用户名: 密码: 验证码:
加速运动目标检测及跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高雷达对机动目标的探测和跟踪能力是当前雷达技术领域所面临的前沿课题和紧迫任务。论文以弹道导弹防御为主要背景,利用时频分析方法进行加速运动目标的检测及加速度参数的估计,并把估计得到的加速度测量作为新增观测量引入到目标跟踪中,其研究成果主要体现在:
     1)从理论上分析了FRFT对LFM信号的检测性能、参数估计精度和分辨性能。推导了时限线性调频(LFM)信号的分数阶Fourier变换(FRFT),根据其幅度特性确定了峰值所在分数阶Fourier域的位置及其对应的信号参数。由此说明,FRFT适合处理含有未知参数的LFM信号。从输出信噪比(SNR)的角度,分析了FRFT在处理高斯白噪声背景下含有未知参数LFM信号的检测性能。结果表明,在高SNR条件下,FRFT处理含有未知参数LFM信号的输出SNR仅比理想情况(即信号参数已知)下的匹配滤波低3dB。从参数估计精度的角度,采用一阶扰动方法推导得到了基于连续FRFT的LFM信号参数的估计误差均方差。从分辨力的角度,推导得到了基于FRFT的频率分辨力、调频率分辨力及频率—调频率联合分辨力。结果表明,FRFT处理含有未知参数LFM信号在参数估计精度和分辨力方面均达到了最优。因此,基于FRFT的方法对处理含有未知参数LFM信号是有效的。
     2)分析了基于Wigner-Hough变换对加速运动目标的检测性能。研究了多种离散FRFT的实现算法,分析了其中应用最广泛的两种离散FRFT的输出峰值幅度与加速度、脉冲个数的关系,结果表明:尽管分数阶傅立叶变换的离散化形式很多,但当前还没有具有连续FRFT所具有性质的离散化形式。由于Wigner-Hough变换与FRFT的模平方存在恒等关系,因此在研究加速运动目标检测和参数估计问题时可采用Wigner-Hough变换。从理论上分析了单门限和双门限情况下基于Wigner-Hough变换的LFM信号的检测性能,推导得到了虚警概率和检测概率的数学表达式,为雷达设置合理的检测门限提供了理论依据。最后仿真比较了非起伏目标基于傅立叶变换和基于Wigner-Hough变换的检测性能,及不同起伏类型目标基于Wigner-Hough变换的检测性能,为估算雷达探测起伏目标的作用距离提供参考。
     3)深入研究了基于Wigner-Hough变换的加速运动目标的参数估计算法。研究并给出了基于Wigner-Hough变换的加速度参数估计算法的实现流程,分析了接收信号时长对加速度最小可分辨单元的影响,加速度最小可分辨单元跟信号时长的平方成反比。同时,在一定范围内,通过增大Wigner分布的频率单元长度和Hough变换的距离采样数也可以提高加速度最小可分辨单元。然后进行了仿真验证,仿真结果证实了该算法的有效性。
     4)把估计得到的加速度测量作为新增观测量引入到目标跟踪中,研究了恒增益跟踪滤波器设计及跟踪性能分析。利用离散Riccati方程的非递归代数解,推导得到了利用距离、速度、加速度测量的Kalman跟踪滤波器的稳态解的解析表达式,并提出了一种新的利用目标状态的不确定性对稳态协方差矩阵元素进行归一化的方法。利用引入加速度测量时Kalman跟踪滤波器的稳态解,研究了恒增益跟踪滤波器设计问题,给出了测量精度趋于无限高时的极限滤波性能。把在杂波环境中目标跟踪问题简化为测量源不确定性问题,分析了在目标跟踪中引入速度测量和进一步引入加速度测量对提高跟踪性能的影响。分析结果表明,无论是在杂波环境中还是在非杂波环境中,只要在目标跟踪中引入加速度测量,均可有效提高目标跟踪精度,并使跟踪滤波器以更快的速度收敛达到稳态。
     本文的研究成果对于提高弹道导弹防御雷达对再入机动弹头的探测和跟踪能力具有重要意义,并可为弹道导弹突防技术研究及突防效果评估提供有益的参考和借鉴。
Improved detection and tracking performance of maneuvering targets in the modern radar system is a forefront and urgent task within the radar domain. Under the background of missile defense, time-frquency representations is applied to accelerating target dedetcion, and acceleration is measured directly from echo signals, then the acceleration measurements is introduced in target tracking.
     1) Detection performance, estimation accuracy, and resolution is analyzed when LFM signals is processed by the fractional Fourier transform(FRFT). The FRFT of a finite duration LFM signal is derived, and the coordinates of its amplifude peak in fractional Fourier domain are determined, then the relation between the coordinates and the unknown parameters of a LFM signal are given. so the FRFT is appropriate to process LFM signals of unknown parameters. From the point of view of output Signal-to-Noise Ratio(SNR), detection preformance of an unknown parameter LFM signal based on FRFT is analyzed, and in the condition of high SNR only lower 3dB to the output SNR of matched filter of ideal situation (i.e. parameters of LFM signal are known). From the point of view of parameter measurement accuracy, the expressions for root mean square of estimation error of LFM signal parameters are derived by a first order perturbation analysis approach. Results show that the method is optimal in the sense of estimation accuracy. From the point of view of resolution, the frequency resolution, the frequency rate resolution and the united frequency and frewuency rate resolution. Results show that the method is optimal in the sense of resolution. So the FRFT is effective to process LFM signals of unknown parameters.
