用户名: 密码: 验证码:
复杂宝石加工专用装备方案设计技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代化生产与科技的飞速发展,对机电装备的功能需求日趋复杂,因此对于复杂机电系统方案设计技术的研究与探索,成为学术界和工业界的研究重点。本文针对复杂宝石加工专用装备的方案设计进行了深入的研究,提出了基于语义特征的复杂宝石加工专用装备功能方案求解技术、基于可拓逻辑的复杂宝石加工专用装备结构方案变型技术、基于机电分析的复杂宝石加工专用装备传动系统控制方案耦合技术。并且,将其成功应用于装备的设计和开发过程之中。
     第1章,概述了机电一体化技术的发展,介绍了复杂机电系统的定义和特点,阐述了本课题的研究背景及其意义,综述了复杂机电系统设计与开发的国内外研究现状及今后的发展趋势,说明了复杂宝石加工专用装备方案设计技术的提出,并给出了论文的主要研究内容及总体结构框架。
     第2章,提出了基于语义特征的复杂宝石加工专用装备功能方案求解技术。从方案设计开始,就以功能语义作为设计者表达创新思维的工具,通过对设计语义及其关联信息的形式化描述,构建复杂宝石加工专用装备的功能语义结构树,并对其进行功能分析得到装备的功能元,抽象关联为语义特征,构建了复杂宝石加工专用装备的功能模型,给出了产品的功能结构映射体系,最后详细阐述了复杂宝石加工专用装备功能求解的详细流程。
     第3章,提出了基于可拓逻辑的复杂宝石加工专用装备结构方案变型技术。针对传统产品信息模型存在的不足,将可拓理论引入到复杂宝石加工专用装备信息建模中,构建了复杂宝石加工专用装备概念结构形式化表达的可拓复合元模型,定义了支持产品创新设计的衍生、变异、扩缩、重组等5类变型运算操作,详细介绍了复杂宝石加工专用装备概念结构变型设计的算法和过程。
     第4章,提出了基于机电分析的复杂宝石加工专用装备传动系统控制方案耦合技术。在分析复杂宝石加工专用装备机电耦合特点的基础上,设计了电流环、速度环和位置环三闭环高精度控制方案,通过构建各个子系统的耦合控制数学模型,并对其进行耦合关联,建立复杂精密传动系统的机电耦合数学模型,最后对复杂宝石加工专用装备精密传动系统的性能进行了仿真分析,验证了上述理论的正确性和有效性。
     第5章,将前面章节的技术应用于实际的复杂宝石加工专用装备的设计和开发过程中。在功能方案求解阶段,应用功能语义对装备的功能进行分解得到装备的功能语义结构树,通过语义特征的功构映射获得实现复杂宝石加工专用装备功能元的机构,进行机构重组建立了装备的设计方案并择优选取。在结构方案变型设计阶段,应用文中的5类变型操作方法,对装备中的复杂零件进行变型设计,直到满足设计的需求为止。最后,给出了复杂宝石加工专用装备精密传动控制系统的方案、原理、功能和详细结构,同时也介绍了系统的软硬件设计。
     第6章,总结了本课题的研究成果,并展望了今后的研究方向。
The functional requirements for mechatronical equipment are becoming more and more complex with the rapid development of modern production and technology, it has become the focus of research for the academia and industry. Aiming at the scheme design technology of complex diamond manufacturing special equipment, this paper conducted an in-depth study, including the functional scheme solving technology of complex diamond manufacturing special equipment based on functional semantic unit, the structural scheme variation technology method of complex diamond manufacturing special equipment based on extensible logic theory and the control scheme coupling technology of high-precision transmission system of complex diamond manufacturing special equipment based on mechatronical analysis. Moreover, these technologies have been successfully applied to the practical product design and develop process of complex diamond manufacturing special equipment.
     In the first chapter, the development situation of mechatronical technology was outlined, and also the definition and characteristics of complex mechatronical system was introduced. Then, the current study status at home and abroad and the research trend of complex mechatronical system were summarized. In addition, the introduction of scheme design technology of the complex diamond manufacturing special equipment was explained, and the primary research contents and the structure of this paper were given.
