protocols cannot be directly applied tosuch environments that nodes adopt dynamic interface assignment strategies. Aiming at im-proving the performance of WMNs by interface swtiching, this dissertation mainly studiesthe issues of interference estimation strategies, broadcasting techniques, and channel assign-ment in multi-interface WMNs that adopt frequent interface switching strategies. It also researches traffic modeling and construction of simulation testbeds for WMNs. The researchresults of this thesis are as follows:
     (1) Putting forward a new strategy to estimate the interference level of multi-interfaceWMNs, where nodes adopt interface switching strategies. The interference problem in suchwireless networks is complicated due to frequent interface switching during communica-tions. However, few current interference estimation strategies consider the effect of frequentinterface switching on interference between adjacent links. This dissertation proposes a newmulti-interface interference estimation strategy based on interference graph. The presentedstrategy considers the impacts of frequent interface switching, the characteristics of trafficloads in WMNs, and propagation characteristics of wireless signals on interference. Simu-lations show that the proposed strategy not only is simple, but also adopts well to frequentinterface switching.
     (2) Presenting an efficient broadcasting scheme for multi-interface WMNs that adoptdynamic channel assignment. There is no permanent communication links in a WMN thatadopts dynamic channel assignment. Thereby, the broadcasting character of wireless chan-nels is unavailable. In order to send broadcast packets in such networks, current strategieseither need specific additional broadcasting interfaces or induce huge interface switchingoverheads. This dissertation brings forward a new broadcasting strategy that does not needspecific broadcasting interface. The proposed strategy provides efficient broadcasting sup-porting, whereas it keeps interface switching overheads under tolerable range. In addition,the proposed strategy can also decrease broadcast redundant in WMNs by preventing allnodes that have accepted broadcast packets on selecting relayed nodes.
     (3) Developing a queuing theory based traffic model for Infrastructure WMNs (I-WMN). In this model, every gateway node and the outermost mesh node is modeled asan infinite queuing system, whereas all nodes in each hop are modeled as a finite capacityqueuing system. Based on this model, the thesis analyzes the network throughput, packetsloss rate and packets delay on each hop nodes in I-WMN. The thesis also amends the originalmodel on account of the impacts of wireless interference, bandwidth, and etc.. Simulationresults show that the modified model is more accurate than the original one to model thetraffic character of I-WMNs. Based on result achieved by this traffic model, we proposedand implemented a hybrid channel assignment protocol for I-WMNs. According to analysis,loads on gateway nodes are the heaviest. Starting from gateways, traffic loads on a nodedecrease along with the hop count increasing. The proposed protocol then adopts differ-ent interface assignment strategies for different nodes: gateway nodes adopt static interface assignment strategy, whereas all the other nodes adopt hybrid strategy. The presented pro-tocol considers the characteristics of traffic loads in I-WMN, whereas it does not depend onprior information of traffic loads on nodes/links. The protocol can be implemented easilywithout changing current hardware. Extensive simulations show that the proposed protocolimproves the network capacity and ?exibility. It also improves per-?ow fairness of the net-work, whereas it keeps the interface switching overheads and coordination complexity undertolerable range.
     Besides, we extended the simulation tool NS2 (Network Simulator) to support multi-interface and frequent interface switching. The extended platform does not bind to any spe-cific protocols. Consequently, it can be easily applied to every dynamic channel assignmentstrategy/protocol. All protocols proposed in this dissertation are implemented on the ex-tended NS2 platform. Results show that the extended platform is efficient to support multi-interface and dynamic channel switching in wireless networks.KEY WORDS: Wireless Mesh Network, Multiple Interfaces, Dynamic Channel Assign-ment, Interference Estimation, Broadcast Strategy, Traffic Model, NS2 Simulation
引文
[1] S. Ohmori, Y. Yamao, N. Nakajima,“The future generations of mobile communications based onbroadband access technologies,”IEEE Communications Magazine, Vol. 38 Issue, pp. 134-142, 12,Dec. 2000.
    [2] M. Frodigh, et al,“Wireless Ad Hoc Networking: The Art of Networking without a Network,”Ericsson Review, No. 4, 2000.