     2) Detection performance of an accelerating target based on Wigner-Hough transform is analyzed. The relations between the output amplitude of the two most widely applied dicrete forms of FRFT and acceleration, pulse number are analyzed, results show that there is not an ideal discrete form which possesses properties of continuous FRFT though the discrete forms exit a lot. Because the identical relation between of the square of magnitude of FRFT and Wigner-Hough transform, Wigner-Hough transform is adopted to accelerating targets detection and parameter measurement. For single threshold and double detection thresholds cases, detection performance of LFM signals based on Wigner-Hough transform is analyzed in theory, and expressions for PF and PD, as a function of the number of accessible Hough space accumulator cells and detection threshold, is derived, which provide a basis for setting radar detection threshholds. Finally comparison of detection performance of based on Fourier transform and based on Wigner-Hough transform is made, and comparison of detection performance of different Swerling fluctuating targets is also made, which provide a reference to estimate the radar operating range for a fluctuating target.
     3) The algorithm of parameters estimation of an accelerating target based on Wigner-Hough transform is proposed. The algorithm of estimating radical acceleration based on Wigner-Hough transform is studied, and estimation flow is provided. The impact of observation interval on radial acceleration resolution is analyzed. Simulation is carried out and results verify its efficiency.
     4) The tracking filter design and tracking performance evaluation is studied when acceleration measurements are incorporated into the tracking filter. According to the non-recursive solution for the discrete Riccati equation, a closed-form steady-state solution is derived for a three-state Kalman filter which estimates the range, range rate and range acceleration when range, range rate and range acceleration are measured, and a new normalization of the steady-state covariance is introduced. Constant gain filter design is studied according to the steady-state solution, and ultimate performance is given by numerical analysis when measurements accuricies tend to infinitely high. Tracking a target in clutter is taken to a situation with measurement origin uncertainty, and the tracking performance is analyzed when velocity measuremrents, and furthermore acceleration measurements are incorporated into the tracking filter. Results show that whether in clutter or not, lower steady state tracking errors and earlier attainment of steady state accuricies are the direct consequence when acceleration measurements are incorporated into the tracking filter.
     The results of this thesis are beneficial not only to improve detection and tracking performance of the missile defense radar for maneuvering reentry warhead, but also to study penetration technologies and penetration effectiveness evaluation.
引文
[1]贾沛然,陈克俊,何力编著.远程火箭弹道学.长沙:国防科技大学出版社,1993.12.
    [2]Michelle Irene Roxburgh.Ground based intercept of a ballistic missile:battle management:Master's thesis.Boulder:University of Colorado,1998.
    [3]Yeddanapudi M,Bar-Shalom Y,et al.Ballistic missile track initiation from satellete observations.IEEE Transactions on Aerospace and Electronic Systems,1995,31(3):1054-1071.
    [4]Siouris G M,Chen Guangrong,Wang Jianrong.Tracking an incoming ballistic missile using an extended interval Kalman filter.IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):232-240.
    [5]Cardillo G P,Mrstik A V,Plambeck T.A track filter for reentry objects with uncertain drag.IEEE Transactions on Aerospace and Electronic Systems,1999,35(2):394-408.
    [6]Farina A,Ristic B,Benvenuti D.Tracking a ballistic target:comparison of several nonlinear filters.IEEE Transactions on Aerospace and Electronic Systems,2002,38(3):854-866.
    [7]马骏声.NMD-GBR雷达的测量能力及其性能参数.航天电子对抗,2002,18(5):1-8.
    [8]美国战略弹道导弹弹头的预研--高级弹道式再入系统计划,国防科委情报研究所,1979.
    [9]关为群,殷兴良.导弹大攻角高机动飞行特性分析与仿真,现代防御技术,2006,34(4):43-47.
    [10]李裕山,姚郁.再入飞行器的大机动轨迹实现,哈尔滨工业大学学报,1997,29(5):89-92.
    [11]雍恩米,唐国金,陈磊.助推-滑翔式导弹中段弹道方案的初步分析,国防科技大学学报,2006,28(6):6-10.
    [12]唐伟,张鲁民.弯体机动再入飞行器气动特性研究,空气动力学学报,1996,14(1):86-91.
    [13]Lewis G N,Postol T A.Future challenges to ballistic missile defense.IEEE Spectrum,1997,(9):60-68.
    [14]Bello P.Joint estimation of delay,Doppler and Dopplert rate.IRE Transactions on information theory,1960,6(3):330-341.
    [15]Kelly E J.The radar mearsurement of range,velocity and acceleration.IRE Transactions on military electronics,1961,5(2):51-57.
    [16]Kelly E J,Wishner R P.Matched-Filter theory for high-velocity,accelerating targets.IRE Transactions on military electronics,1965,9(1):56-69.
    [17]Schweppe Fred C.Radar frequency modulations for accelerating targets under a bandwith constraint.IRE Transactions on military electronics,1965,9(1):25-32.
    [18]赵宏钟,付强.雷达信号的加速度分辨性能分析.中国科学,E辑,2003,33(7): 638-646.
    [19]赵宏钟,付强,周剑雄.雷达信号的加速度分辨力分析及应用.电子学报,2003,31(6):958-961.
    [20]John E Gray.The Doppler spectrum for accelerating objects.IEEE International Radar Conference,IEEE 1990:385-390.
    [21]Thayaparan T,Yasotharan A.Limitations and strengths of the Fourier transform method to detect accelerating targets.DREO TM 2000-078,2000,11.
    [22]Yasotharan A,Thayaparan T.The performance of the Fourier method in detecting an accelerating target and estimating its median velocity.IEEE International radar conference,2000,59-64.
    [23]Yasotharan A,Thayaparan T.Strengths and limitations of the Fourier method for detecting accelerating targets by pulse Doppler radar.IEE Proc.-Radar Sonar Navig.,2002,149(2):83-88.
    [24]Frazer Gordon J,Anderson Stuart J.Wigner-Ville analysis of HF radar measurements of an accelerating target.Fifth Int.Sym.Signal Processing and its Applications,ISSPA '99,Brisbane,Australia 1999:317-320.
    [25]Krikorian Dr Kapriel V,Rosen Robert A.Acceleration compensation by matched filtering.Proc.IEEE 2002:415-418.
    [26]Fuyuki Fukushima,Takahiko Fujisaka.Accelerated target detection by scanning post-detection integration.Proc.IEEE 1998:1554-1559.
