用户名: 密码: 验证码:
氟、磷在川西山地黄壤中的吸附—解吸特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟是人体必需的微量元素,环境中氟的过量和缺乏都会影响到人体健康,土壤是自然界氟循环的重要介质之一,在现代农业生产活动中,氟会通过施肥进人土壤。磷是植物生长的必需营养元素,而磷的生物有效性是影响土壤生产力的重要因子,磷通常作为肥料施入土壤中。磷肥的大量施用和含氟污染水的灌溉是造成农业土壤氟污染的主要因素,因此土壤中磷的迁移和转化与氟污染状况总是紧密联系在一起的。本文以川西山地黄壤为研究对象,采用模拟试验和选择溶解方法,研究了氟磷单一体系、共存体系下的吸附动力学和热力学特征及其影响因素。得到的主要结论如下:
     (1)黄壤对氟的吸附-解吸研究。不同pH体系对氟的吸附量先随pH的增加而增加,约在pH5.0时吸附量达最大,其次是pH6.0时的,而pH4.0时吸附量最小。氟吸附量随时间的延长呈增加趋势,初始浓度越高,吸附量增加速度越快,其吸附过程分为快速和慢速两个反应阶段,平衡时间约为8小时。随着初始浓度的增大,吸附完成后氟离子的平衡液浓度相应地增大,吸附量、净吸附量、解吸量以及解吸率也呈增加趋势,吸附平衡液的pH值上升。与原土相比,去除黄壤相关组分后,对F-吸附降低量由小到大为去无定形氧化铁/铝>去有机质>去游离氧化铁/铝,去除游离氧化铁/铝后F-吸附量差异最明显。加入TISAB与不加入TISAB时吸附量相差很大,加入情况下吸附量下降。
     (2)黄壤对磷的吸附-解吸研究。黄壤对磷的吸附量在低浓度时不受初始溶液pH的影响,高浓度时随pH的上升而增加,pH6.0吸附量达最大,而在pH7.0吸附量最小。磷吸附动力学存在快、慢两个过程,在10h内,加入磷80%以上被吸附,吸附速率较快,而慢速反应阶段则延续相当长时间。磷初始浓度较低时,黄壤吸附的磷量随浓度上升增加很快,吸附曲线斜率较大,溶液中的磷大部分被吸附。随着初始磷浓度增大,土壤吸附磷量随浓度上升较慢,曲线渐趋平缓。磷吸附量、净吸附量随溶液平衡浓度的升高而增加,供试黄壤的磷解吸量、解吸率较低,解吸过程可分快、中、慢3个阶段进行。与原土相比,黄壤用DCB去除铁铝氧化物后,磷的吸附量明显降低,而用H202加热去有机质后吸附量有一定程度的上升。
     (3)磷酸根对氟吸附动力学研究。在磷酸根离子存在条件下,氟的吸附动力学曲线发生了明显变化,但吸附过程仍分为快速和慢速两个反应阶段。与对照相比,有磷酸根存在时,快速吸附时间缩短,约在5h内完成,当磷酸根浓度为10mg/L时,快速吸附阶段黄壤对氟的吸附量可达平衡吸附量的90%,在5h左右吸附达到平衡,当浓度为100mg/L时,可达平衡吸附量的95%,3h左右达到平衡,随后黄壤对氟的吸附量变化趋于平缓。在无磷酸根存在条件下,Elovich方程和双常数方程对于黄壤氟吸附动力学过程的拟合度都非常好,相关系数都达到了0.9以上,其次是抛物线扩散方程,而一级反应式和二级反应式拟合效果较差。不同浓度磷酸根存在情况下,黄壤对氟的吸附动力学过程以双常数方程的拟合效果最佳,其次是Elovich方程。
     (4)氟对磷酸根吸附动力学研究。黄壤对磷的吸附动力学均可分为快速和慢速吸附阶段。在快速吸附阶段,黄壤对磷的吸附量均占了总吸附量的90%以上,表现出了近似于平衡吸附的特征。当添加的氟浓度为10mg/L时,不仅没有阻碍黄壤对磷的吸附,反而磷的吸附量有所增加,只有当氟浓度为100mg/L,黄壤对磷的吸附速率才表现为下降趋势。而在慢速吸附阶段,无论添加氟浓度的高低,吸附曲线都显现出黄壤对磷的吸附量明显降低。黄壤对磷的吸附量与吸附时间都存在着较好的相关性,在不添加氟浓度的情况下,吸附数据与二级反应式方程拟合的最好,达到了极显著的相关性,双常数方程和Elovich方程次之,而一级反应式拟合效果较差。在不同氟浓度存在下,双常数方程和Elovich方程描述的效果较好。
     (5)磷酸根对氟吸附热力学研究。与对照相比,在氟的初始浓度较低时,黄壤对氟的吸附量都有不同程度的增加,其增加幅度随加入磷酸根浓度的增加而增加,黄壤氟吸附的增加量与加入的磷浓度呈极显著正相关,相关系数为0.8以上。而当氟的初始浓度为高浓度时,随着加入磷酸根离子初始浓度的不断增大,氟的吸附量在此浓度范围内不断减少。低浓度的磷酸根对氟吸附影响较小,高浓度磷酸根影响显著。三种吸附等温方程模型都能较好地描述氟的吸附数据,其中,Langmuir方程拟合的r值最高,即相关系数最大,拟合程度最佳,Freundlich方程次之,最后为Temkin方程。
     (6)氟对磷酸根吸附热力学研究。与磷酸根对氟吸附的影响类似,随着加入氟离子初始浓度的不断增大,黄壤的磷吸附量有不同的变化,与对照相比,黄壤对磷的吸附量随着混合液中氟浓度的增大先增加后减少。随着氟浓度的增加,磷的吸附量又降低。三种等温吸附式中,以Langmuir方程的拟合度最高,所以本试验用Langmuir方程来描述磷的吸附特性,可知供试黄壤的吸附能力较强供磷能力较弱,缓冲能力大,土壤贮存磷能力强。Temkin方程和Freundlich方程拟合效果较差。在达到最大吸附量之前,磷酸根的吸附等温线的斜率比氟离子大的多。根据吸附等温线的理论,磷酸根的吸附有较大的吸附能,它的吸附比氟离子强的多。
     (7)氟、磷在黄壤中的解吸特征研究。无论氟和磷在单一体系和共存体系下,其前两次的解吸量占五次解吸总量的60%左右。从第三次解吸开始,解吸量差异变小,到第五次解吸时,解吸量已趋于一致。研究结果表明,黄壤中氟的解吸量和解吸速率大于磷,说明氟在土壤中的活动性和生物有效性大于磷。
