用户名: 密码: 验证码:
高葡萄糖条件对胰岛β细胞株NIT-1拉曼光谱的变化和马铃薯球蛋白tuberin的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨及研究不同糖浓度下对NOD鼠胰岛β细胞株NIT-1的损伤作用及罗格列酮对该细胞的保护作用。研究在不同浓度葡萄糖条件下,对β细胞内马铃薯球蛋白(tuberin)表达的影响,探讨马铃薯球蛋白tuberin对胰岛β细胞生长、功能的影响。
     方法:将NIT-1细胞按5×104个细胞/孔置于24孔培养板,培养48小时后,随机分入各处理组5.6组(含葡萄糖5.6mmol/L)、7.8组(7.8mmol/L)、11.1组(11.1 mmol/L)、16.7组(16.7mmol/L)、22.2组(22.2mmol/L)及27.6组(27.6mmol/L)再培养24小时,分别施与罗格列酮干预48h,应用拉曼光谱技术检测不同糖浓度和各组经罗格列酮干预后48小时的单个细胞变化,应用蛋白免疫印迹方法(Western Blot)检测不同糖浓度组和各组药物干预后48小时的马铃薯球蛋白tuberin的表达。
     结果:
     (1)高糖组16.7mmol/L组和22.5mmol/LNIT-1细胞在培养至120小时后与11.1mmol/L组的拉曼光谱比较与核酸和蛋白的相关的峰值有降低其中788 cm-1,1002 cm-1,1085 cm-1,1450cm-1和1650 cm-1峰值下降明显,且随糖浓度的增加峰值下降幅度越大。
     (2)当加入10-5mol/l罗格列酮干预后与对照组拉曼光谱比较,16.7组和22.5组与11.1mmol/L对照组比较788 cm-1,1002 cm-1,1085cm-1,1450cm-1和1650 cm-1峰值亦有下降变化,且22.5加药组下降幅度大于16.7加药组。在同一糖浓度下,加药组上述峰值均大于未加药组,差别有统计学意义。
     (3)当葡萄糖浓度在5.6mmol/L时,tuberin蛋白表达含量最低,而随着葡萄糖浓度的不断升高,TSC2转录水平也呈不断增加状态,tuberin蛋白表达5.6mmol/L组显著低于其他各组(P<0.05);27.6mmol/L组与22.5mmol/L显著高于5.6mmol/L组、11.1mmol/L及16.7mmol/L组(P<0.05)。
     (4)在10-5mol/l的罗格列酮干预后,各葡萄糖组所表达tuberin较未干预组相比趋势不变,仍是5.6组<11.1组<16.7组<22.5组<27.6组,27.6mmol/L组显著高于其他各组(P<0.05),同一糖浓度下,未予罗格列酮干预组tuberin蛋白的表达均高于罗格列酮干预组(组间比较P均<0.05)。
     结论:高浓度葡萄糖通过上调马铃薯球蛋白(tuberin)表达阻碍胰岛β细胞增殖、诱导胰岛细胞凋亡。罗格列酮可能通过作用于胰岛β细胞直接或间接的调节tuberin蛋白的表达来调控胰岛β细胞的增殖及功能、抑制凋亡;提示通过调控马铃薯球蛋白(tuberin)的表达的措施,可能有效影响胰岛β细胞的分泌功能和细胞的增殖、凋亡。
Objective:To investigate the role of rosiglitazone in different concentrations of glucose-induced protein tuberin ofβcells, and explore the effects of protein tuberin on the function and proliferation、apoptosis of pancreaticβ-cell.
     Methods:The NIT-1 cells were puted by 5×104 cells/hole in 24-holes culture plate, and cultured for 48 hours later were random accessed to the treatment group 5.6 group (containing glucose 5.6mmol/L),7.8 group (7.8mmol/L),11.1 group (11.1 mmol/L),16.7 Group (16.7mmol/L),22.2 Group (22.2mmol/L) and 27.6 group (27.6mmol/L), and then 24 hours later were respectively intervented by 10"5 mmol/L rosiglitazone for 48h. Single NIT-1 cell was measured by Raman spectroscopy, the expression in protein lever of p-tuberin by Western blot in each group at the time of 48h intervention.
