用户名: 密码: 验证码:
云贵川和甘肃地区小麦条锈菌群体的MFLP分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是由小麦条锈菌Puccinia striiformis f. sp. tritici引起的真菌性病害,是严重危害世界许多国家小麦生产的主要流行病害。目前我国是世界上最大的小麦条锈病流行区。种植抗病品种是防治小麦条锈病最经济有效的措施,但是由于条锈菌新毒性小种的不断产生和发展,抗病品种的抗性丧失现象十分严重。小麦条锈菌属专性寄生菌,无法人工培养,基于鉴别寄主来进行的常规小种鉴定及监测方法繁杂、费工费时,严重制约了小麦条锈菌群体遗传与生物学研究。
     微卫星锚锭片段长度多态性(MFLP)是建立在PCR技术基础上、结合了扩增片段长度多态性(AFLP)和微卫星锚锭引物技术(SSR-anchor primer)双重原理的新一代分子标记技术。本研究建立了适用于专性寄生锈菌的MFLP技术,并首次利用该技术对来自云南、贵州、四川和甘肃地区的73个菌系进行了分子多态性分析,初步揭示了以上地区小麦条锈菌群体的MFLP聚类结构及区间关系。主要研究结果如下:
     1.通过对DNA提取、限制性内切酶二次酶切、PCR双重扩增等实验因素的选择优化,建立了适用于小麦条锈菌研究的MFLP分子标记分析体系。
     2.从456对MFLP引物组合中,筛选出13对带型质量好、分辨率高并具有一定多态性的引物组合,在供试73个小麦条锈菌菌系的基因组中,13对引物共扩增出42条多态性条带。
     3.对云南、贵州、四川以及甘肃四个省份的73个小麦条锈菌标样或菌系进行了MFLP聚类分析,结果表明被测菌系的相似系数的基值为0.47,在相似系数0.60处,被测菌系可划分为A,B两组,没发现优势组群。MFLP聚类结果不能明确区分甘肃和云贵川条锈菌群体,可能与区间存在广泛的菌源交流有关。
     4.从来自云贵川的27个小麦条锈菌菌系的MFLP聚类分析结果可以看出,其相似系数基值为0.43,在相关系数0.61以上,可划分为2组。在第一组中,除2个四川菌系外,其余均为云贵菌系,第二组中,除3个云贵菌系外,多数为四川菌系,说明云贵川地区的小麦条锈菌群体存在一定的多态性,同时,也可初步推测四川与云南、贵州存在一定程度的菌源交流。
     5.甘肃菌系也可划分为两组,分别归属于A、B两大组,每组均包括23个菌系,不同流行区域的亚组群体构成存在差异,可能与近年来水源11类群特别是CYR33在甘肃群体的增长有关。MFLP聚类分析结果不能区分天水甘谷县与武山县的条锈菌系,也不能明确区分洮、岷及陇中流行区与渭河上游自生麦苗越夏区的菌系,说明区间存在较频繁的菌源交流。
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), is one of the main important fungal diseases in wheat, which has caused great losses to the wheat production in the world. China is the largest epidemic area for wheat stripe rust. The breeding and applying rust-resistant cultivars has been considered as the most effective and economical strategy for the prevention and control of yellow rust. However, the resistance breakdown of wheat cultivars is very serious due to the occurrence and development of new virulent races. Being an obligate fungus, the race identification and monitoring of Pst were complicated and time-consuming, which have severely restricted the population genetic structure and biology study on Pst.
     Microsatellite-anchored fragment length polymorphism(MFLP), is a PCR-based method for DNA fingerprinting, which combines the concept of amplified fragment length polymorphism and microsatellite-anchor primer technique. The MFLP reaction system special for the obligated pathogens, wheat rust fungi, was established successfully in this research. The genetic diversity of 73 isolates of wheat stripe rust collected from Yunnan, Guizhou, Sichuan and Gansu province was analyzed using MFLP method for the first time, and the main results derived from this research were as follows.
     1. Using mixed urediniospores of wheat yellow rust, several main factors such as the genomic DNA preparation, enzyme digestion and PCR amplification, which might influence the final MFLP result were studied and optimized in this research. The MFLP reaction system for wheat stipe rust was successfully established.
     2. 13 pair primers, which could produce bands with high quality and high polymorphism, were selected out of 456 pair primers. 42 polymorphic bands were detected in the experimental materials with 13 pair MFLP primers.
     3. 73 isolates of Pst collected from Yunnan, Guizhou, Sichuan and Gansu province were analyzed with MFLP-clustering method. The basic value of similarity coefficient (SIM)was 0.46. All the isolates could be divided into two groups at SIM 0.60, neither of the two groups was the predominant one. The MFLP-clustering result of Pst collected from the areas above-mentioned was not related with the the geographic areas.Taking the main factors such as climate, geographical location and wheat varieties into account, we can’t draw a clear conclusion whether the stripe rust pathogen is able to exchange between Gansu and Sichuan, especially between Gansu and Yunnan, Guizhou.