    [27]Abatzoglou Theagenis J,Gheen Gregory O.Range,radial velocity and acceleration MLE using radar LFM pulse train[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(4):1070-1084.
    [28]Crosson Eric L,Romine J Brent,Willner Dieter.Boost-phase acceleration estimation.IEEE international radar conference[C].New York:IEEE AES society,2000.210-214.
    [29]Weige Chen,Guotong Zhou,Georgios B Giannakis.Velocity and acceleration estimation of Doppler weather radar/lidar signals in colored noise.Proc.IEEE 1995:2052-2055.
    [30]陈广江.一种基于离散Wigner-Ville分布的目标加速度提取方法.现代雷达,1998(3):28-31.
    [31]Kumar K Anoop,Arvind Manoj,Divakar K,Rajagopal R.A novel time-frequency approach for acceleration estimation from a single PRI.Fifth Int.Sym.Signal Processing and its Applications,ISSPA '99,Brisbane,Australia 1999:531-534.
    [32]Altes Richard A.Radar/sonar acceleration estimation with linear-peroid modulated waveforms.IEEE Transactions on Aerospace and Electronic Syetems,1990.26(6):914-924.
    [33]赵宏钟.毫米波多普勒制导雷达信号处理方法研究:博士学位论文.长沙:国防科学技术大学,2003.
    [34]张军.弹载毫米波脉冲多普勒雷达制导信息处理研究:博士学位论文.长沙:国防科学技术大学,2001.
    [35]文树梁,秦忠宇.基于脉冲相关技术的反辐射导弹检测.现代雷达,1997,19(4):1-8.
    [36]张宏宽,陈建春,杨万海.基于Radon-Ambiguity变换的反辐射导弹检测识别技术.西安电子科技大学学报,2004,31(3):447-449.
    [37]陈建春,耿富录,徐少莹.基于自适应线性预测滤波的反辐射导弹检测技术.电子学报,2001,29(6):755-757.
    [38]Bhattacharya T K,Jones G,DiFilippo D.Time frequency based detection scheme for missile approach warning system(MAWS).IEE Radar 97 Conference,Eidingburg:Oxford Press,1997:539-543.
    [39]陈伯孝,吴铁平,张伟,张守宏.高速反辐射导弹探测方法研究.西安电子科技大学学报(自然科学版),2003,30(6):726-729.
    [40]Genyuan Wang,Xiang-Gen Xia,Benjamin T Root,Victor C Chen.Moving target detection in Over-the-Horizn radar using adaptive Chirplet transform.Proc.IEEE 2002:77-84.
    [41]G Wang,X.-G.Xia,et al.Manoeuvring target in over-the-horizon radar using adaptive clutter rejection and adaptive chirplet transform.IEE Proc.-Radar Sonar Navigation,2003,150(4):292-298.
    [42]Thayaparan T,Yasotharan A.A novel approach for the Wigner distribution formulation of the optimum detection problem for a discrete-time chirp signal.DREO TM 2001-141.
    [43]Thayaparan T,Yasotharan A.Application of Wigner distribution for the detection of accelerating low-altitude aircraft using HF surface-wave radar.DREO TR 2002-033.
    [44]Thayaparan T,Kennedy S.Detection of a manoeuvring air target in sea-clutter using joint time-frequency analysis techniques.IEE Proc.-Radar Sonar Navigation,2004,151(1):19-30.
    [45]Zhang Y,Amin M G,Frazer G J.High-resolution time-frequency distributions for manoeuring target detection in over-the-horizon radars.IEE Proc.-Radar Sonar Navigation,2003,150(4):299-304.
    [46]孙泓波,顾红,苏卫民,刘国岁.利用分数阶Fourier域滤波的机载SAR多运动目标检测.航空学报,2002,23(1):33-37.
    [47]董永强,陶然,等.基于分数阶Fourier变换的SAR运动目标检测与成像.兵工学报,1999,20(2):132-136.
    [48]Hong-Bo Sun,Guo-Sui Liu,et al.Application of the fractional Fourier transform to moving target detection in airborne SAR.IEEE Transactions on Aerospace and Electronics Systems,2002,38(4):1416-1424.
    [49]Liping ZHANG,Xiqin WANG,Yingning PENG,Xiutan WANG,Xiang-gen Xia.A novel parameter estimation algorithm and its iterative extension for chirp signals.ICSP2002 Proceedings:1419-1424.
    [50]Liping ZHANG,Yingning PENG,Jia XU,Xianggen Xia.A chirp signal parameter estimation algorithm and its application to SAR.IEEE Radar Conference,2003:228-231.
    [51]何映霞.机载SAR运动目标实时检测方案若干技术问题的研究:博士学位论文.北京:中国科学院,2000.
    [52]Raney R K.Synthetic aperture imaging radar and moving targets.IEEE Transactions on AES,1971,27(3):499-505.
    [53]张直中.雷达信号的选择与处理.北京:国防工业出版社,1986.
    [54]王波.LFM信号检测与参数估计技术研究:硕士学位论文.西安:电子科技大学,2004.
    [55]Christophe De Luigi,Eric Moreau.An iterative algorithm for estimation of linear frequency modulated signal parameters.IEEE Transactions on Signal Processing Letters,2002,9(4):127-129.
    [56]冯道旺,周一宇,李宗华.相参脉冲序列多普勒变化率的一种快速高精度测量方法.信号处理,2004,20(1):40-43.
    [57]Adele B Doser,Gerald D T Schuller.Time/frequency techniques for signal feature detection.Proc.IEEE 1999:452-456.
    [58]Abatzoglou T J.Fast maximum likelihood joint estimation of frequency and frequency rate.IEEE ICASSP PROC,1986,11(1):708-715.
    [59]Shimon Peleg,Boaz Porat.Linear FM signal parameter estimation from discrete-time observations.IEEE Transactions on Aerospace and Electronics Systems,1991,27(4):607-616.
