用户名: 密码: 验证码:
磨矿对黄铁矿和黄铜矿浮选行为的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨矿是矿物加工中一个重要的环节。磨矿过程中,硫化矿物表面会发生氧化还原反应,其表面性质发生改变,因此对磨矿过程进行研究并考察它对浮选的影响具有重要意义。
     本论文研究了不同磨矿气氛和磨矿介质条件下,磨矿时间、矿浆pH值、捕收剂用量对黄铁矿和黄铜矿浮选行为的影响,并利用电化学测试方法对矿物与磨矿介质之间的电化学作用进行了研究。
     浮选试验结果表明:磨矿介质和磨矿气氛对硫化矿物浮选行为的影响较大。在黄体矿浮选中,空气环境下,黄铁矿在瓷球磨矿后的浮选回收率最高,铁球磨矿后的回收率最低,不锈钢球介于两者之间;而在氮气环境下,黄铁矿在铁球磨矿后的回收率明显高于空气铁球体系的回收率,不锈钢球磨矿后回收率也有所上升,而瓷球磨矿后回收率变化较小;不同介质磨矿后回收率大小次序和空气环境下一致。在黄铜矿浮选中,空气体系下,黄铜矿在瓷球磨矿后的浮选总体回收率最高,铁球磨矿后的总体回收率最低,不锈钢球介于两者之间;而在氮气体系下,碱性条件下铁球磨矿后的回收率明显高于空气铁球体系的回收率,不锈钢球磨矿后回收率也有所上升,而瓷球磨矿后回收率变化较小;其总体规律与空气环境下相同,在酸性条件下,黄铜矿受不同介质和气氛的影响较小。
     热力学计算表明:在酸性条件下,当黄铁矿和黄铜矿矿物表面发生适度氧化时,硫化矿物表面生成S0;氧化气氛增强时,电位升高时,硫化矿物表面的S0或被氧化成SO42-。在高电位或碱性条件下,黄铁矿和黄铜矿浮选体系容易产生铁的羟基络合物。
     在机械力作用下电化学研究表明:无论空气和氮气环境下,黄铁矿和黄铜矿在铁介质和不锈钢介质中,矿物电极产生阴极电流,磨矿介质发生氧化反应,生成了铁的羟基络合物,覆盖于硫化矿物表面,削弱了体系中药剂与矿物之间的吸附作用,抑制了黄铁矿和黄铜矿浮选。而黄铁矿和黄铜矿在瓷介质中,矿物电极作为阳极,表面产生阳极电流,使矿物电极表面的发生适度氧化,改善了药剂与矿物的吸附作用,从而提高黄铁矿和黄铜矿的可浮性。机械力越强,电流越大,体系的反应越剧烈,氧化程度加深,浮选效果越差。在氮气环境下,外电路电流低于空气环境下的电流,氧化反应速度降低,对浮选有利。
     此外,腐蚀电化学研究表明:相对空气环境,氮气环境下铁介质的腐蚀电位上升幅度最大,而陶瓷介质的腐蚀电位上升幅度最小,不同气氛环境对铁介质磨矿后浮选行为的影响最大,其浮选回收率变化最明显,而对陶瓷介质磨矿后浮选行为影响最小。
Grinding is an important necessary section in minerals process. The surface of sulphide minerals would occur redox reactions and the surface properties would be changed. Therefore, it is significative to study the grinding process and its effect on the flotation.
     In this paper, the effect of grinding time, pH value of the pulp, dosage of the collectors on the flotation of pyrite and chalcopyrite which were ground with different grinding medium and different grinding atmosphere are studied, the paper also uses electrochemical testing method to study interactions between grinding media and minerals as well as the effect of electrochemical on those interactions.