Fluorine(F) is an essential trace element of human bodies, and excess and lack of the F in the environment will affect human health. Soil is one of the important media for the F cycle in nature, in the modern agricultural production activities, fertilization will bring soil the F. Phosphorus(P)is the essential nutrient for plant growth, and the bio-availability of P, which is applied in soil by fertilization, is an important factor affecting the soil productivity. Massive P fertilization and irrigation of the sewage with F are the main factors which cause the F pollution in soil, so the migration and transformation of the P in soil have close relation with the pollution situations of the F. The mountain yellow soil from west Sichuan province was chosen. Simulation experiment and the selective dissolution method were conducted to study the characteristics of adsorption kinetics and thermodynamics and their influencing factors under the single system and the coexistence system of the F and P. The main conclusions are as follows:
     (1) The adsorption-desorption studies on F by yellow soil. In different pH systems, the adsorption capacity of F first increased with the pH increase, the maximum appeared at the pH5.0, then at pH6.0 and the minimum appeared at pH4.0. and that demonstrated an increasing trend with the time prolonged, the higher the initial concentration was, the faster the adsorption capacity increased, the adsorption process was divided into fast and slow reaction stage with 8-hour- balancing time. With the increase of the initial concentration, after the absorption completion, equilibrium concentration of the fluorion increased accordingly, adsorption capacity, the net adsorption, desorption and the desorption rate showed an increasing trend and the adsorption equilibrium solution pH value increased. Compared with the original soil, after the removal of the related components, the decrease of the F-absorption was:removal of amorphous iron oxide/amorphous iron aluminum>removal of the organic matter>removal of free iron oxide/freealumina, the difference of the F- absorption was significant after the removal of the free iron oxide/freealumina. Big difference of the absorption existed when adding or not adding TISAB, When added, the adsorption decreased.