    [60]Petar M.Djuric,Steven M.Kay.Parameter estimation of chirp signals.IEEE Transactions on Acoustics Speech and Signal Processing,1990,38(12):2118-2126.
    [61]Alex B Gershman,Maruius Pesavento.Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays.IEEE Transactions on Signal Processing,2001,49(12):2924-2934.
    [62]Shimon Peleg,Benjamin Friedlader.The discrete polynomial-phase transform.IEEE Transactions on Signal Processing,1995,43(8):1901-1914.
    [63]Lie S,Leyman A R,Chew Y H.Wideband chirp parameter estimation in sensor arrays through DPT.Electronics Letters,2003,39(23):1633-1634.
    [64]X.-G.Xia,Discrete chirp-Fourier transform and its application to chirp rate estimation,IEEE Transactions Signal Processing,2000,48(11):3122-3133.
    [65]Igor Djurovic,LJubis Stankovic,Johann F Bohme.Estimation of FM signal parameters in impulse noise environments.Signal Processing 2005(85):821-835.
    [66]Fulvio Gini,Monica Montanari,Lucio Verrazzani.Estimation of chirp radar signals in compound-gaussian clutter:a cyclostationary approach.IEEE Transactions on Signal Processing,2000,48(4):1029-1039.
    [67]Xiaohui Yu,Yaowu Shi,Xiaodong Sun,Jishi Guan.Chirp parameter estimation in colored noise using cross-spectral ESPRIT method.Nature and Science, 2005,3(1):75-80.
    [68]Bjorm Volcker,Bjorn Otterstem.Chirp parameter estimation form a sample covariance matrix.IEEE Transactions on Signal Processing,2001,49(3):603-612.
    [69]Chung-Chieh Lin,Petar M Djuric.Estimation of chirp signals by MCMC.Proc.IEEE 2000:265-268.
    [70]Bjorn Volcker,Bjom Ottersten.Chirp Parameter Estimation Using Rank Reduction.Proc.IEEE 1998:1443-1446.
    [71]Ramon Brcich,Abdelhak M Zoubir.Parameter estimation of linear freqnency modulated signals with missing observations.IEEE ICASSP 2003:569-572.
    [72]Tlieys C,Alengrin G.Detection and estimation of changes in the parameters of a chirp signal.Proc.IEEE 1995:3563-3566.
    [73]邹虹.多分量线性调频信号的时频分析:博士学位论文.西安电子科技大学,2000.
    [74]Wigner E P.On the quantum correction for thermodynamic equilibrium,Phys.Rev.1932,40:749-759.
    [75]Claasen T A C,Mecklenbrauker W F G..The Wigner distribution--a tool for time-frequency signal analysis,part 1:continuous-time signals.Philips Journal of Research,1980,35(3):217-251.
    [76]Claasen T A C,Mecklenbrauker W F G..The Wigner distribution-a tool for time-frequency signal analysis part 2:discrete-time signals.Philips Journal of Research,1980,35(4-5):276-300.
    [77]Claasen T A C,Mecklenbrauker W F G..The Wigner distribution--a tool for time-frequency signal analysis,part 3:relations with tther time-frequency signal transformations.Philips Journal of Research,1980,35(6):372-389.
    [78]Jones Douglas L,Parks Thomas W.A resolution comparison of several time-frequency representations.IEEE Transactions on Signal Processing,1992,40(2):413-420.
    [79]Abeysekera S S.Computation of Wigner-Ville distribution for complex data.Electronics Letters,1990,26(16):1315-1317.
    [80]Pan W.Fast calculation method for multicomponent Wigner-Ville distribution.Electronics Letters,1992,28(4):398-398.
    [81]Eric Chassande-Mottin,Archana Pai.Discrete time and frequency Wigner-Ville distribution:Moyal's formula and aliasing.IEEE Signal Processing Letters,2005,12(7):508-511.
    [82]Lunji Qiu.Wigner-Ville distribution and windowed Wigner-Ville distribution of noisy signals.Proceedings of IEEE Singapore International Conference on Networks/International Conference on Information Engineering '93,Vol.1:388-392.
    [83]Ljubisa Stankovic,Srdjan Stankovic.Wigner distribution of noisy signals.IEEE Transactions on Signal Processing,1993,41(2):956-960.
    [84]Xiang-Gen Xia,Victor C Chen.A quantitative SNR analysis for the Pseudo Wigner-Ville distribution.IEEE Transactions on Signal Processing,1999,47(10):2891-2894.
    [85] Joon-Hyun Lee, J Kim. Development of enhanced Wigner-Ville distribution function. Mechanical Systems and Signal Processing, 2001,15(2): 367-398.
    [86] Gerr Neil L. Introducing a third-order Wigner distribution. Proceedings of IEEE, 1988,76(3): 290-292.
    [87] Braham Barkat, Boualem Boashash. Design of higher order polynomial Wigner-Ville distributions. IEEE Transactions on Signal Processing, 1999,47(9): 2608-2611.
    [88] Viswanath G, Sreenivas T V. IF estimation using higher order TFRs. Signal Processing,2002(82):127-132.
    [89] LJubisa Stankovic. A method for improved distribution concentration in the time-frequency analysis of multicomponent signals using the L-Wigner distribution.IEEE Transactions on Signal Processing, 1995,43(5): 1262-1268.
    [90] Bertmnd J, Bertrand P. A class of affine Wkner functions with extended covariance propekies. J. Math. Phys., 1992,Vol.33: 2515-2527.
    [91] Shenoy Ram G, Parks Thomas W. Wide-band ambiguity functions and affine Wigner distributions. Signal Processing, 1995,41: 339-363.
    
    [92] 邹红星,周小波,李衍达.时频分析:回顾与前瞻.电子学报, 2000,28(9): 78-84.
    [93] Leon Cohen. Time-frequency distributions—a review. Proceedings of IEEE, 1989,77(7): 941-981.