     The results of flotation test show that grinding media and atmosphere has a great effect on the flotation of sulphide minerals. In flotation of pyrite, The flotation recoveries of pyrite grinding with ceramic balls are highest. The flotation recoveries grinding with fericc balls is lowest, The flotation recoveries grinding with stainless steel balls is intervenient. In nitrogen atmosphere, the flotation recoveries of pyrite grinding with ceramic balls are much higher than that in air atmosphere. The flotation recoveries grinding with stainless steel balls is rise in nitrogen atmosphere. There is litter change grinding with ceramics balls in nitrogen atmosphere. The method of pyrite recoveries in nitrogen atmosphere is same as that in air atmosphere. In flotation of chalcopyrite, The flotation recoveries of chalcopyrite grinding with ceramic balls are highest. The flotation recoveries grinding with fericc balls is lowest, The flotation recoveries grinding with stainless steel balls is intervenient. In nitrogen atmosphere, the flotation recoveries of chalcopyrite grinding with ceramic balls are much higher than that in air atmosphere under vacuum condition. The flotation recoveries of pyrite grinding with stainless steel balls in nitrogen atmosphere is rise too. There is litter change grinding with ceramics balls in nitrogen atmosphere. But the influence of atmosphere and grinding medium on the flotation of chalcopyrite is under acidic conditions.
     The calculations of thermodynamics show that, S0 would be created in the surface of pyrite and chalcopyrite when the surface of pyrite and chalcopyrite are oxidized appropriately. When oxidative atmosphere strengthen, S0 or polysulfide would be oxidized to SO42-. In high Eh or under under vacuum condition, the product is hydroxo complex of ferric in flotation system. The hydroxo complex of ferric would be producted in flotation systems.
     The results of mechanism electrochemical testing show that, the pyrite and chalcopyrite electrode act as cathode when using the ferric medium or stainless steel medium as abrading agent and anode current generates on the grinding medium surface. The surfaces of grinding medium occur oxidation reactions. The product is hydroxo complex of ferric, which would covering on the surfaces of mineral, This substance can weaken the sorption of mineral and collector. The mineral flotation is prevented. However, the pyrite and chalcopyrite electrode act as anode and oxidation reaction occurs on the mineral surface and anodic current generates on the mineral surface when using ceramic medium as abrading agent, which will improve the sorption of the mineral and collector and promote the flotation of the mineral. The larger the abrading force between themediums and mineral electrode is, the larger current are in the system. The minerals or grinding medium woule be oxidized completely, and the flotability of the mineral will be decrease in the flotation system.In nitrogen atmosphere, the current is lower than that in air atmosphere.
     The corrosion electrochemistry tests show that, compare with in air atmosphere, corrosion potential of iron medium is much higher in nitrogen atmosphere, and corrosion potential of iron medium is rise a litter. The influence of atmosphere is obviously on flotation with fericc medium grinding. But the influence is minor with ceramics medium grinding.
引文
[1]S. G Salamy, J. G. Nixon In:Recent developments in mineral dressing. London: Institution of mining and metallurgy,1953:503-516.
    [2]J. G Nixon,S S. G.alamy Aust. J. Chem.,1954, (7):146-156.
    [3]冯其明.硫化矿浮选电化学.长沙:中南工业大学出版社,1992.5-18
    [4]宋晓岚,邱冠周,杨华明.机械化学及其应用研究进展[J].Proc 11th金属矿山;2004.