    [3] The Wi-Fi Alliance, http://www.wi-fi.org.
    [4] The WiMAX Forum, http://www.wimaxforum.org/home.
    [5] The WiMedia Alliance, http://www.wimedia.org.
    [6] Ian F. Akyildiz, Xudong Wang, Weilin Wang,“Wireless mesh networks: a survey,”Computer Net-works and ISDN Systems, Volume 47, Issue 4, Elsevier Science Publishers B. V., Mar. 2005.
    [7] Ian F. Akyildiz, Xudong Wang,“A Survey on Wireless Mesh Networks,”IEEE Radio Communica-tions, 2005.
    [8] P. Piggin, B. Lewis, P. Whitehead,“Mesh networks in fixed broadband wireless access: multipointenhancements for the 802.16 standard,”IEEE 802.16 presentation slides, July 2003.
    [9] C. Siva Ram Murthy, Ad Hoc Wireless Networks: architectures and protocols, New Jersey: PearsonEducation, Inc., 2004.
    [10] F. Zhao, Leonidas J. Guibas, Wireless Sensor Networks: An Information Processing Approach,Boston: Elsevieer-Morgan Kaufmann, 2004.
    [11] MeshNetworks Inc. QDMA technology, http://www.meshnetworks.com/.
    [12] Cambridge Technology Partners website: http://www.ctp.com/
    [13] Microsoft Mesh Networks, http://research.microsoft.com/mesh.
    [14] Nortel Mesh Networks, http://www.nortelnetworks.com/solutions/wrlsmesh/index.html.
    [15] PacketHop Networks, http://www.packethop.com.
    [16] Amsterdam hotspots, http://www.amsterdamhotspots.nl/.
    [17] Skypilot Website, http://www.skypilot.com/.
    [18] IEEE 802.11 Standard Group Web Site, http://www.ieee802.org/11.
    [19] IEEE 802.15 Standard Group Web Site, http://www.ieee802.org/15.
    [20] Dedicated Short Range Communications (DSRC), http://www.leearmstrong.com/DSRC/DSRCHomeset.htm.
    [21] IEEE 802.16 Standard Group Web Site, http://www.ieee802.org/16.
    [22]姜红旗,康凯,林孝康,拓展宽带接入的无线MESH网技术,电信科学,2005年第1期.
    [23]沈强,方旭明,宋文,无线MESH网络路由协议研究,数据通信,2005年第4期.
    [24]方旭明,马忠建,无线MESH网络跨层设计研究,数据通信,2005年第4期.
    [25]范涛,张燕,无线Mesh网络的组网及其相关标准,数据通信,2005年第4期.
    [26]尹首一,林孝康,无线Mesh网络流量自相似性研究,电信科学,2005年第4期.
    [27] C. Perkins and P. Bhagwat,“Highly Dynam ic Destination-Sequenced Distance Vector Routing(DSDV )for Mobile Computers,”ACM SIGCOMM, 1994: 234-244.
    [28] D. B. Johnson, D. A. Maltz, and J. Broch, Mobile Computing, Addison-Wesley, Chapter 5, 2001:139-172.
    [29] V. D. Park, M. S. Corson,“A Highly Adaptive Distributed Routing Algorithm for Mobile W irelessNetworks,”IEEE INFOCOM, 1996: 1405-1413.
    [30] C. Perkins, E. Royer,“Ad-Hoc on-Demand Distance Vector Routing,”Workshop Mobile ComputingSystems and Applications (WMCSA), Feb. 1999: 90-100.
    [31] L. J. Cimini Jr. et al.,“Packet Shaping for Mixed Rate 802.11 Wireless Networks,”Patent (US):US20030133427, July 2003.
    [32] MeshNetworks Co.,“System and method for providing wireless telematics store and forwardmessaging for peer-to-peer and peer-to-peer-to-infrastructure a communication network,”Patent(US):US6580981B1, Jun. 2002.