    [94] Gerald Matz, Franz Hlawatsch. Wigner distributions (nearly) everywhere:time-frequency analysis of signals, systems, random processes, signal spaces, and frames. Signal Processing, 2003, 83 :1355-1378.
    [95] Gaunaurd Guillermo C, Strifors Hans C. Signal analysis by means of time-frequency(Wigner-type) distributions—applications to sonar and radar echoes.Proceedings of IEEE, 1996,84(9): 1231-1248.
    [96] Hlawatsch F, Boudreaux-Bartels G F. Linear and quadratic time-frequency signal representations. IEEE Signal Processng Magazine, 1992, 9(1): 21-67.
    [97] Kon Max Wong, Qu Jin. Estimating of the time-varying frequency of a signal: the Cramer-Rao bound and the application of Wigner distribution. IEEE Transactions on Acoustic, Speech and Signal Processing, 1990,38(3): 519-535.
    [98] Boualem Boashash, Peter O Shea. Use of the Cross Wigner-Ville distribution for estimation of instantaneous frequency. IEEE Transactions on Signal Processing,1993,41(3): 1439-1445.
    [99] Branko Ristic, Boualem Boashash. Instantaneous frequency estimation of quadratic and cubic FM signals using the cross polynomial Wigner-Ville distribution. IEEE Transactions on Signal Processing, 1996,44(6): 1549-1553.
    [100] Hussain Zahir M, Boashash Boualem. Adaptive instantaneous frequency estimation of multicomponent FM signals using quadratic time-frequency distribution. IEEE Transactions on Signal Processing, 2002,50(8): 1866-1876.
    
    [101] Igor Djurovic, LJubis Stankovic. An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment. Signal Processing, 2004,84:631-643.
    [102] Kai-Bor Yu, Siuling Cheng. Signal synthesis from Wigner distribution. Proc. IEEE 1985: 1037-1040.
    [103] Raz S. Synthesis of signals from Wigner distributions: representation on biorthogonal basis. Signal Processing , 1990, 20: 303-314
    [104] Chunchao Wang, James A Cadzow. Signal enhancement of Wigner-Ville time-frequency signals. Southeastcon'90. Proceediings., IEEE New Orleans, LA,USA,1990,vol.2:733-738.
    [105] Jen-Yu Gau. Analysis of low probability of intercept(LPI) radar signals using the Wigner distribution: Master's Thesis. Monterey: Naval Postgraduate School, 2002.
    [106] Tkachenko Andrei G. Application of Wigner's time-frequency distribution for close signals recognition. SPIE Vol. 3687:48-52.
    [107] Kumar P Krishna, Prabhu K M M. Gasification of radar returns using Wigner-Ville distribution. Proc. IEEE 1996:3105-3108.
    [108] Johnston J A, BSc(Eng). Wigner distribution and FM radar signal design. IEE Proceedings, 1989,136(2): 81-88.
    [109] Mullick S K, Topkar V A. A Wigner distribution based receiver. Signal Processing,1988,14:185-196.
    [110] Kumar P K, Prabhu K M M. Simulation studies of moving-target detection: a new approach with WignerVille distribution. IEE Proc.-Radar Sonar Navigation,1997,144(5): 259-265.
    [111] Patrick Flandrin. A time-frequency formulation of optimum detection. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36(9):1377-1384.
    [112] Preeti Rao. Application of the Wigner Distribution to problems in time-varying signal analysis: Ph.D. Thesis. Florida Gainesville: University of Florida, 1990.
    [113] Barbarossa S. Detection and imaging of moving objects with synthetic aperture radar.IEE Proceedings-F, 1992,139(1): 89-97.
    [114] Varshney Pramod K, Weiner Donald D, Tsao Tzeta. Radar signal detection and estimation using time-frequency distributions. RL-TR-95-215, France: Rome Lab., 1995.
    [115] Simon Haykin, Tarun Bhattacharya. Wigner-Ville distribution: an important functional block for radar target detection in clutter. Proc. IEEE 1995:68-72.
    [116] Pasquale Daponte, Giuseppe Fazio, Anna Molinaro. Detection of echoes using time-frequency analysis techniques. IEEE Transactions on Instrumentation and measurement, 1996, 45(1):30-39.
    [117] Frazer Gordon J, Anderson Stuart J. Wigner-Ville analysis of HF radar measurements of an accelerating target. Fifth Int. Sym. Signal Processing and its Applications, ISSPA'99,Brisbane, Australia 1999:317-320.
    [118] Hiroshi IJIMA, Akira OHSHMI, Igor DJUROVIC. Parameter estimation of chirp signals in random noise using Wigner distribution. The 47~(th) Int. Midwest Sym.on Circuits and Systems, IEEE 2004:177-180.
    [119] Mingui Sun, Robert J Sclabassi, C. C. Li. On cross-component in the Wigner distribution. Proc. IEEE 1990:528-533.
    [120] Edith Grail-Maes, Pierre Beauseroy. Elimination of cross-components of the discrete Wigner-Ville distribution via a correlation method. Proceedings of ICSP'96: 335-338.
    [121] Arce Gonzalo R, Hasan Syed Rashid. Elimination of interference terms of the discrete Wigner distribution using nonlinear filtering. IEEE Transactions on Signal Processing,2000,48(8): 2321-2331.
    [122] Kadambe Shubha, Orr Richard S, Lyall Micheal J. Cross term deleted Wigner representation(CDWR) based signal detection methodologies. Proc. IEEE 1994:2583-2586.
    [123] Kadambe Shubha, Lyall Micheal J, Orr Richard S. Cross Term deleted Wigner representation- noise tolerance analysis. Proc. IEEE 1997: 247-251.
    [124] Hough P V C. Method and means for recognizing complex patterns. U.S. Patent 3069654, 1962.
    [125] Yllingworth J, Kittler J. A survey of the Hough transform. Computer Vision, Graphics and Image Processing, 1988,40(10): 87-116.