     In the second chapter, the functional scheme solving technology of complex diamond manufacturing special equipment based on functional semantic unit was presented. From the beginning of scheme design, the semantic feature was used as the tool to express the designer's innovative idea. And the formal description of design semantic and its relative information was implemented. The functional semantic structural tree of complex diamond manufacturing special equipment was established. Then, it was decomposed to get the functional units of the equipment and the functional semantic unit was constructed, In addition, the functionl model of the complex diamond manufacturing special equipment was constructed and the function-structure mapping system was given. In the end, the detailed function solving procedures of diamond manufacturing special equipment was narrated.
     In the third chapter, the structural scheme variation technology of complex diamond manufacturing special equipment based on extensible logic theory was presented. After analyzing the inadequaties of the traditional product information model, the extensible theory was introduced into the information modeling of complex diamond manufacturing special equipment. The extensible composite model which is used to formally express the mechanical parts is established. Five kinds of variant operations which support the product innovative design are presented, and also variant design algorithm and procedures of conceptual strutures' variant design are given.
     In the fourth chapter, the control scheme coupling technology of high-precision transmission system of complex diamond manufacturing special equipment based on mechatronical analysis was presented. The characteristics of mechanical-electronical coupling of complex diamond manufacturing special equipment were analyzed, and the three closed-loop high-precision servo control system with current loop, speed loop and positon loop was designed. The coupling control mathematiocal models of each subsystem were established, and then they were combined to generate the whole coupling control mathematiocal model of the high-precision transmission system of complex diamond manufacturing special equipment. At last, the performance of the high-precision transmission system of complex diamond manufacturing special equipment was simulated to verify the rightness and effectiveness of the above method.
     In the fifth chapter, the above technologies were applied to the practical development process of complex diamond manufacturing special equipment. The function of the equipment was decomposed with the functional semantics, and the functional sementical structural tree was achieved, and the mechanisms which can satisfy each subfunction were got from the function-structure mapping. Then, these mechanisms were reorganized to get the possible schemes, and the optimal one are selected. In the detailed design stage, with the five pair of variant operations mentioned in the previous chapter, the complex part in the equipment are variantly designed, until the structure of the part satisfied the design requirement. And in the end, the scheme, function and detailed structure of control system of the high-precision transmission system of complex diamond manufacturing special equipment are given. In the meanwhile, the design of hardware and software of the equipment were introduced.
     In the sixth chapter, the research results of this subject were summarized, and the future research direction are expected.
引文
[1]钟掘著,复杂机电系统耦合设计理论与方法[M],北京:机械工业出版社,2007.
    [2]国家自然科学基金委员会工程与材料科学部,机械与制造科学[M],北京:科学出版社,2006.
    [3]第112次北京香山“复杂性科学”会议,1999。
    [4]钟掘,段吉安,严珩志等.现代复杂机电系统设计理论的新课题[C].第一届国际机械工程学会(ICME)论文集,中国上海,2000.
    [5]钟掘,陈先霖.复杂机电系统耦合与解耦设计-现代机电系统设计理论的探讨[J].中国机械工程,1999,10(9):1051-1054.
    [6]谭建荣,冯毅雄著,设计知识建模、演化与应用[M],北京:国防工业出版社,2007.
    [7]冯培恩,张帅,潘双夏等.复合功能产品概念设计循环求解过程极其实现[J].机械工程学报,2005.3,41(3):135-141.
    [8]冯培恩,邱清盈,潘双夏等.机械广义优化设计的理论框架[J].中国机械工程,2000.2,11(1):126-129.
    [9]何正嘉著,机械设备非平稳信号的故障诊断原理及应用[M],北京:高等教育出版社,2001.
    [10]汪劲松,段广洪,李方义等.基于产品生命周期的绿色制造技术研究现状与展望[J].计算机集成制造系统,1999.8,5(4):1-8.
    [11]邹慧君著,机械系统设计原理[M],北京:科学出版社,2003.
    [12]邹慧君著,机械系统概念设计[M],北京:机械工业出版社,2003.
    [13]邹慧君,张青,田志斌.机电一体化系统概念设计过程模型的研究[J].机械设计与研究,2002,18(5):11-13.
    [14]魏文超,檀润华,陈香香等.机电一体化产品控制系统概念设计方法研究[J].河北工业大学学报,2007.2,36(1):1-6.
    [15]Isermann.Mechatronic Systems,fundamentals[M],Springer:Springer Publication,2003.
    [16]Paynter H.Analysis and Design of Engineering System[M],Cambridges Mass:MIT Press,1961.