    [5]W. Ostwald, Handbuck der allgemeinen Chemie, Akad Verlagsanstalt, Leipzig, 1919:71
    [6]A.Z. Juhasz, K.Peters. Mechanical Activation of Minerals by grinding: Pulverizing and Morphology of particles, Chichester:Ellis Horwood Limitted.1990:11
    [7]K.Peters. Mechanochemische Peaktionen. H.Rumpf(Ed.), First Euro. Symp. Zerkleinern, Frankfurt,1962,78-98
    [8]K.Tkacova. Energy transfer and conversion during comminution and mechanical activation International Journal of Mineral Processing.1993,40:17-31
    [9]F.P. Gowden, D. Tabor. The Friction and Lubrication of Solid. Oxford:Clarendon Press,1964
    [10]V.V. Boldyrev. Mechanical Activation of Minerals. Amsterdam:Elsevier. 1989:103
    [11]G Henike. Tribochemisty. Wien:Hanser.1984.19
    [12]D.R.Maurice, T.H.Courtney. Modelling of mechanical alloying:part Ⅱ Applications of computational programs. Metall.Trans.1990; 26A:2437-2455
    [13]A.K.Bhattacharya, E. Arzt. Temperature Rise During Mechanical Alloying. Dcripta Metall.,1992,27:749
    [14]P. Le. Brun, L. Froyen, L. Delaey. The Modelling of The Mechanical Alloying Process in a Planetary Ball Mill:comparision betreen theory and in-situ observations. Mater. Sci.Eng.,1993,A161:75-82
    [15]M. Magini, A. Iasonna. Energy Transfer in Mechanical Alloying(Overview). Mater. Trans. JIM,1995,36:123-131
    [16]Klara Tacovaa, Peter Balae. Reactivity of menchanically activated chalcopyrite. Int. J. Miner. Process.1996,44-45:197-208
    [17]李洪桂,杨家红,赵忠伟等.黄铜矿的机械活化浸出.中南工业大学学报, 1998,29 (1):28-30
    [18]D. Feng, C. Aldrich. A comparison of the floatation of ore from the Merensky Reef after wet and dry grinding. Int. J. Miner.Process.,2000,60:115-129
    [19]J.P. Eymery, F. Ylli. Study of a mechanochemical transformation in iron pyrite. Journal of Alloys and Compounds,2000,298:306-309
    [20]K. Sasaki, H.Konno and M. Inagaki. Structural strain in pyrites evaluated by X-ray powder diffraction. Journal of Materials Science,1994,29:1666-1669
    [21]M. Inagaki. Funryutai Kougaku. Tokyo:Makishoten,1985.75
    [22]M. Inagaki. Y. Sasaki and M. Sakai. Debye-Waller parameters of palladium medal powders. J.Mater.Sci.,1983,18:1803-1089
    [23]M. Inagaki, M. Toyoda and M. Sakai. Debye-Waller parameters of diatomic crystals. J.Mater.Sci.,1987,22:3459-3461
    [24]M. Inagaki. Y. Sasaki and M. Sakai. Debye-Waller parameters of lead sulphide powders. J.Mater.Sci.,1987,22:1657-1660
    [25]M. Inagaki, T. Higashi, Y. Sasaki, M. Toyoda and M. Sakai. Effective Debye-Waller parameters of carbons. J.Mater.Sci.,1986,21:566-570
    [26]P. Balae, Z. Bastl, J.Brianein, I. Ebert and J.Lipka. Surface and bulk properties of mechanically activated zinc sulphide. Journal of Materials Science,1992,7: 653-657
    [27]P. Balae, E. Post and Z. Bastl. Thermoanalytical study of mechanically activated cinnabar. Thermochimica Acta,1992,200:371-377
    [28]P. Balae, Influence of solid state properties on ferric chloride leaching of mechanically activated galena. Hydrometallurgy,1996,40:359-368.