     Results:(1) At the high concentration of glucose, NIT-1 cells were tested by Raman spectroscopy,The most noticeable changes were the decrease of spectral intensity at the788cm-1,1002 cm-1,1085 cm-1,1445 cm-1 and 1655 cm-1 peaks, mainly corresponding to protein and lipid, and the peaks were gradually decreased along with increasing glucose concentration(every group compared with 11.1 group P<0.05),11.1 group>16.7 group>22.5 group.
     (2) After the intervention of 10-5mol/1 rosiglitazone, the peaks mationed had showed no significant alterations. the peaks of none rosiglitazone intervention groups were higher than that of rosiglitazone intervention groups.
     (3) The expression in tuberin was lowest at 5.6mmol/L glucose concentration(every group compared with 11.1 groups P<0.05), and tuberin increased along with the glucose's level. The expression of tuberin of the 5.6mmol/L group was the lowest,less than any other group(P<0.05); The 27.6mmol/L group had showed no significant alterations with the 22.5 mmol/L group(P>0.05) while significantly higher than the 5.6mmol/L and 11.1mmol/ L、16.7mmol/L group (P<0.05).
     (4) After the intervention of 10-5mol/1 rosiglitazone,the expression of tuberin had the same trend that was still 5.6 Group<11.1 group<16.7 group <22.5 group<27.6 group, the 27.6mmol/L group was significantly higher than the other group (P<0.05);The expression of overall tuberin was decreased significantly than non-intervention group. At the same glucose concentration, The expression of tuberin of none rosiglitazone intervention groups were higher than that of rosiglitazone intervention group s(inter-group difference was significant P<0.05).
     Conclusion:High concentration of glucose could hinder beta cell proliferation, induce islet cell apoptosis, and reduce insulin secretion, raise protein tuberin. Above it showed that the islet cell apoptosis、insulin resistance caused by high concentration of glucose may be related with the change of tuberin.
     Rosiglitazone could improve the function and proliferation, and inhibit the apoptosis of pancreaticβcells, through directly regulating the protein tuberin. This prompted that the measures to regulate the expression of TSC2 can effectively influence the secretion、proliferation、apoptosis of pancreatic (3 cells.
引文
1.高浓度葡萄糖阻碍胰岛β细胞增殖、诱导胰岛细胞凋亡。
    2.高浓度葡萄糖可能通过上调马铃薯球蛋白tuberin的表达,抑制了细胞增殖和促进细胞凋亡。
    3.罗格列酮可以通过作用于胰岛β细胞直接或间接调节TSC2信号分子改善胰岛β细胞的增殖及功能、抑制凋亡;通过调控tuberin蛋白的表达的措施,可能能够有效影响胰岛β细胞的分泌功能和细胞的增殖、凋亡。
    1. Butler AE, Janson J, Bonner-weir S, et al. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes[J].Diabetes,2003; 52(1):102-110
    2. Kulkami RN, Bruning JC, Winnay JN, et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes[J]. Cell,1999; 96(3):329—339.
    3. Xu GG, Rothenberg PL. Insulin receptor signaling in the beta cell influences insulin gene expression and insulin content:evidence for autocrine beta cell regulation[J]. Diabetes,1998; 47(8):1243—1252.
    4. Farmer Stephen R. The forkhead transcription factor FoxO1:a possible link between obesity and insulin resistance [J]. Mol Cell,2003,11(1):6-8.
    5. Jia DM, Ot suki M. Troglitazone stimulates pancreatic growt h in normal rats [J].Pancreas,2002,24(3):303-312.
    6. Bunchanan T, Xiang A, Peters R, et al. Preservation of pancreatic beta cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high risk Hispanicwoman [J]. Diabetes,2002,51(9):2796-2803.