    [33] MeshNetworks Co. System and Method for Auto-configuration and Discovery of IP to MAC Ad-dress Mapping and Gateway Presence in Wireless Peer-to-Peer ad-hoc Routing Networks, Patent(US):US6728232B2,April 2004.
    [34] Motorola Co. Method and apparatus for increasing service efficacy in an ad-hoc mesh network,Patent (US):US6640087B2,October 2003.
    [35] Caly Co. Communications protocol for packet data particularly in mesh topology wireless networks,Patent (US): US 6363062,March 2002.
    [36] D. Srikrishna, et al.,“Selection of routing paths based upon path quality of a wireless mesh network,”Patent (US):US2004008663, Jan. 15, 2004.
    [37] R. Draves, J. Padhye, B. Zill,“Routing in multi-radio, multi-hop wireless mesh networks,”Mobi-Com, 2004. DOI: 10.1145/ 1023720.1023732.
    [38] D.A. Maltz, J. Broch, and .B. Johnson,“Lessons from a fullscale multihop wireless ad hoc networktestbed,”IEEE Personal Communications, vol. 8, pp. 8-15, 2001.
    [39] The Roofnet project web site, http://pdos.csail.mit.edu/roofnet
    [40] P. Gupta and P. R. Kumx.“The Capacity of Wireless Networks,”IEEE Trans. on Information Theory,vol. 46, no. 2, pp. 388-404, Mar. 2000.
    [41] Donald Gross, and Carl M. Harris, Fundamentals of Queuing Theory, John Wiley & Sons, Secondedition, 1985.
    [42] Tehuang Liu, and Wanjiun Liao,“Location-Dependent Throughput and Delay in Wireless MeshNetworks,”IEEE Transactions on Vehicular Technology, Vol. 57, No. 2, Mar. 2008.
    [43] Nabhendra Bisnik, Alhussein Abouzeid,“Queuing Delay and Achievable Throughput in RandomAccess Wireless Ad Hoc Networks,”IEEE SECON, 2006.
    [44] Nabhendra Bisnik, Alhussein Abouzeid,“Delay and Throughput in Random Access Wireless MeshNetworks,”IEEE ICC, 2006.
    [45] X. Wu, J. Liu, and G. Chen,“Analysis of Bottleneck Delay and Throughput in Wireless MeshNetworks,”MASS, 2006.
    [46] Abbas El Gamal, James Mammen, Balaji Prabhakar, and Devavrat Shah,“Optimal Throughput-Delay Scaling in Wireless Networks-Part I: The Fluid Model,”IEEE Trans. Information Theory,vol. 52, no. 6, pp. 2568-2592, Jun. 2006.
    [47] Ahhas El Gamal, James Mammen. Balaji Rahhakar, Devavrat Shah,“Throughput-Delay Trade-offin Wireless Networks,”Infocom, 2004.
    [48] Renato M. de Moraes, Hamid R. Sadjadpour, and J.J. Garcia-Luna-Aceves“Throughput-DelayAnalysis of Mobile Ad-hoc Networks with a Multi-Copy Relaying Strategy,”SECON, 2004.
    [49] James Mammen, Devavrat Shah,“Throughput and Delay in Random Wireless Networks With Re-stricted Mobility,”IEEE Trans. on Information Theory, vol. 53, no. 3, pp. 1108-1116, Mar. 2007.
    [50] Abbas El Gamal, James Mammen, Balaji Prabhakar, Devavrat Shah,“Throughput-Delay Scaling inWireless Networks with Constant-Size Packets,”International Symposium on Information Theory(ISIT), 2005.
    [51] Santosh Gopalan, George N. Karystinos, and Dimitris A. Pados,“Capacity, Throughput, and De-lay of Slotted ALOHA DS-CDMA Links With Adaptive Space-Time Auxiliary-Vector Receivers,”IEEE Trans. on Wireless Communications, vol. 4, no. 1, pp.79-92, Jan. 2005.
    [52] Pradeep Kyasanur, Nitin H. Vaidya,“Routing and Interface Assignment in Multi-ChannelMulti-Interface Wireless Networks,”IEEE Wireless Communications and Networking Conference(WCNC), 2005.