    [126] Duda R O, Hart P E. Use of the Hough transform to detect lines and curves in pictures.Commun. Ass. Comput. Mach., 1972, 15(1): 11-15.
    [127] Bennett Nicholas N, Saito Naoki. Using edge information in time-frequency representations for chirp parameter estimation. Appl. Comput. Harmon. Anal. 2005(18):186-197.
    [128] Hunt Douglas J. Performance of the Hough transform and signal detection theory for the detection and tracking of dim, moving targets: Ph.D. Thesis. Durham: Duke University, 1990.
    [129] Carlson B D, Evans E D, Wilson S L. Search radar detection and track with Hough transform, part 1: system concept. IEEE Transactions on Aerospace and Electronic Systems, 1994,30(1):102-108.
    [130] Carlson B D, Evans E D, Wilson S L. Wilson. Search radar detection and track with Hough transform, part 2: detection statistics. IEEE Transactions on Aerospace and Electronic Systems, 1994,30(1):109-115.
    [131] Carlson B D, Evans E D, Wilson S L. Wilson. Search radar detection and track with Hough transform, part 3: detection performance with binary integration. IEEE Transactions on Aerospace and Electronic Systems, 1994,30(1): 116-124.
    [132] Carlson B D, Evans E D, Wilson S L. Wilson. Errata: Search radar detection and track with the Hough transform. IEEE Transactions on Aerospace and Electronic Systems,2003,39(1):382-383.
    [133] Moshe Elazar. Search radar track-before-detect using the Hough transform: Master's Thesis. Monterey : Naval Postgraduate School, 1995.
    [134] Yan Sun, Peter Willett. Hough transform for long chirp detection. IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):533-569.
    [135]Deans Stanley R.Hough transform from the Radon transform.IEEE Transactions on Pattern analysis and machine intelligence,1981,PAMI-3(2):185-188.
    [136]Kay Steven,Boudreaux--Bartels G Faye.On the optimality of the Wigner distribution for detection.Proc.IEEE 1985:1017-1020.
    [137]Wood John,Barry Daniel T.Radon transformation of the Wigner spectrum.SPIE 1992,Vol.1770:358-375.
    [138]Barbarossa S,Zanalda A.A combined Wigner-Ville and Hough transform for cross-terms suppression and optimal detection and parameter estimation.IEEE ICASSP PROC,1992,5(1):173-176.
    [139]Barbarossa S.Analysis of multicomponent LFM signals by a combined Wigner-Hough transform.IEEE Trans.Signal Processing,1995,43(6):1511-1515.
    [140]Wood John C,Barry Daniel T.Radon transformation of time-frequency disrtributions for analysis of multicomponent signals.IEEE Transactions on Signal Processing,1994,42(11):3166-3177.
    [141]Minsheng Wang,Andrew K Chan,Charles K Chui.Linear frequency-modulated signal detection using Radon-ambiguity transform.IEEE Transactions on Signal Processing,1998,46(3):571-586.
    [142]Jennison Brian K,College Loyola.Performance of a linear frequency-modulated signal detection algorithm.IEEE International Radar Conference,2000:447-450.
    [143]Namias V.The fractional order Fourier transform and its applications to quantum mechanics.Journal of Institute Applied Math,1980,25(3):241-265.
    [144]Almeida L B.The fractional Fourier transform and time-frequency representations.IEEE Trans.Signal Processing,1994,42(11):3084-3091.
    [145]Akay Olcay,Boudreaux-Bartels G Faye.Fractional autocorrelation and its application to detection and estimation of linear FM signals.Proc.IEEE 1998:213-216.
    [146]Pu Wang,Jianyu Yang,Yuming Du.A fast algorithm for parameter estimation of multi-component LFM signal at low SNR.Proc.IEEE 2005:765-768.
    [147]董永强,陶然,等.基于分数阶Fourier变换的SAR运动目标检测与成像.兵工学报,1999,20(2):132-136.
    [148]齐林,陶然,等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计.中国科学,E辑,2003,33(8):749-759.
    [149]孙泓波,顾红,苏卫民,刘国岁.利用分数阶Fourier域滤波的机载SAR多运动目标检测.航空学报,2002,23(1):33-37.
    [150]Hong-Bo Sun,Guo-Sui Liu,et al.Application of the fractional Fourier transform to moving target detection in airborne SAR.IEEE Transactions on Aerospace and Electronics Systems,2002,38(4):1416-1424.
    [151]周刚毅,叶中付.线性调频信号的调频斜率估计方法.中国科学技术大学学报,2003,33(1):34-38.
    [152]杜东平,唐斌.基于FrFT和子空间正交的LFM信号参数估计.电子科技大学学报,2004,33(3):247-249.
    [153]邵智超,吴彦鸿,贾鑫.基于时频分析的LFM信号检测与参数估计.装备指挥技术学院学报,2004,15(2):71-75.
    [154]Tao Ran,Ping Xianjun,Zhao Xinghao,Wang Yue.Detection and estimation of Moving targets based on Fractional Fourier transform.ICSP'02 Proceedings:102-105.
    [155]林茂庸,柯有安.雷达信号理论.北京:国防工业出版社,1984.11.
    [156]Schweppe.On the accuracy and resolution of radar signals.IEEE Trans Aerospace and Electronics Systems,1965,1(3):235-245.
    [157]X Rong Li,Vesselin P Jilkov.Survey of maneuvering target tracking,part Ⅰ:dynamic models.IEEE Transactions on Aerospace and Electronic Systems,2003.39(4):1333-1364.
    [158]Grewal Mohinder S,Andrews Angus P.Kalman filtering:theory and practice using Matlab(second edition).New York:John Wiley & Sons,Inc.2001.
    [159]周宏仁等著.机动目标跟踪.北京:国防工业出版社,1991.
    [160]X Rong Li,Vesselin P.Jilkov.A survey of maneuvering target tracking:approximation techniques for nonlinear filtering.Proceedings of SPIE Vol.5428:537-550.