     (2) The adsorption-desorption studies on P by yellow soil.the absorption of the P by the yellow soil in low concentration would not be affected by the initial pH, when in high concentration, that increased with the pH increase, the maximum was at pH6.0, while the minimum was at pH7.0. two procedures (fast and slow) existed in adsorption kinetics of P, In 10 h,80% of the added P was absorbed with a fast absorption rate, and in the slow reaction stage, the absorption lasted a pretty long time. When the P was at low initial concentrations, the absorption of the P by the yellow soil would increase rapidly with the increase of the concentration, and the adsorption curve slope was large, which meant the large majority of P in solution were adsorbed. With the increase of initial P concentration, the P absorption was in slow increase with the increase of the concentration, and the curve flattened. adsorption capacity, the net adsorption capacity increased with the equilibrium concentration of solution increased. The desorption and desorption rate of P of the experimental yellow soil were low and the desorption process could be divided into fast, medium and slow stages. compared with the original soil, after the removal of Fe and Al oxides by DCB, the P absorption significantly decreased, when the organic matters were removed by heating the H2O2, the P absorption increased to some extent.
     (3) The studies of adsorption kinetics on F by phosphate. When the existence of the phosphate ion, the curve of the adsorption kinetics of P changed significantly, but the adsorption process was still divided into fast and slow stages. Compared with the control, when phosphate ion existed, fast absorption shortened in 5 h. when the phosphate concentration was 10mg/L, in the fast absorption stage, the F absorption by the yellow soil could reach 90% of the equilibrium adsorption, balanced in 5 h,when100mg/L,that could be 95% about 3 h. afterwards, the absorption change became flat.Without phosphate, the Elovich equation and double constant equation had good fitting degree in the adsorption kinetics of F by yellow soil and the correlation coefficient reached 0.9 followed by the parabolic diffusion equation but the primary and secondary reactive equation had poor fitting degree. Under the different phosphate concentrations, the optimal fitting degree was the double constant equation followed by the Elovich equation.
     (4) The studies of adsorption kinetics on phosphate by F. The adsorption kinetics of the P by yellow soil could be divided into fast and slow adsorption stages. In the fast absorption stage, the P absorption capacity by the yellow soil took more than 90% of the total absorption capacity which demonstrated a close balance absorption characteristics. When the F concentration was10mg/L, it not only inhibited the P absorption by yellow soil but increased the P absorption, only when 100mg/L,did the P adsorption rate show a decreasing trend. But in the slow adsorption stage, whether the F concentration was high or low, the absorption curve showed that the P absorption capacity by yellow soil significantly decreased. Good correlation existed between the adsorption capacity and adsorption time of P by yellow soil. Without F, the adsorption data fitted best with the secondary reactive equation, which reached the very significant correlation. followed by the Elovich equation and double constant equation, but the primary reactive equation had poor fitting degree. Under different F concentrations, the descriptive effect of the Elovich equation and double constant equation was better.
     (5) The studies on F adsorption thermodynamics by phosphate. Compared with the control, when the initial F concentration was low, the yellow soil could increase the F absorption capacity to different degrees, and its increasing range increased as the phosphate concentration increased. the increase of the F absorption had very significant correlation with added P concentration, and the correlation coefficient was 0.8.but when the initial F concentration was high, as the initial concentration of phosphate ions increasing, the F absorption capacity continuingly decreased in this concentration range. Low concentration of the phosphate had little impact on the F absorption, but high concentration had significant impact on that. Three kinds of adsorption isothermal models could well describe the adsorption data of F:Langmuir equations had the highest fitting r value which meant the correlation coefficient was the highest and the fitting degree was optimal, Freundlich equations was at second place, and finally Temkin equations.
     (6) The studies on phosphate adsorption thermodynamics by F. Similar with F absorption by phosphate, with the increase of the initial F concentration, P absorption capacity by yellow soil changed differently. compared with the control, the P absorption first increased and then decreased with the F concentrations in the mixed solution increased. With the increase of the F concentration, the P absorption capacity decreased. Among the three kinds of adsorption isothermal models, Langmuir equations had the best fitting degree which was chosen to describe the characteristics of P absorption. The conclusions were: the experimental yellow soil had stronger absorption capacity, but had weak P availability with strong buffering capacity which meant the experimental yellow soil had strong storage of P. But Temkin equation and Freundlich equation fitted poorly. Before reaching the maximum adsorption, the isothermal slope of the phosphate adsorption was larger than fluorion. According to the theory of adsorption isotherms, the adsorption of phosphate had greater adsorption energy, it had stronger adsorption than the fluorion.