    [53] Bong-Jun Ko, Vishal Misra, Jitendra Padhye and Dan Rubenstein,“Distributed Channel Assignmentin Multi-Radio 802.11 Mesh Networks,”IEEE Wireless Communications and Networking Confer-ence (WCNC), 2007.
    [54] Chandrakanth Chereddi, Pradeep Kyasanur, and Nitin H. Vaidya,“Design and Implementation of aMulti-Channel Multi-Interface Network,”REALMAN, 2006.
    [55] Krishna N. Ramachandran, Elizabeth M. Belding, Kevin C. Almeroth, Milind M. Buddhikot,“Interference-Aware Channel Assignment in Multi-Radio Wireless Mesh Networks,”Infocom,2006.
    [56] Jing Zhu, and Sumit Roy,“802.11 Mesh Networks with Two-Radio Access Points,”IEEE ICC,2005.
    [57] Ashish Raniwala, Kartik Gopalan, and Tzi-cker Chiueh,“Centralized Channel Assignment andRouting Algorithms for Multi-Channel Wireless Mesh Networks,”ACM SIGMOBILE Mobile Com-puting and Communications Review, Volume 8, Issue 2, ACM Press, pp. 50-65, 2004.
    [58] Ashish Raniwala, Tzi-cker Chiueh,“Architecture and Algorithms for an IEEE 802.11-Based Multi-Channel Wireless Mesh Network,”Infocom, 2005.
    [59] Shih-Lin Wut, Chih-Yu Lint, Yu-Chee Tsengt, and Jang-Ping Sheul,“A New Multi-Channel MACProtocol with On-Demand Channel Assignment for Multi-Hop Mobile Ad Hoc Networks,”I-SPAN,2000.
    [60] Tzamaloukas, J. J. Garcia-Luna-Aceves,“A Receiver-Initiated Collision-Avoidance protocol forMulti-channel Networks,”Infocom, 2001.
    [61] Arindam K. Das, Robert J. Marks, Mohamed El-Sharkawi, Payman, et al.,“Minimum Power Broad-cast Trees for Wireless Networks: Integer Programming Formulations,”Infocom, 2003.
    [62] Manish Agarwal, Joon Ho Cho. Lixin Gao and Jie Wu,“Energy Efficient Broadcast in Wireless Adhoc Networks with Hitch-hiking,”Infocom, 2004.
    [63] XiangYang Li, WenZhan Song and Weizhao Wang,“A Unified Energy Efficient Topology for Uni-cast and Broadcast,”MobiCom, 2005.
    [64] Seung-Jin Kim, Woo-Jae Kim, and Young-Joo Suh,“Efficient Broadcast Schemes with Transmis-sion Power Control in Mobile Ad Hoc Networks,”IEEE ICC, 2004.
    [65] Jian Tang, Guoliang Xue and Weiyi Zhang,“Power Efficient Broadcasting and Multicasting in Wire-less Networks with Directional Antennas,”IEEE ICC, 2005.
    [66] Julien Cartigny, David Simplot and Ivan Stojmenovi,“Localized minimum-energy broadcasting inad-hoc networks,”Infocom 2003.
    [67] Maribel Maduen¨o, and Josep Vidal,“Joint Physical-MAC Layer Design of the Broadcast Protocol inAd Hoc Networks,”IEEE Journal On Selected Areas In Communications, vol. 23, no. 1, pp. 65-75,Jan. 2005.
    [68] Fred Stann, John Heidemann, Rajesh Shroff and Muhammad Zaki Murtaza,“RBP: Robust Broad-cast Propagation in Wireless Networks,”SenSys, 2006.
    [69] Junaid Qadir, Archan Misra, and Chun Tung Chou,“Minimum Latency Broadcasting in Multi-RadioMulti-Channel Multi-Rate Wireless Meshes,”SECON, 2006.
    [70] Arindam K. Das, Robert J. Marks, Mohamed El-Sharkawi, Payman, et al.,“Minimum Power Broad-cast Trees for Wireless Networks: Integer Programming Formulations,”Infocom, 2003.