    [161]Blom H A P,Bar-Shalom Y.The interacting multiple model algorithm for systems with Markovian switching coefficients.IEEE Transactions on Automatic Control,1988,33(8):780-783.
    [162]Doucet A,De Freitas N,Gordon N.Sequential Monte Carlo methods in practice.New York:Springer,2001.
    [163]Shaked U,Theodor Y.H_∞ optimal estimation:a tutorial.Proceedings of the 31~(st)Conference on Decision and Control,Tucson,Artzone,1992,12:2278-2286.
    [164]Rawicz P L,Kalata P R,Murphy K M,Chmielewski T A.On Kalman,H_∞ and H_2target tracking:probability of target escape.Proceedings of the American Control Conference,Chicago,2000,6:4353-4357.
    [165]Castella Rank R.Tracking accuracies with position and rate measurements.IEEE Transactions on Aerospace and Electronic Systems,1981,17(3),433-437.
    [166]Fitzgerald Bobert J.Simple tracking filters:position and velocity measurements.IEEE Transactions on Aerospace and Electronic Systems,1982,18(5),531-537.
    [167]Ramachandra K V.Analytical results for a Kalman tracker using position and rate measurements.IEEE Transactions on Aerospace and Electronic Systems,1983,19(5):776-777.
    [168]Ramachandra K V,Mohan B R,Geetha B R.A three-state Kalman tracker using position and rate measurements.IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):215-222.
    [169]J ianguo Wang,Peikun He,Teng Long.Use of the radial velocity measurement in target tracking.IEEE Transactions on Aerospace and Electronic Systems, 2003,39(2):401-413.
    
    [170] Bernard Friedland. Optimum steady-state position and velocity estimation using noisy sampled position data. IEEE Transactions on Aerospace and Electronic Systems,1973,9(6):906-911.
    [171] Ramachandra K V. Optimum steady state position, velocity, and acceleration estimation using noisy sampled position data. IEEE Transactions on Aerospace and Electronic Systems, 1987,23(5):705-707.
    [172] Ozkaya Birol, Arcasoy C Cengiz. Analytical Solution of Discrete Colored Noise ECA Tracking Filter. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):93-101.
    [173] Daniel Gleason, Dominick Andrisan. Steady state analysis for discrete tracking filters. IEEE Transactions on Aerospace and Electronic Systems, 1989,25(5):768-771.
    [174] Beuzit M. Analytical steady-state solution for a three-state Kalman filter. IEEE Transactions on Aerospace and Electronic Systems, 1989,25(6):828-835.
    
    [175] Winnie Wong. Steady-State Tracking with LFM Waveforms. IEEE Transactions on Aerospace and Electronic Systems,36,2(April 2000), 701-709.
    [176] Bertil Ekstrand. Analytical steady state solution for a Kalman tracking filter. IEEE Transactions on Aerospace and Electronic Systems, 1983,19(6):815-819.
    [177] Rusnak I. Closed-Form Solution for the Kalman Filter Gains of Time-Varying Systems,IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 635-639.
    [178] Vaughan David R. A non-recursive algebraic solution for the discrete Riccati equation. IEEE Transactions on Automatic Control, 1970,15(1):597-599.
    [179] Alfonso Farina, Branko Ristic, Luca Timmoneri. Cramer-Rao bound for nonlinear filtering with Pd    [180] Yvo Boers, Hans Driessem, et al. Results on the modified Riccati equation: target tracking applications, IEEE Transactions on Aerospace and Electronic Systems, 2006,42(1):379-384.
    [181] Yvo Boers, Hans Driessem. Modified Riccati equation and its application to target tracking, IEE Proc.-Radar Sonar Navig., 2006, 153(1):7-12.
    [182] Thomas E Fortmann, Yaakov Bar-shalom, et al. Detection thresholds for tracking in clutter --a connection between estimation and signal processing, IEEE Transaction on Automatic Control, 1985, 30(3):221-228.
    [183] Petr Tichavsky, Carlos H Muravchik, et al. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering, IEEE Transactions on Signal Processing,1998,46(5):1386-1395.
    [184] Xin Zhang, Peter Willett, Yaakov Bar-Shalom. Dynamic Cramer-Rao bound for target tracking in clutter. IEEE Transactions on Aerospace and Electronics Systems, 2005,41(4):1154-1166.
    [185] Marcel L Hernandez, Alfonso Farina, Branko Ristic. PCRLB for tracking in cluttered environments:measurement sequence conditioning aproach.IEEE Transactions on Aerospace and Electronics Systems,2006,42(2):680-702.
    [186]Ristic B,Farina A,Benvenuti D,Arulampalam M S.Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry.IEE Proc.-Radar Sonar Navig.,2003,150(2):65-70.
    [187]Ristic B,Farina A,Hernandez M.Cramer-Rao lower bounds for tracking multiple targets.IEE Proc.-Radar Sonar Navig.,2004,151(3):129-134.
    [188]Hue C,Cadre J-P Le,Perez P.Posterior Cramer-Rao bounds for multi-target tracking.IEEE Transactions on Aerospace and Electronics Systems,2006,42(1):37-49.
    [189]Daum Frederick E.Bounds on track purity for multiple target tracking.Proceedings of the 28~(th) Conference on Decision and Control,Florida,1989:1423-1424.
    [190]Mori S,Chang K C,Chong C Y.Tracking performance evaluation-predictionof track purity.SPIE Vol.1305 Signal and Data Processing of Small Targets 1989:215-223.
    [191]X Rong Li,Yaakov Bar-Shalom.Stability evaluation and track life of the PDAF for tracking in clutter.IEEE Transactions on Automatic Control,1991,36(5):588-602.
    [192]X Rong Li,Yaakov Bar-Shalom.Detection threshold selection for tracking performance optimization.IEEE Transactions on Aerospace and Electronics Systems,1994,30(3):742-749.