    7. Steven E, Kahn MB, Chare B, et al. Glycemic Durability of Rosiglitazone, Metformin,or Glyburide Monotherapy.N Engl J Med,2006,355(23):2427-2443.
    8. Dubois M, Pattou F, Kerr Conte J, et al. Expression of peroxisome proliferator activated receptor gamma (PPARy gamma) in normal human pancreatic islet cells[J]. Diabetologia,2000,43:1165—1169.
    9. Richardson H, Campbell C, Smith A, et al. Effects of rosiglitaZone and metformin on pancreatic beta cell gene, expression [J]. Diabetologia,2006, 49:685-696.
    10. Zeeder E, Maedler K, Bosco D, et al. Pioglitatone and sodiumsalicy late protect human beta cell sagainst apoptosism,and in pairedfuction induced by glucose and interleukin-1 beta[J].J Clin Endo Metab,2004,89(10):5059-5066.
    11. Chan JW, Taylor DS, Zwerdling T, et al. Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells [J]. Biophys 2006,90(1): 648-656.
    12.Escoriza MF, VanBriesen JM, Stewart S, et al. Raman spectroscopic discrimination of cell response to chemical and physical inactivation [J]. Appl Spectrosc 2007,61(11):812-823.
    13. Huilu Yao ZT, Min Ai, Lixin Peng, et al. Raman spectroscopic analysis of apoptosis of single human gastric cancer cells [J]. Vibrational Spectroscopy 2008,50(9):193-1972008.
    14. Latif Rachdi, Norman Balcazar, Fernando Osorio-Duque, et al. Disruption of Tsc2 in pancreatic βcells induces [3cell mass expansion and improved glucose tolerancein a TORC1-dependent manner [J]. PNAS,2008,27 (105):9250-9255.
    15.梁瑜祯,冯乐平,夏宁.罗格列酮对不同浓度葡萄糖条件下小鼠胰岛B细胞株NIT-1增殖、凋亡及功能的影响[J].广西医学,2009,31(9):1231-1233
    16. Maiwald M, Schmidt H, Sumpf B, et al. Microsystem light source at 488 nm for shifted excitation resonance Raman difference spectroscopy [J]. Appl spectrosc,2009,63(11):1283-1287.
    17. Xie C, Mace J, Dinno MA, et al. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy [J]. Anal Chem,2005,77(14):4390-4397.
    18. Benedetti E, Teodori L, Trinca ML, et al. New approach to the study of human Solid Tumor Cell by Means of FT-1R Microspectroscopy [J]. Applied Spectroscopy,1990,44(1):276-283.
    19. Xie CA, Li YQ. Raman spectra and optical trapping of highly refractive and nontransparent particles. Applied Physics Letters,2002,81(6):951-953.
    20. Bonner-Weir S. Life and death of the pancreatic [J]. Trends Endocrinol Metab,2000,11(2):375-378.
    21. Dor Y, Brown J, Martinez OI, et al. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation[J]. Nature,2004,429:41-46.
    22. Rhodes CJ.IGF-1 and GH post-receptor signaling mechanisms for pancreatic β-cells replication[J]Journal of Molecular Endocrinology,2000,24:303-311.
    23. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease[J]. Nature,2000,405:421-424.
    24. Anandharaian R, et al. In Vitro glucose up take activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, P13kinase and PPAR gamma in L6myotubes [J]. Phytomedicine,2006,13(6):434-441.
    25. Evan D. Rosen, Rohit N. Kulkarni,et al. Targeted Elimination of Peroxisome Proliferator-Activated Receptor y in (3 Cells Leads to Abnormalities in Islet Mass without Compromising Glucose Homeostasis[J]. MOLECULAR AND CELLULAR BIOLOGY, Oct.2003,20(23):7222-7229.