    [71] Manish Agarwal, Joon Ho Cho. Lixin Gao and Jie Wu,“Energy Efficient Broadcast in Wireless Adhoc Networks with Hitch-hiking,”Infocom, 2004.
    [72] A. Subramanian,H. Gupta, S-R Das,“Minimum-interference channel assignment in multi-radiowireless mesh networks,”IEEE Communications Society Conference on Sensor, Mesh and Ad HocCommunications and Networks(SECON), Jun. 2007: 481-490.
    [73] Julien Cartigny, David Simplot and Ivan Stojmenovi,“Localized minimum-energy broadcasting inad-hoc networks,”Infocom, 2003.
    [74] Paramvir Bahl, Ranveer Chandra, and John Dunagan,“SSCH: Slotted Seeded Channel Hopping forCapacity Improvement in IEEE 802.11 Ad-Hoc Wireless Networks,”Mobicom, 2004.
    [75] Elson, J., Estrin, D.“Fine-Grained Network Time Synchronization using Reference Broadcast,”TheFifth Symposium on Operating Systems Design and Implementation (OSDI), 2002. p. 147-163
    [76] Ganeriwal, S., Kumar, R. and Srivastava, M.“Timing-Sync Protocol for Sensor Networks,”SenSys,2003. p. 138-149
    [77] Maroti, M., Kusy, B., Simon, G. and Ledeczi, A.“The Flooding Synchronization Protocol,”SenSys,2004.
    [78] Marina MK, Das SR.“A topology control approach for utilizing multiple channels in multi-radiowireless mesh networks,”Broadnets, 2005.
    [79] Mohsenian-Rad AH, Wong VWS,“Joint optimal channel assignment and congestion control formulti-channel wireless mesh networks,”IEEE ICC, 2006.
    [80] A. Mishra, S. Banerjee,W. Arbaugh,“Weighted coloring based channel assignment forWLANs,”ACM SIGMOBILE Mobile Computer Communications Review, 2005. DOI: 10.1145/1094549.1094554.
    [81] Jain K, Padhye J, Padmanabhan VN, Qiu L.,“Impact of interference on multi-hop wireless networkperformance,”MobiCom, 2003. DOI: 10.1145/938985.938993.
    [82] Ahmed MH, Yanikomeroglu H, Mahmoud S.“Interference management using basestation coordi-nation in broadband wireless access networks,”Wireless Communications and Mobile Computing,2006; 6: 95–103. DOI: 10.1002/wcm.266
    [83] R. Irmer, A. Fischer,“Modeling and optimization of interference limited wireless communications,”PAMM (Proc. Appl. Math. Mech). 2004; 4: 610–611. DOI: 10.1002/pamm.200410286.
    [84] Kodialam Murali, Nandagopal T.“Characterizing the capacity region in multi-radio multi-channelwireless mesh networks,”MobiCom, 2005. DOI: 10.1145/1080829.1080837.
    [85] Kyasanur P, Vaidya NH.“Capacity of multi-channel wireless networks: impact of number of chan-nels and interfaces,”MobiCom, 2005. DOI: 10.1145/1080829.1080835
    [86] X-Y Li , S-J Tang , O, Frieder,“Multicast capacity of large scale wireless ad hoc networks,”Mobi-Com, 2007
    [87] M. Alicherry, R. Bhatia, EL. Li,“Joint channel assignment and routing for throughput optimizationin multi-radio wireless mesh networks,”Mobicom, 2005. DOI: 10.1145/ 1080829.1080836.
    [88] Shacham N, King PJB.“Architectures and performance of multichannel multihop packet radio net-works,”IEEE Journal on Selected Area in Communications, 1987; 5(6): 1013–1025.
    [89] Chandra R, Bahl P, Bahl P.“MultiNet: connecting to multiple IEEE 802.11 networks using a singlewireless card,”Infocom, 2004.
    [90] J. Tang, G. Xue , C. Chandler,“Interference-aware routing and bandwidth allocation for QoS provi-sioning in multihop wireless networks,”Wireless Communications and Mobile Computing, 2005; 5:933–943. DOI: 10.1002/wcm.357.