    [193]Kalata Paul R.The tracking index:a generalized parameter for and target trackers.IEEE Transactions on Aerospace and Electronic Systems,1984,20(2):174-182.
    [194]Sudano J J.The tracking filter with a noisy jerk as the maneuver model.IEEE Transactions on Aerospace and Electronic Systems,1993,29(2):578-580.
    [195]Hoffman S A,Blair W D.Comment on "The tracking filter with a noisy jerk as the maneuver model" IEEE Transactions on Aerospace and Electronic Systems,1994,30(3):925-928.
    [196]Arcasoy C C.Multivariable frequency response methold for optimal Kalman-Bucy filters with applications to radar tracking.AGARD Conference Proceedings 524,Advances in Guidance and Control of Precision Guided Weapons,1992.
    [197]Arcasoy C C.The α-β-Γ tracking filter with a noisy jerk as the maneuver model:frequency domain solution.IEEE Transactions on Aerospace and Electronic Systems,1996,32(3):1170-1174.
    [198]Almeida L B.The fractional Fourier transform and time-frequency representations.IEEE Trans.Signal Processing,1994,42(11):3084-3091.
    [199]Rajiv Saxena,Kulbir Singh.Fractional Fourier transform:a novel tool for signal processing,J.Indian Inst.Sci.,2005,85:11-26.
    [200]孙晓兵,保铮.分数阶Fourier变换及其应用.电子学报,1996,24(12):60-65.
    [201]陶然,齐林,等.分数阶Fourier变换的原理与应用.北京:清华大学出版社,2004:1-6.
    [202]Ozaktas H M,Barshan B,et.al.Convolution,filtering and multiplexing in fractional domains and their relation to chirp and wavelet transforms.Journal of Optical Society America (A), 1993,11(2):547:559.
    [203] McBride A C, Keer F H. On Namia's fractional Fourier transform , IMA J. Appl. Math.1987,239:159-175.
    [204] Gianfranco Cariolario. A unified framework for the fractional Fourier transform. IEEE Trans. Signal Processing, 1998,46(12):3206-3219.
    [205] Soo-Chang Pei, Jian-Jiun Ding. Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans. Signal Processing,2001,49(8):1638-1654.
    [206] Tatiana Alieva, Martin J Bastiaans. Wigner distribution and fractional Fourier transform[C].International Symposium on Signal Processing and its Applications(ISSPA), Kuala Lumpur, Malaysia,2001:168-169.
    [207] Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Trans. Signal Processing, 1995,43(6):1511-1515.
    [208] Shimon Peleg, Boaz Porat. Linear FM signal parameter estimation from discrete-time observations. IEEE Transactions on Aerospace and Electronics Systems,1991,27(4):607-616.
    [209] Barbarossa S, Zanalda A. A combined Wigner-Ville and Hough transform for cross-terms suppression and optimal detection and parameter estimation. IEEE ICASSP PROC, 1992,5(1):173-176.
    [210] Ozaktas H M, Arikan Orhan, et al. Digital computation of the fractional Fourier transform. IEEE Trans Signal Processing, 1996,44(9):2141-2150.
    [211] Candan C, Kutay M A, et al. The discrete fractional Fourier transform. IEEE Trans Signal Processing, 2000,48(5): 1329-1337.
    [212] Soo-Chang Pei, Min-Hung Yeh, et al. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans Signal Processing, 1999,47(5):1335-1348.
    [213] Arikan O, Kutay M A, Ozaktas H M, et al. The discrete fractional Fourier transforms.Proc. Int. Symp. Time-frequency Time-scale analysis, Paris, 1996:205-207.
    [214] Richman M S, Parks T W. Understanding discrete rotations. Proc. IEEE Int. Conf.Acoustics, Speech, Signal Processing, Munich, Germany, Vol.3,1997:2057-2060.
    [215] Huang D F, Chen B S. A multi-input-multi-output system approach for the computation of discrete fractional Fourier transform. Signal Processing, 2000,80(8): 1501-1513.
    [216] Yeh M H, Pei S C. A method for the discrete fractional Fourier transform computation. IEEE Trans. Signal Processing, 2003, 51(3):889-891.
    [217] Adhemar Bultheel, Hector E Martinez Sulbaram. Computation fo the fractional Fourier transform. Applied and Computational Harmonic Analysis, 2004, 16(1): 182-202.
    [218] Illingworth J, Kittler J. A survey of the Hough transform. Computer Vision, Graphics and Image Processing, 1988,44:87-116.
    [219] Hunt Douglas J, Nolte Loren W. Performance of the Hough transform and its relationship to statistical signal detection theory. Computer Vision, Graphics and Image Processing, 1988,43:221-238.
    [220] Cunningham Gregory S, Williams William J. Kernel composition of time-frequency distributions. IEEE Transactions on Signal Processing , 1994,42(6):1425-1442.
    [221] Aviyente Selin, Williams William J. A centrosymmetric kernel decomposition for time-frequency distribution computation. IEEE Transactions on Signal Processing ,2004,52(6): 1574-1584.
    [222] Pitton James W. The statistics of time-frequency analysis. Journal of the Franklin Institute, 2000(337):379-388.
    [223] Veen T M Van, Groen F C A. Discretization errors in the Hough transform. Pattern Recognition, 1981,14(16):137-145.
    [224] Petr Tichavsky, Carlos H Muravchik, et al. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing ,1998,46(5):1386-1395.
    [225] Ruixin Niu, Peter Willett, Yaakov Bar-Shalom. Matrix CRLB scaling due to measurements of uncertain origin, IEEE Transactions on Signal Processing,2001,49(7):1325-1334.
    [226] Zwaga J H, Boers Y, Driessen J N. On tracking performance constrained MFR parameter control. Proceedings of the Fusion 2003 Conference, Cairns, Anstralia,2003:712-718.
    [227] Bruno Sinopoli, Luca Schenato, et al. Kalman filtering with intermittent observations.IEEE Transactions on Automatic Control, 2004,49(9): 597-599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700