    26. Diaz-Delfin J, Morales M, Caellcs C. Hypoglycemic action of Thiazo-lidinediones/peroxisome proliferator—activated receptor y by inhibition of the c-Jun NH2—terminal kinase pathway [J]. Diabetes,2007; 56(7):1865—1871.
    27. Maedler K, Schulthess FT, Bielman C, et al. Glucose and leptin induce apoptosis in human t?-cells and impair glucose—stimulated insulin secretion through activation of c-Jun N-terminal kinases[J]. FASEB J,2008; 22(6): 1905—1913
    28. Johnson M W, Kerfoot C, Bushnell T, et al. Hamartin and tuberin expression in human tissues[J]. Mod Pathol,2001,14(3):202-210.
    29. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease [J]. Nature Genet,2005,37(10):19-24.
    30. Inoki K, L I Y, XU T, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling [J]. GenesDev,2003,17(16):1829-1834.
    31.Sarah Knox, Hong Ge, Brian D.Dimitroff, et al. Mechanisms of TSC-mediated Control of Synapse Assembly and Axon Guidance [J]. PLoS ONE 2007,2(4):e375.
    32.Hay N, Sonenberg N. Up stream and downstream of mTOR[J]. Genes Dev, 2004,18(16):1926-1945.
    33. Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling[J]. Nat. Cell Biol.2002,4:648-657.
    34. Abell AN, Granger DA, Johnson GL,et al. MEKK4 stimulation of p38 and JNK activity is negatively regulated by GSK3beta[J]. J Biol Chem J,2007, 282(42):30476—30484.
    35. Ullrich A, Schlssinger J. Signal transduction by receptors with tyrosine kinase activity [J]. Cell,1990,61(2):203-212.
    36. Pessin J E, Saltiel A R. Signaling pathways in insulin action:molecular targets of insulin resistance [J].J Clin Invest,2000,106(2):165-169.
    37. Cusi K, Maezono K, Oaman A, et al. Insulin resistance differentially affects the PI3-kinase-and MAP kinase-mediated signaling in human muscle [J]. J Clin Invest,2000,105:311-320.
    38. Laura S.Harrington, Greg M Findlay, Alex Gray, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins [J]. J Cell Biol,2004,166(2):213-223.
    39. Hiroyuki M, Inoki K, Kohsuke M, et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential[J]. Bioc and Biop Res Com,2009,384(105):471-475.
    40. Leibowitz G, Cerasi E, Ketzinel-Gilad E. The role of mTOR in the adaptation and failure of P-cells in type 2 diabetes [J]. Diabetes Obe and Meta, 2008,10(4):157-169.40
    41. Inoki K. Role of TSC-mTOR pathway in diabetic nephropathy [J]. Diabe Res and Cli Pra,2008,82(1):59-s62.
    1. Sarbassov DD, Ali SM, Sabatini DM:Growing roles for the mTOR pathway[J]. Curr Opin Cell Biol 2005,17(8):596-603.
    2. Vignot S, Faivre S, Aguirre D, et al. mTOR-targeted therapy of cancer with rapamycin derivatives[J]. Ann Oncol,2005,16(4):525-537.
    3. Feng Z, Hu W, de Stanchina E, et al. The regulation of AMPK betal, TSC2, and PTEN expression by p53:stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways[J].Cancer Res,2007,67(7):3043-3053.
    4. Kisfalvi K, Rey O, Young S H, et al. Insulin potentiates Ca2+ signaling and phosphatidylinositol 4, 5-bisphosphate hydrolysis induced by Gq-coupled receptor agonists through an mTOR dependent pathway[J]. Endocrinology, 2007,148(7):3246-3257.
    5. Martin DE, Hall MN. The expanding TOR signaling network [J]. Curr Opin Cell Biol,2005,17(2):158-166..
    6 Greene MW, Sakaue H, WangL, et al. Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation[J]. J Biol Chem,2003,278 (10):8199-8211.