    [91] P-J Wan, C-W Yi, X. Jia, D. Kim,“Approximation algorithms for con?ict-free channel assignmentin wireless ad hoc networks,”Wireless Communications and Mobile Computing, 2005; 5: 933–943.DOI: 10.1002/wcm.380.
    [92] V. Bahl, A. Adya, J. Padhye, and A. Wolman.“Reconsidering the Wireless LAN Platform withMultiple Radios,”Workshop on Future Directions in Network Architecture, 2003.
    [93] Christophe S. Jelger, and Jaafar M. H. Elmirghani,“A Slotted MAC Protocol for Efficient Band-width Utilization in WDM Metropolitan Access Ring Networks,”IEEE Journal on Selected Areasin Communications, Vol. 21, No. 8, Oct. 2003.
    [94] Zhensheng Zhang,“Pure Directional Transmission and Reception Algorithms in Wireless Ad HocNetworks with Directional Antennas,”IEEE ICC, 2005.
    [95] Thanasis Korakis, Gentian Jakllari, Leandros Tassiulas,“A MAC protocol for full exploitation ofDirectional Antennas in Ad-hoc Wireless Networks,”MobiHoc, 2003.
    [96] Ram Ramanathan, Jason Redi, Cesar Santivanez, David Wiggins, and Stephen Polit,“Ad Hoc Net-working with Directional Antennas: A Complete System Solution,”IEEE Wireless Communicationsand Networking Conference (WCNC), 2004
    [97] J. So and N. Vaidya,“Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel HiddenTerminals Using a Single Transceiver,”ACM MobiHoc, 2004.
    [98] Sunil Kumar, Vineet S. Raghavan, Jing Deng,“Medium Access Control protocols for ad hoc wirelessnetworks: A survey,”Ad Hoc Networks, vol. 4, pp.326-358, Elsevier Science Publishers B. V.,2006.
    [99] Yijun Li, Hongyi Wu, Dmitri D. Perkins, Nian-Feng Tzeng and Magdy A. Bayoumi,“MAC-SCC:Medium Access Control with a Separate Control Channel for Multihop Wireless Networks,”IEEEICDCS, 2003.
    [100] F. Tasaki, H. Tamura, M. Sengoku, S. Shinoda,“A New Channel Assignment Strategy towards theWireless Mesh Networks,”the Joint Conference of the 10th Aria-Pacific Conference on Communi-cations and 5th International Symposium on Multi-Dimensional Mobile Communications (MDMC),Aug. 2004.
    [101] N. Jain, S. R. Das, and Asis Nasipuri ,“A Multichannel CSMA MAC Protocol with Receiver-BasedChannel Selection for Multihop Wireless Networks,”ICCCN, 2001.
    [102] Gyor¨gy Miklós, Ferenc Kubinszky, András Rácz, Zoltán Turányi, András Valkó, Miklós AurélRónai, and Sándor Molnár,“A Novel Scheme to Interconnect Multiple Frequency Hopping Chan-nels into an Ad Hoc Network,”Mobile Computing and Communications Review, Volume 8, Number1, Jan. 2004.
    [103] Yu-Chee Tseng, Shih-Lin Wu, Chih-Yu Lin, and Jang-Ping Sheu,“A Multi-Channel MAC Protocolwith Power Control for Multi-Hop Mobile Ad Hoc Networks,”Proceedings of 21st InternationalConference on Distributed Computing Systems Workshops, 2001.
    [104] Asis Nasipuri and Samir R. Das,“A Multichannel CSMA MAC Protocol for Mobile MultihopNetworks,”IEEE Wireless Communications and Networking Conference (WCNC), 1999.
    [105] Zhenyu Tang, and J. J. Garcia-Luna-Aceves,“Hop-Reservation Multiple Access (HRMA) for Ad-Hoc Networks,”Infocom, 1999.
    [106] Asimakis Tzamaloukas, and J.J. Garcia-Luna-Aceves,“Channel-Hopping Multiple Access,”IEEEICC, 2000.