    [29]胡慧萍,机械活化硫化矿结构与性质变化规律的基础研究:[中南大学博士论文],2003
    [30]A.Z. Juhasz, Mechanical Activation of Minerals by grinding:Pluverizing and Morphology of Particles, Chichester:Eills Horwood Limitted.1990:184-188
    [31]马学鸣,岳兰平,董远达.氧化铜室温下机械还原的研究.金属学报,1991,27:A470-A472
    [32]P.G McCormik. Application of Mechanical Alloying to Chemical Refining. Mater. Trans.JIM,1995,36:169
    [33]G.B. Schaffer, P.G. McCormik. Displacement Reactions during Mechanical Alloying, Metall. Trans,1990,21A:2789-2795
    [34]M. Sherif El-Eskandarany. Structural Evolution of Rod Milled Cu2O and Ti Powders during Mechanical Solid State Reduction, Mater. Trans. JIM,1995,36: 182-187
    [35]#12
    [36]M. Koishi. Powder Technology 81. Eds.K. Iinoya. New York:Kyoto Hemisphere.1982
    [37]王淀佐,胡岳华.浮选溶液化学.长沙:湖南科学技术出版社,1988,1
    [38]I. Iwasaki; K.J Reid; H.A, Lex; K.A Smith. Effect of autogenous and ball Mall Grinding on sulfide flotation. Mining Engineering.1983,35(8):1184-1190
    [39]M Rey; V Formanek. Some factors affecting the selectivity in the differential flotation of lead-zinc ores in the presence of oxidized lead mineral. Proc 5th Int Min Proc Congr, Inst Mining and Met. London:Elsevier,1960,343-352
    [40]Y Peng, S Grano, J Ralston, D.Fornasiero. Towards prediction of oxidation during grinding I. Galena flotation. Minerals Engineering.2002,15(7):493-498
    [41]Yongjun Peng,; Grano, Stephen; Fornasiero, Daniel; Ralston, John. Control of grinding conditions in the flotation of galena and its separation from pyrite. International Journal of Mineral Processing.2003,70(1-4):67-82
    [42]Yongjun Peng, Grano, Stephen; et al. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. Int. J. Miner. Process. 2003,69 (1-4):87-100
    [43]A.N.Beyzavi,复杂硫化矿优先浮选特别是关于比表面积、氧化还原电位和氧含量的相互影响.国外金属矿选矿.1989,26(2):27-34
    [44]陈建华.电化学调控浮选能带理论及其在有机抑制剂研究中的应用:[博士学位论文1.长沙:中南大学,1999
    [45]覃文庆.硫化矿物颗粒的电化学行为与电位调控浮选技术:[博士学位论文].长沙:中南大学,1997,12
    [46]J O Leppinen, V V Hintikka, P P Kalapudas.Effect of electrochemical control on selective flotation of copper and zinc from complex ores[J].Minerals Engineering,1998,11(1):39-51
    [47]Erdogan Yigit, G O.Safak. Effects of surface alteration phenomena on flotability of copper minerals of Kure-Bakibaba ore(J).Colloids and Surfaces A: Physicochem. Eng. Aspects.2004,248:105-109
    [48]W A Freeman, R Newell, K B Quast. Effect of grinding media and NaHS on copper recovery at northpapkes mines[J].Minerals Engineering.2000,13(13): 1395-1403
    [49]X M yuan, B I palsson, K S Eforssbry. Flotation of a complex sulphide ore II.Influence of grinding environments on Cu/Fe sulphide selectivity and pulp chemistry[J].Int J Miner Process.1996,46:181-204