    7 Terumasa O, Chong WL, Jiang H, et al. Insulin receptors in P-cells are criticalfor islet compensatory growth response to insulin resistance[J]. PNAS,2007,104(21):8977-8982.
    8 Gual P, Gremeaux T, Gonzalez T, et al 1MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307,612 and 632[J]. Diabetologia,2003,46 (11):1532-1542.
    9 Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age and diet-induced obesitywhile enhancing insulin sensitivity[J]. Nature,2004, 431 (7005):200-205.
    10 Khamzina L, Veilleux A, Bergeron S, et al. Increased activation of the mamma-lian target of rapamycin pathway in liver and skeletal muscle of obese rats:possible involvement in obesity-linked insulin resistance[J]. Endocrinology,2005,146(3):1473-1481.
    11 Briaud I, Dickson LM, L ingohr MK, et al. Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathwayin beta-cells [J]. J Biol Chem,2005,280 (3):2282-2293.
    12 Latif R, Norman B, Fernando OD, et al. Disruption of TSC2 in pancreaticβ cells induces P cell mass expansion and improved glucose tolerance in a TORC1-dependent manner[J]. PNAS,2008,105(27):9250-9255.
    13 Merav F, Mali KG, Yafa A, et al. mTOR inhibition by rapamycin prevents β-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2diabetes[J]. Diabetes,2008,57(4):945-957.
    14 E. Zahr, R.D. Molano, A. Pileggi, et al. Rapamycin impairs β-cell proliferation in Vivo[J]. Trans Pro,2008,40(2):436-437.
    15 G. Leibowitz, E. Cerasi, M. Ketzinel-Gilad. The role of mTOR in the adaptation and failure of β-cells in type 2 diabetes[J]. Diabetes Obe and Meta, 2008,10(4):157-169.40
    16 Ken Inoki. Role of TSC-mTOR pathway in diabetic nephropathy[J]. Diabe Res and Cli Pra,2008,82(1):59-s62.
    17 Nagai K, Matsubara T, Mima A, et al. Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy[J]. Kidney Int,2005,68 (2): 552-561.
    18 Komers R Z J. Renal activity of Akt kinase in Obese Zucker rats[J]. Exp Biol Med,2008,233(10):1231-41
    19 Hiroyuki M, Inoki K, Kohsuke M, et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential[J]. Bioc and Biop Res Com,2009,384(105):471-475.
    20 SakaguchiM, IsonoM, Isshiki K, et al. Inhibition of mTORsignaling with rapa-mycin attenuates renal hypertrophy in the early diabetic mice[J]. Biochem Biophys Res Commun,2006,340 (1):296-301.
    21 Hudson C C, Liu M, Chiang G G, et al. Regulation of hypoxia-inducible factor 1 alpha expression and function by the mammalian target of rapamy- cin[J]. Mol Cell Biol,2002,22 (20):7004-7014.
    22 Sent hil D, Choudhury G G, McLaurin C, et al. Vascular endothelial growth factor induces protein synthesis in renal epithelial cells:a potential role in diabetic nephropathy[J]. Kidney Int,2003,64(2):468-479.
    23 Valle A, Jofra T, et al. Rapamycin prevents and breaks the anti-CD3-induced tolerance in NOD mice. [J]. Diabetes.2009,58(4):875-81.
    24 Treins C, Giorgetti-Peraldi S, Murdaca J, et al. Regulation of hypoxia-inducible factor(HIF)-1 activity and expression of HIF hydroxylases in response to insulin-like growth factor 1[J]. Mol endocrinol, 2005,19(5):1304-1317.
    25刘红艳,林碧,余励明.胰岛素抵抗与糖尿病肾病的关系[J].广西医学,2005,27(12):1920-1922.
    26 Sarafidis PA, Bakris GL. Protection of the kidney by thiazolidinediones:an assessment from bench to bedside[J]. Kidneylnt,2006,70 (7):1223-1233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700