    [107] Asimakis Tzamaloukas, and JJ Garcia-Luna-Aceves,“Channel Hopping Multiple Access withPacket Trains for Ad Hoc Networks,”Proceedings IEEE Mobile Multimedia Communications (Mo-MuC), 2000.
    [108] Alaa Muqattash, and Marwan Krunz,“Power Controlled Dual Channel (PCDC) Medium AccessProtocol for Wireless Ad Hoc Networks,”Infocom, 2003.
    [109] R. Karrer, A. Sabharwal, E. Knightly,“Enabling Large-scale Wireless Broadband: The Case forTAPs,”ACM SIGCOMM Computer Communications Review, Volume 34, No. 1, Jan. 2004.
    [110] Aniket Dubhashi, Shashanka MVS, Amrita Pati, Shashank R., and Anil M. Shende,“Channel As-signment for Wireless Networks Modelled as d-Dimensional Square Grids,”International Workshopon Distributed Computing (IWDC), 2002, LNCS vol. 2571, pp. 130-141, 2002.
    [111] Bhaskaran Raman, Kameswari Chebrolu,“Design and Evaluation of a new MAC Protocol for LongDistance 802.11 Mesh Networks,”MobiCom, 2005.
    [112] Bhaskaran Raman, Kameswari Chebrolu,“Revisiting MAC Design for an 802.11 based Mesh Net-work,”HotNets-III, 2004.
    [113] Atul Adya, Paramvir Bahl, Jitendra Padhye, Alec Wolman, Lidong Zhou,“A Multi-Radio Unifica-tion Protocol for IEEE 802.11Wireless Networks,”Proceedings of the First International Conferenceon Broadband Networks (BROADNETS), 2004.
    [114] Yoji Kishi, Keita Tabata, Satoshi Konishi and Shinichi Nomoto,“A Proposal of an Adaptive Chan-nel Allocation and Traffic Engineering Algorithm in Multi-hop Mesh Networks for Broadband FixedWireless Access,”IEEE Wireless Communications and Networking Conference (WCNC), 2003.
    [115] Sasthi C. Ghosh, Bhabani P. Sinha, and Nabanita Das,“Channel Assignment Using Genetic Algo-rithm Based on Geometric Symmetry,”IEEE Transactions On Vehicular Technology, Vol. 52, No.4, Jul. 2003.
    [116] Oran Sharon and Eitan Altman,“An Efficient Polling MAC for Wireless LANs,”IEEE/ACM Trans-actions on Networking, Vol. 9, No. 4, Aug. 2001.
    [117] Murali Kodialam,and Thyaga Nandagopal,“Characterizing Achievable Rates in Multi-Hop Wire-less Mesh Networks With Orthogonal Channels,”IEEE/ACM TRANSACTIONS ON NETWORKING,Vol. 13, No. 4, Aug. 2005.
    [118] Wladyslaw Kcdosowski, Cezary Zilkowski,“The Vertexes Reductiun Algorithm for the ChannelAssignment Problem– Comparison Analysis,”VTC, 2001.
    [119] Janne Riihijar¨vi, Marina Petrova, Petri Mah¨on¨en,“Frequency Allocation for WLANs Using GraphColouring Techniques,”Proceedings of the Second Annual Conference on Wireless On-demand Net-work Systems and Services (WONS), 2005.
    [120] A.A. Bertossi, M.C. Pinotti, and R. Rizzi,“Channel Assignment on Strongly-Simplicial Graphs,”Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS), 2003.
    [121] Katzela J, Naghshineh M.“Channel assignment schemes for cellular mobile telecommunicationssystems: a comprehensive survey,”IEEE Personal Communications, 1996; 3: 10–31.
    [122] NS2网站:http://nsnam.isi.edu/nsnam/index.php
    [123] The VINT Project, The ns Manual (formerly ns Notes and Documentation), 2005.
    [124] TeNs网站:http://www.cse.iitk.ac.in/users/braman/tens/.