     (7)The desorption characteristics of the F and P in yellow soil. Whether the F and P were in the single system or the coexistence system, the first two desorption capacity accounted for 60% of the total five desorption capacity. From the third desorption, the desorption difference was small. to the fifth desorption the desorption demonstrated a similar trend. The results indicated:the desorption and desorption rate of F were greater than P in the yellow soil, which showed the activities and bio-availabilities in soil of F were greater than P.
引文
[1]王云,魏复盛.土壤环境元素化学.中国环境科学出版社,1995.10,129-141
    [2]何世春.饮水氟与水的健康.环境保护,1987(1):39-40
    [3]邹邦基.土壤与植物中卤族元素.土壤学进展,1984,12(2):13-18
    [4]袭家奎.痕量元素对人体健康的影响.环境保护,1977(6):33-36
    [5]宗良纲,陆丽君,罗敏等.茶园土壤酸化对氟的影响及茶叶氟安全限量的探讨[J].安全与环境学报,2006,6(1):100-103
    [6]李伟娟,姚束根,倪世伟等.土壤对氟离子吸附与解吸的动态土柱法研究[J].长春地质学院学报,1995,25(3):317-322
    [7]鲁如坤.土壤-植物营养学原理与施肥.北京化学工业出版社,1998
    [8]龚子同,黄标.土壤中硒、氟、碘元素的空间分异与人类健康[J].土壤学进展,1994,22(5):1-2
    [9]甘海华,徐盛荣.红壤及其有机无机复合体对磷的吸附与解吸规律探讨[J].土壤通报,1994,25(6):264-266
    [10]中国环境监测总站等主编,1990,中国土壤元素背景值.北京:中国环境科学出版社
    [11]WHO.1984. Fluorides and human health. Geneva World Health Organization, Environmental Health center
    [12]Omueti J.A.I.and Jones R.L.1977.Fluorine content of soil from Morrow plots over a period of 67 years. Soil Sci.Soc.Am.J,41:1023~1024
    [13]Evans L,Hoyle R.D,MacAskill J.B.1971.Fluorine analysis of phosphates feritilizers.N.Z.J.Sci. 14:851~855
    [14]Drury J.S, Snsmingr A.S,Hammons etal.1980.Reviews of the envionmental effects of pollutants.9.Fluoride.Pub.No.ORNL/ES-85.Natl.Tech.Info.Serv,Springfield,Va.U.S.Environ.Prot.Agenc y Rep.no.EPA-600/1-70-050,P.549
    [15]Gilpin L, Johnson A.H.1977.Regional distribution of fluorine in Illinois Soils. Soil Sci.Am.J. 41:771~774
    [16]Flusher H. J,Polanski. And P. Blazer.1982. Retention and movement of fluoride in soils. J.Environ.Qual.11(3):461~468.
    [17]Farrar H,J. Slaver and W. F Pickering.1985. Fluoride sorption by soil components:Calcium Carbonate, Humic Acid. Manganese Dioxide and Silica.Aust.J
    [18]邵宗臣,陈家坊.土壤和氧化铁对氟化物的吸附和解吸[J].土壤学报,1986,23(3):236-242
    [19]何群,陈家坊.土壤胶体表面羟基释放的初步研究[J].土壤学报,1984,21(4):401-409
    [20]Hingston F.J,Atkinson J,Poster M. and Quirk's.1968:specific adsorption of anions on goethite.Trans.9th Inter.Congr.Soil Sci:669~678
    [21]Omueti J. A.I. and Jones R.L.1977. Fluoride adsorption by Illinois soils. Soil Sci. 28:564~572
    [22]Murray.1983.Fluoride retention by sandy soils Water. Air and Soil Pollut.20,361~367
    [23]荆秀艳,袁周燕,杨红斌.土氟静态吸附特性及其影响因素[J].生态环境,2008,17(5):1818-1821
    [24]Slaver J,Farrah H and Pickering W.F.1984.Interactions of clays with dilute fluoride solutions Water Air and Soil Pollution,23;209~220
    [25]Malik DN, etal. India J, Apricrei.1987,21(2):110~116
    [26]Hingston F J,etal Nature 1976,27:58~67
    [27]李日邦.土壤吸附氟的能力及其生态学意义[J].环境科学报,1991,11(3):283-288
    [28]袁可能主编.土壤化学.农业出版社,1990,77-78
    [29]庄杰,刘孝义,孙效文等.磁场对土壤胶体与粘土矿物氟离子吸附及羟基释放影响的研究[J].土壤通报,1997,28(5):211-214
    [30]Perrot K W.The reaction of fluoride with soil and soil mineral [J].J Soil Sci,1976,27:58~76
    [31]阮建云,马立锋,石元值等.茶园土壤对氟的吸附与解吸特性[J].茶叶科学,2001,21(2):161-165
    [32]朱茂迅,谢美,于红等.氟与聚合羟基铝-蒙脱石复合体相互作用机理及土壤环境意义[J].地球化学,2005,34(3):278-283
    [33]Holford R D.The high and low energy phosphate adsorbing surface in calcareous soils.Soil Sci.1975, 26:407~417.