    [50]K L C Gonc_alves, V L LAndrade, A E C Peres.The effect of grinding conditions on the flotation of a sulphide copper ore[J].Minerals Engineering.2003,16:1213-1216
    [51]M Erdemo_glu, M Sankaya. The effect of grinding on pyrophyllite flotation[J].Minerals Engineering.2000,15:723-725
    [52]Vesa Kirjavainen, No'ra Schreithofer, Kari Heiskanen.Effect of some process variables on flotability of sulfide nickel ores[J].Int. J. Miner Process.2002, 65:59-72
    [53]A.M.Buswell, D.J. Bradshaw, P.J.Harris, Z.Ekmekci.The use of electrochemical measurements in the flotation ofa platinum group minerals (PGM) bearing ore[J].Minerals Engineering.2002,15:395-404
    [54]钟素娇.磨矿对方铅矿和闪锌矿浮选行为的影响研究:[硕士学位论文].长沙:中南大学,2006
    [55]龚竹青.理论电化学导论.长沙:中南工业大学出版社,1997.2
    [56]顾帼华.硫化矿磨矿-浮选体系中的氧化还原反应与原生电位浮选:[博士学位论文].长沙:中南大学,1998
    [57]范兴祥.一种环境友好的黄铜矿浸出新工艺及理论研究:[博士学位论文].昆明:昆明理工大学,2006
    [58]杨显万,张英杰.矿浆电解原理.北京:冶金工业出版社,2000,5
    [59]覃文庆,邱冠周,徐竞,等.磨矿过程硫化矿物表面电化学性质及其对浮选的影响[J].矿产综合利用.1999,3(6):6-10
    [60]张清岑,刘建平,肖奇.黄铁矿超细粉磨过程的氧化[J].中南工业大学学报(自然科学版).2003,34(3):235-237
    [61]冯其明,陈荩,许时.混合精矿体系中方铅矿与黄铁矿浮选分离的矿浆电化学(Ⅰ)——方铅矿表面丁基黄原酸铅的电化学还原动力学[J].中南工业大学学报.1995,26(1)33-38
    [62]顾帼华,刘如意,王淀佐.硫化矿电位调控浮选及原生电位浮选技术[J].有色金属.2000,52(2):18-21
    [63]顾帼华,刘如意,王淀佐.硫化矿原生电位浮选体系中的迦伐尼电偶及其浮选意义[J].矿物工程.2000,9(3):48-51
    [64顾帼华,刘如意,王淀佐.原生电位浮选过程中的捕收剂匹配[J].有色金 属.1999,51(4):38-42
    [65]孙伟,胡岳华.硫化矿矿浆体系中的电偶腐蚀及对浮选的影响(Ⅱ)-电偶腐蚀对磨矿介质损耗及硫化矿浮选的影响[J].国外金属矿选矿.1999,9:5-13
    [66]胡岳华,邱冠周,徐亮.凡口方铅矿-黄铁矿选择性分离机理研究[J].有色矿山.1995,(6):32-36
    [67]冯其明,许时.方铅矿与黄铁矿浮选分离的矿浆电化学研究[J].中南工业大学学报.1995,26(6):739-742
    [68]王淀佐.硫化矿浮选与矿浆电位.北京:高等教育出版社,2008,11
    [69]肖忠良,陈启元,尹周澜,等.机械活化闪锌矿的量热研究[J].中国有色金属学报.2003,13(5):1287-1291
    [70]胡慧萍,陈启元,尹周澜,等.未活化与机械活化闪锌矿的氧化行为[J].中国有色金属学报.2003,13(2):517-521
    [71]杨绮琴.应用电化学.广州:中山大学出版社,2001
    [72]孙伟.高碱石灰介质中电位调控浮选技术原理与应用:[博士学位论文].长沙:中南大学,2001
    [73]何捍卫.铜化学-机械抛光电化学机理与抛光速率的研究:[博士学位论文].长沙:中南大学,2002,5
    [74]姜晓霞,李诗卓,李曙.金属的腐蚀磨损.北京:化学工业出版社,2003
    [75]曹楚南.腐蚀电化学原理.北京:化学工业出版社,2008,3
    [76]覃文庆,邱冠周,徐竞,王淀佐.磨矿过程硫化矿物表面电化学性质及其对浮选的影响[J].矿产综合利用.1999,3(6):6-10
    [77]E.福斯伯阁等,磨矿、矿浆化学与颗粒可浮性[J].国外金属矿选矿.1994,8:31-37
    [78]戴昭华,王庆广,谢光国,矿山酸性水中硫的化学状态分析[J].分析测试技术.1994,3:29-33
    [79]冯其明.硫化矿矿浆体系中的电偶腐蚀及对浮选的影响(Ⅰ):电偶腐蚀原理及硫化矿矿浆体系中的电偶腐蚀模型[J]国外金属矿选矿:1999.2:2-4
    [79]冯其明.硫化矿矿浆体系中的电偶腐蚀及对浮选的影响(Ⅰ):电偶腐蚀原理及硫化矿矿浆体系中的电偶腐蚀模型[J]国外金属矿选矿:1999.9:2-4
    [80]冯其明.硫化矿矿浆体系中的电偶腐蚀及对浮选的影响(Ⅱ):电偶腐蚀对磨矿介质损耗及硫化矿物浮选的影响[J]国外金属矿选矿:1999.9:5-8
    [81]何发钰,孙传尧,宋磊.磨矿环境对硫化矿物浮选的影响[J].中国工程科学:2008.8(8):92-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700