    [125] Hyacinth网站:http://www.ecsl.cs.sunysb.edu/multichannel/index.html
    [126] Murali Kodialam, Thyaga Nandagopal,“Characterizing the Capacity Region in Multi-Radio Multi-Channel Wireless Mesh Networks,”MobiCom, 2005.
    [127] Nikhil Bansal, Zhen Liu,“Capacity Delay and Mobility in Wireless Ad-hoc Networks,”Infocom,2003.
    [128] Liu, B. Liu, Z. Towsley, D.,“On the capacity of hybrid wireless networks,”Infocom, 2003.
    [129] Nabhendra Bisnik, Alhussein Abouzeid,“Queuing Delay and Achievable Throughput in RandomAccess Wireless Ad Hoc Networks,”IEEE SECON, 2006.
    [130] M. Grossglauser and D. Tse,“Mobility increases the capacity of Ad Hoc wireless networks,”IEEE/ACM Trans. on Networking, vol. 10, no. 4, pp. 477-486, Aug. 2002.
    [131] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris,“Capacity of Ad Hoc wireless net-works,”MobiCom, 2001.
    [132] M. Gastpar and M. Vetterli,“On the capacity of wireless networks: the relay case,”Infocom, 2002.
    [133] Alireza KeshavarzHaddad, Vinay Ribeiro and Rudolf Riedi,“Broadcast capacity in multihop wire-less networks,”MobiCom, 2006.
    [134] J. Jun and M. L. Sichitiu,“The Nominal Capacity of Wireless Mesh Networks,”IEEE WirelessCommunications Magazine, vol. 10, no. 5, pp. 8-14, Oct. 2003.
    [135] H. Lim,C. Kim,“Flooding in wireless ad hoe networks,”Computer Communication.2001,24(3/4): 353 - 363.
    [136] Y. Tseng,S. Ni,Y. Chen,et al.,“The broadcast storm problem in a mobile Ad Hoc network,”Wireless Networks, 2002(8): 153 - 167.
    [137] S. Ni,Y. Tseng,Y. Chen,et al.,“The broadcast storm problem in a mobile ad hoc network,”MOBICOM, Seattle, Aug. 1999: 151 - 162
    [138] Y. Tseng,S. Ni,Y. Chen,et al.,“Adaptive approaches to relieving broadcast storms in a wirelessmuhihop mobile ad hoc network,”IEEE Trans on Computer, 2003.52(5): 545 - 557.
    [139] G. Lauer ,“Address servers in hierarchical networks,”IEEE ICC, Atlanta,GA,USA:1988:443―451.
    [140] E. Pagani, GP. Rossi,“Providing reliable and fault tolerant broadcast delivery in mobile ad-hocnetworks,”Mobile Networks and Applicafions, 1999, 5(4): 175一l92.
    [141] [7] M. Gerla, J T C.Tsai,“Multiuser,mobile,multimedia radio network,”Wireless networks,1995.1:255―265.
    [142] A.K. Das, R.J. Marks, M. El-Sharkawi, P. Arabshahi, A. Gray,“Minimum power broadcast treesfor wireless networks: integer programming formulations,”INFOCOM, 2003:1001 - 1010.
    [143] A. Proskurowski,“Minimum Broadcast Trees,”IEEE Transactions on Computers, Vol. C-30(5),pp.363 - 366, May, 1981. DOI: 10.1109/TC.1981.1675796
    [144] O. Beaumont, L. Marchal, Y. Robert,“Broadcast Trees for Heterogeneous Platforms,”IEEE Inter-national Parallel and Distributed Processing Symposium, 2005. DOI: 10.1109/IPDPS.2005.131
    [145] M. Song; J. Wang; Q. Hao,“Broadcasting Protocols for Multi-Radio Multi-Channel and Multi-Rate Mesh Networks,”IEEE International Conference on Communications (ICC), 2007:3604 -3609. DOI: 10.1109/ICC.2007.594.
    [146] C. Destre; C. Laforest, S. Vial,“Assignment of shortest paths spanning trees inmeshes,”IEEE International Parallel and Distributed Processing Symposium, 2004: DOI:10.1109/IPDPS.2004.1302903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700