    [34]曹志洪,李庆速.黄土性土壤对磷的吸附与解吸[J].土壤学报,1988,25(3):218-226
    [35]曾希柏,刘更另.化肥施用和秸秆还田对红壤磷吸附性能的影响研究[J].土壤与环境,1999,8(1):45-49
    [36]吕家珑,刘思春,张一平,钟永红.土壤中磷吸附的能量特征[J].土壤通报,2000,31(6):244-247
    [37]赵晓齐,鲁如坤.施用石灰对土壤吸附磷的影响[J].土壤,1991,(5):82-86
    [38]鲁克海.湖南省主要水稻土对磷的吸附特性的初步研究[J].土壤通报,1985,16(2):75-80
    [39]张新明,李华兴,刘远金.广东省主要母质发育水稻土对磷的吸附特性[J].应用生态学报,2000,(11):553-556
    [40]Fox R L. etal. Phosphate isotherms for evaluating the phosphate requirement of soils. Soil Sci. Soc.Amer.Proc,1970, (34):902~907
    [41]陈家坊,何群.土壤胶体中氧化物矿物的化学区分[c]/熊毅.土壤胶体:土壤胶体研究法.北京:科学出版社,1985:245-260
    [42]熊德中,刘淑欣.土壤对磷酸盐吸附因子的主组元分析[].福建农学院学报,1991,20(1):96-100
    [43]Katarina Borling,Erasmus Otabbpmg,Elisabetta Barberis.Phosphorus sorption in relation to soil properties in some cultivated Swedish soils[J].Nutrient Cycling in Agroecosystems,2001,59:39~46
    [44]Subramanlam V,Singhb R. Phosphorus supplying capacity heavily fertilized soils. Ⅰ. Phosphorus adsorption characteristics and phosphorus fractionation [J].Nutr Cycl Agroecosys,1997,47:115~122
    [45]赵晓齐,鲁如坤.有机肥对土壤磷素吸附的影响[J].土壤学报,1991,28(1):7-13
    [46]Borggaard O K,Jorgensens S,Moberg J P,etal.Influnce of organic matter on phosphate adsorption by aluminum and iron oxides in sandy soils [J].J Soil Sci,1990,41:443~449
    [47]Richard Lookman,Katleen Jansen,Roel Merckx,etal. Relation-ship between soil properties and phosphate saturation parameters a transect study in nor them[J]. Belgium Ceoderma,1996,69:265-274
    [48]陈家坊,何群,邵宗臣.土壤中氧化铁的活化过程的探讨[J].土壤学报,1983,20(4):387-393
    [49]Harttkalnen H.Phosphorus and its reaction in terrestrial soils and lake Sediments[J].J. Sci Agric Soc Finl.1979,51:537~624
    [50]Niskanen R.Sorption capacity in mineral soils.Dependence of sorption capacity on soil properties[J].J Agric sci Finl.1990,62:9~15
    [51]Freeze D,Von Decree S.E.A.T.M and Van Riemsdijk W.h.1992. Comparison of different modelsfor phosphate sorption as a function of the iron and aluminum oxides of soil.Soil Sci.43:729~738
    [52]Maguire R.O,SIMS J.T,FOY R.H. Long-term kinetics for phosphorus sorption-adsorption by high phosphorus soils from Ireland and the Delmarva peninsula[J].USA Soil Science,2001,166(8):557~565
    [53]刘淑欣,熊德中.福建省主要土类固磷强度的研究[J].福建农学院学报,1983,(1):21-33
    [54]李世清,谢恩波,刘玉明.灌漠土的磷吸附特性与供磷缓冲能力的初步研究[J].甘肃农业大学学报,1990,25(2):184-190
    [55]Applets H.etal.Interactions between organic com-pounds. minerals and ionsinvolcanic-ash-derived soils.Soil Sci.Amer.Proc,1975,39:628~631