    [17]王玉新.复杂机械系统快速创新设计[M].北京:科学出版社,2006.
    [18]G Phal,W Beitz.Engineering Design- A Systematic Approach[M].London:Springer-Verlag,1996.
    [19]董仲元.通用设计理论[J].工程设计,1996,(3):44-45.
    [20]Gahide S.Application of TRIZ to Technology Forecasting Case Study.Yarn Spinning Technology[J],TRIZ Journal,1998,(8).
    [21]Suh N P.Axiomatic design:advances and applications[M].New York:Oxford University Press,2001.
    [22]Kota S and Chiou S J.Automated conceptual design of mechanisms[J].International Journal of Mechanisms and Machine Theory,1999,34(3):467-495.
    [23]Freeman P,Newell A.A model for functional reasoning in design[C].In:Proceedings of the Second International Joint Conference on Artificial Intelligence London,1971:621-640.
    [24]Chiou S.J.,Sridhar K..Automated conceptual design of mechanisms[J].Mechanism and Machine Theory,1999,34(3):467-495.
    [25]李健,邓家禔.基于功能的产品设计过程研究[J].计算机集成制造系统-CIMS,2002,8(4):289-293.
    [26]郭为忠,邹慧君.机电产品运动方案创新的人机协同研究[J].计算机辅助设计与图形学学报,2002,14(2):176-180.
    [27]檀润华,苑彩云,孙力峰等.概念设计中的功能方法树[J].机械科学与技术,2000,19(4):563-565.
    [28]冯培恩,张帅,潘双夏等.复合功能产品概念设计循环求解过程及其实现[J].机械工程学报,2005,41(3):135-141.
    [29]李洪杰,肖人彬.基于功能构造的复杂产品进化设计基因模型[J].机械工程学报,2003,39(5):41-48.
    [30]Tay F E H,Gu J X.Product modeling for conceptual design support[J].Computers in Industry,2002,48(2):143-155.
    [31]Rezayat M.Some aspects of product and process devetopment the 21st century [J].Computer-Aided Design,2000,32(5-6):297.
    [32]Parmee I C,Bonham C R.Towards the support of innovative conceptual design through interactive evolutionary computing strategies[J].Aritficial Intelligence for Engineering Design,Analysis and Manufacturing:AIEDAM,2000,14(1):3-16.
    [33]冯毅雄,谭建荣,伊国栋.零件结构的联动式进化设计方法[J].机械工程学报,2006,42(1):40-46.
    [34]谢友柏.现代设计理论和方法的研究[J].机械工程学报,2004,40(4):1-9.
    [35]Andrews P T J,Shahin T M M,Sivaloganathan S.Design Reuse in a CAD Environment[J].Computer-Aided Design,1996,28(3):155-168.
    [36]Fowler J E.Variant design for mechanical artifacts:A state-of-the art survey[J].Engineering With Computers,1996,12(1):1-15.
    [37]XU Xin-sheng,FANG Shui-liang,GU Xin-jian.Research on product structure model for variant design[C]//The 6th World Congress on Intelligent Control and Automation.Dalian:IEEE,2006:6777-6781.
    [38]汪永辉,吴云峰,褚学宁.支持变型设计的产品基因模型建模方法研究[J].机械设计与研究,2007,23(1):18-26.
    [39]马辉,张树有,谭建荣,等.基于事物元的产品设计过程可拓重用方法[J].机械工程学报,2006,42(3):110-116.
    [40]乔进友,沈卫峰,金忠孝等.基于事物特性的可重用产品模型[J].上海交通大学学报,1998,32(5):96-99.
    [41]蔡文,杨春燕,何斌.可拓逻辑初步[M].北京:科学出版社,2004.
    [42]祁国宁,顾新建,谭建荣.大批量定制技术及其应用[M].北京:机械工业出版社,2003.
    [43]Peder F,Joyce S C.Life-cycle modeling for adaptive and variant design[J].Research in Engineering Design,2005,15(4):216-241.
    [44]Prebil I,Zupan S,Lu(?)i(?) P.Adaptive and variant design of rotational connections[J].Engineering with Computers,1995,11(2):83-93.
    [45]温熙森,邱静,陶俊勇.机电系统动力学极其应用[M].北京:科学出版社,2003.
    [46]唐华平,钟掘.一种复杂机电系统的全局建模方法[J].中南工业大学学报,2002,33(5):522-525.