    [56]Robert M. E and Larsen S.1972.The kinetics of her-erogenous isotopic exchange .J. Soil Sci.23:76~81
    [57]Harter R.D.1969.Phosphate adsorption sites in soils.Soil Sci.Soc.Amer.Proc.33:630~633
    [58]Lopez-Hernandez I.D. etal.1986.Competitive adsorption phosphate with malted and oxalate by tropicalsoils.Soil Sci.Soc.Amer.J.50:1460~1462
    [59]Bar-Josef B, etal.1988. Phosphorus adsorption by calamite and montt morillonite.Soil Sci. Soc.Amer.J.52:1585~1589
    [60]Sibanda H. M. and Young S.D.1986. Competitive ad-sorption of humus acids and P on goethite gibbsite and two tropical soils J.Soil Sci.37:197~204
    [61]Barrow N.J.1974.0n the displacement of adsorbed an-ions from soil(Ⅰ).Soil Sci.117:28~33
    [62]Reddy K.R.etal.1980.Phosphorus adsorption-adsorption characteristics of two Soils utilized for disposal of an-imal wastes. Environ. Quality,9:86~92
    [63]何振立.有机离子对磷酸根吸附的影响[J].土壤学报,1990,27(4):377-384
    [64]季国亮.氧化铁对磷酸根和氟离子的竞争吸附[J].土壤学报,1986,23(3):220-227
    [65]梁成华,陈新之,李焕珍等.施用磷石膏对碱化土壤氟含量及其吸附特性的影响[J].环境科学学报,1999,19(1):109-112
    [66]谢忠雷,孙文田,陈卓.磷、铝与氟交互作用对茶园土壤中氟吸附特征的影响[J].吉林大学学报,2007,45(5):879-885
    [67]谢正苗,吴卫红,徐建民.环境中氟化物的迁移和转化及其生态效应[J].环境科学进展,1999,7(2):40-53.
    [68]沈阿林,姚同山,李学垣.花岗岩上发育的几种土壤表面氟、磷、硫的竞争吸附[J].华北农学报,1998,3(2):75-81
    [69]徐明岗.土壤离子吸附Ⅲ离子吸附的动力学[J].土壤肥料,1998,(1)3-6
    [70]Sparks D L.Soil Physical Chemistry. CRC Press, Boca Raton, Florida,1986.1~178
    [71]Hington F.J.A review of anion adsorption In Andre son. M. A. Adsorption of Inorganic at Solid-Liquid Surface. Ann.Arbor:Ann,Arbor Sci,1981:51~90
    [72]Sparks D.L. Kinetics'of soil Chemical Processed,San Diego:Academic Press,Inc.1988
    [73]Syers J.k,Brogan M.G,Smillie G.W.and Corey R.B. Phosphate sorption by soils evaluated by Langmuir adsorption equation[J].Soil Sci.Soc.Am.Proc,1973,37:358~363
    [74]Linda S.Campbell and B.E.Davies.Soil sorption of cesium modeled by the Langmuir and Freundlich is others equations[J].Applied Geochemistry,1995,10:715~723
    [75]Jaehoon Lee, Lakhwinder S. Hundal, Robert Horton and Michael L.Thompson. Sorption and Transport Behavior of Naphthalene in an Aggregated Soil [J]. Environ. Qual,2002(31):1716~1721
    [76]Feng-Chin Wu,Ru-Ling Tseng. Liquid-solid phase counter current multi-stage adsorption process for using the Langmuir equation [J]. Journal of Hazardous Materials,2008,155:449~458
    [77]徐明岗.土壤离子吸附Ⅰ离子吸附的类型及研究方法[J].土壤肥料,1995,(5)3-7
    [78]成杰民,潘根兴,郑金伟,等.模拟酸雨对太湖地区水稻土铜吸附-解吸的影响[J].土壤学报,2001,38(3):333-340
    [79]张增强,孟昭福,张一平.Freundlich动力学方程及其参数的物理意义探析[J].西北农林科技大学学报,2003,31(5):202-204
    [80]谢鹏,蒋剑敏,熊毅.我国几种主要土壤胶体的NH4+吸附特征[J].土壤学报,1988,25(2):175-183
    [81]鲁如坤(中国土壤学会编.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,12-14,60-71,542-543
    [82]中科院南京土壤所.土壤理化分析[M].上海:上海科学技术出版社.1978,500-508
    [83]南京农业大学.土壤农化分析(第二版)[M].北京:农业出版社,1994,33-36
    [84]彭杰,张杨珠,周清.去除有机质对土壤光谱特性的影响[J].土壤,2006,38(4):453-458
    [85]姜军,徐仁扣.氟离子、磷酸根和铬酸根在可变电荷土壤表面吸附过程中羟基释放动力学[J].土壤,2008,40(6):949-953
    [86]沈阿林,崔转玲.几种土壤对氟的吸附和解吸[J].植物营养与肥料学报,1997,3(1):9-15
    [87]徐明岗,孙本华.陕西省主要土壤磷吸附动力学和热力学特征研究[J].西北农业学报,1998,7(1):67-71
    [88]王文山,谭振云,王岱峰.辽宁省柳绕地区的氟状况及磷石膏施用对土壤氟的影响.农业环境保护,1996,15(2):75-77
    [89]张增强,张一平,朱兆华.镉在土壤中吸持的动力学特征研究[J].环境科学学报,2000,21(3):370-375
    [90]王海华,朱茂迅,蒋新等.氟与红壤相互作用过程及环境意义[J].农业环境科学学报,2006,25(4):974-978
    [91]Harrington L.F,Cooper EM,Vasudevan D. Fluoride sorption and associated aluminum release in variable charge soils.J.Colloid Interface Sci,2003,26(7):302~313
    [92]Omueti J. A.I. and Jones R.L. Fluoride adsorption by Illinois soils.Soil Sci, 1977,28:564~572
    [93]王海华.氟与红壤相互作用及其对铝的活化和磷吸附的影响[D].青岛:中国海洋大学,2006.
    [94]马立锋,石元值,阮建云.湘、鄂砖茶主产区茶园土壤氟含量状况及影响因素[J].茶叶科学,2002,22(1):34-37
    [95]朱茂旭,蒋新,何文祥等.土壤与酸性含氟溶液相互作用特征及机理研究[J].环境科学学报,2001,21(4):465-469
    [96]赵海洋,王国平,刘景双,张桂珍.三江平原湿地土壤磷的吸附与解吸研究[J].生态环境,2006,15(5):930-935.
    [97]夏汉平,高子勤.磷酸盐在白浆土中的吸附与解吸特性[J].土壤学报,1993,30(2):146-157
    [98]Syers j.k.,Broman M.QSmillie G.W. and Corey R.B.Phoshpate sorption by soils evaluated by Langmuir adsorption equation[J].Soil Sci.Am.Proc,1973:37:358~363
    [99]夏瑶娄,运生杨,超光等.几种水稻土对磷的吸附与解吸特性研究[J].中国农业科学,2002,35(11):1369-1474
    [100]谢正苗,吴卫红,徐建明.环境中氟化物的迁移和转化及其生态效应[J].环境科学进展,1999,7(2):40-53
    [101]张增强,张一平,朱兆华.镉在土壤中的吸持的动力学特征研究[J].环境科学学报,2002,20(3):370-375
    [102]蒋以超.土壤化学过程的物理化学.1992,110-125
    [103]杨军耀.土壤中氟吸附动力学模型[J].土壤通报,1997,28(6):283-284
    [104]唐孟成,谢正苗,唐云湖.环境中氟化物的释放及其生物效应.土壤化学研究与应用,中国环境科学出版社,1997,98-104
    [105]黄昌勇.土壤学[M].北京:中国农业出版社,2001:169-170;199-200
    [106]Amesen A.k.m.Effect of fluoride pollution on pH and solubility of Al Fe Ca K and organic matter in soil from Ardal[J].Water Air Soil Pollut.1998,103:375~388
    [107]袁东海,景丽洁,张孟群.几种人工湿地基质净化磷素机理的研究[J].中国环境科学,2004,2(6):1-7
    [108]郭晓冬,张雪琴,杨玲.甘肃省主要农业区土壤对磷的吸附与解吸特性[J].西北农业学报,1997,6(2):7-12
    [109]何振立,朱祖祥,袁可能,黄昌勇.土壤对磷的吸持特性及其与土壤供磷指标之间的关系[J].土壤学报,1988,25(4):397-404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700