    [47]林利红,陈小安,周超群等.精密传动系统的机电耦合建模及仿真分析[J].重庆大学学报,2007,30(11):14-18.
    [48]李旭宇,复杂机电耦合系统的并行设计方法研究[D],长沙:中南大学,2004.
    [49]贺建军,复杂机电系统机电耦合分析与解耦控制技术[D],长沙:中南大学,2004.
    [50]孟杰,陈小安,合烨.高速电主轴电动机-主轴系统的机电耦合动力学建模[J].机械工程学报,2007,43(12):160-165.
    [51]刘永强,徐鹏.一类多时间尺度机电祸合系统降阶及稳定一致性[J].控制理论与应用,2008,25(1):139-140.
    [52]周超群,伺服系统中精密传动系统机电耦合分析[D],重庆:重庆大学,2007.
    [53]李琳,数控机床交流伺服控制系统的设计与仿真[D],宜昌:三峡大学,2006.
    [54]黄忠霖,周向明.控制系统MATLAB计算及仿真实训[M].北京:国防工业出版社,2006.
    [55]Andrews P T J,Shahin T M M,Sivaloganathan S.Design Reuse in a CAD Environment[J].Computer-Aided Design,1996,28(3):155-168.
    [56]Seiji Hashimoto,Yusaku Fujii,Masayuki Kigure et al.High-presion control of linear actuators based on internal model control[C].Industrial Electronics and Applications,2007.ICIEA 2007.2nd IEEE Conference on:2148-2153.
    [57]Jeong-Yul Jeon,Jong-Hwan Kim,Kwangill Koh.High-presion control of X-Y table using experimental evolutionary programming[C].Proceedings of the 1996 IEEE International Conference on Robotics and Automation,Minneapolis,Minnesota -April 1996:2258-2263.
    [58]Wen-Hong Zhu.High-presion control of Robots with Harmonic Drives[C].2007IEEE International Conference on Robotics and Automation,Roma,Italy,10-14April 2007:3831-3836.
    [59]Shi yu,Fan ding,Chen Jianhong.A high-precision control system for robotic welding positioner[J].China welding,2005,14(1):53-57.
    [60]Mingheng Wang,Yaobing Chen.Fuzzy Logic Control of a Positioning Table with DSP Real-Time Implementation[C].Proceedings of the 1996 IEEE International Conference on Control Applications,Dearborn,MI September 15-18,1996:247-252.
    [61]刘小院,机电伺服系统概念设计及其驱动装置的研究[D],西安:西安电子科技大学,2006.
    [62]于涛,面向对象的多领域复杂机电系统键合图建模和仿真的研究[D],北京:北京机电研究所,2006.
    [63]陈维山,赵杰.机电系统计算机控制[M].哈尔滨:哈尔滨工业大学出版社,1999
    [64]Yoshikawa H.General design theory as a formal theory of design.In:Yoshikawa H and Gossard D eds.Intelligent CAD I:Proc.of the IFIP TC/WG 5.2 Workshop on Intelligent CAD,Boston,MA,1987.North-Holland,1989:51-61.
    [65]吴文龙.数控机床控制技术基础-电器控制基本常识[M].背景滨:高等教育出版社,2004.
    [66]王茁,李颖卓,张波.机电一体化系统设计[M].北京:化学工业出版社,2005.
    [67]张守迁,黄琦.计算机辅助概念设计[M].北京:清华大学出版社,2004.
    [68]徐立.控制工程基础[M].杭州:浙江大学出版社,2007.
    [69]张绍立,机电系统的控制方法融合及其应用研究[D],北京:北京工业大学,2006.
    [70]李旭宇,复杂机电耦合系统的并行设计方法研究[D],长沙:中南大学,2004.
    [71]费丽兰,概念设计过程及其辅助计算机实现技术的研究[D],哈尔滨:哈尔滨工程大学,2003.
    [72]Y.C.HO,K.F.MAN,K.S.TANG et al.A Codesign Approach to Real-time High Precision[C].The International Journal of Time-Critical Computing Systems,19,41-60,2000:41-60.
    [73]Y.F.Lou and P.Brunn.An offset error compensation method for improving ANN accuracy when used for position control of precision machinery[J].Neural computing and applications,1998,7:90-95.
    [74]张侨,基于DSP的交流伺服系统设计[D],武汉:华中科技大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700