     4. 27 isolates of Pst collected from Yunnan, Guizhou and Sichuan province were also analyzed, and the basic value of SIM was 0.43. At SIM 0.61, the isolates could be divided into two groups, the first group consisted of 11 isolates from Yunnan and Guizhou, 2 isolates from Sichuan; There were 11 isolates from Sichuan, 3 isolates from Yunnan and Guizhou in the second group. According to the MFLP-clustering result, we can initially speculated that there was a certain level of genetic diversity, and also pathogen exchange exist between Sichuan, Yunnan and Guizhou province.
     5. The Gansu Pst population also consisted of two groups, which belonged to Group A and B respectively, each group included 23 isolates. The sub-group constitution was different between Tao-Min-middle Gansu area and the upper reaches of Weihe river basin, which may be ascribed to the increasing of pathotypes of wheat stripe rust virulent to Suwon 11, especially for CYR33. The MFLP-clustering result of isolates from Gangu and Wushan counties of Gansu province showed that the pathogen exchange was undergone frequently within the two areas.
引文
1.白晶,张月学,杨冬鹤,等.几种重要的分子标记原理及RAPD应用[J].哈尔滨师范大学自然科学学报,2004,20(5):89-91.
    2.曹必好,雷建军,宋洪元,等.芥菜的红叶RAPD标记筛选研究[J ].农业生物技术学报,2001,9(3):238-242.
    3.曹丽华,康振生,魏国荣.小麦条锈菌基因组DNA的分离及其RAPD分析体系的建立[J].西北农林科技大学学报(自然科学版),2004,32(4):32-36.
    4.曹丽华,康振生,郑文明,等.小麦条锈菌条中31号生理小种SCAR检测标记的建立[J].菌物学报,2005,24(1):98-103.
    5.曹丽华,宗现昭,孟颢光.MFLP分子标记技术及其应用[J].麦类作物学报,2008,28(6):1107-1112.
    6.陈万权,冯洁,秦庆明.DNA分子标记在植物真菌病害研究中的应用[J].植物保护学报,1999,26(3):277-282.
    7.韩冰.中法两国小麦条锈菌群体遗传多样性分析[D].沈阳:沈阳农业大学,2006.
    8.黄德娟,李素云.两种重要的分子标记—RFLP和RAPD[J].抚州师专学报,1999,62(3):49-53.
    9.何月秋,Hei Leung,唐文华,等.稻瘟病菌变异菌株的AFLP分析[J].菌物系统,2002,21(3):363-369.
    10.贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    11.贾秋珍,金社林,曹世勤,等.2006-2007年甘肃省小麦条锈菌生理小种监测结果[J].植物保护,2009,35(5):105-108.
    12.贾瑞祥.中国小麦条锈菌主要流行小种DNA多态性分析[D].北京:中国农业大学,2005.
    13.康振生,曹丽华,郑文明,等.小麦条锈菌条中29号生理小种SCAR检测标记的建立[J] .西北农林科技大学学报(自然科学版),2005,33(5):53-56.
    14.李彬,马建岗.AFLP技术发展及其在小麦研究中应用[J].陕西农业科学,2006(5):81-83.
    15.李川,刘海英,范永山,等.植物病原真菌群体遗传学研究进展[J].河北农业大学学报,2003,26(z1):177-179.
    16.李仕贵,王玉平,黎汉云.利用微卫星标记鉴定水稻的稻瘟病抗性[J].生物工程学报,2000,16(3):324-327.
    17.李振岐.我国小麦品种抗条锈性丧失原因及其解决途径[J].中国农业科学,1980(3):72-76.
    18.李振岐,商鸿生.小麦锈病及其防治[M].上海:上海科学技术出版社,1989.
    19.李振岐,曾士迈.中国小麦锈病[M].北京:中国农业出版社,2002.
    20.刘丹,刘太国,张敏,等.小麦光腥黑粉菌冬孢子总DNA提取方法比较[J].植物保护,2006,32(3):93-95.
    21.刘峰,庄炳昌,张劲松.大豆遗传图谱的构建和分析[J ].遗传学报,2000,27(11):1018-1026.
    22.刘明,王继华,王同昌.DNA分子标记技术[J].东北林业大学学报,2003,31(6):65-67.
    23.刘万清,贺林.SNP—为人类基因组描绘新的蓝图.遗传,1998,20(6):38-40.
    24.陆宁海,郑文明,王建峰,等.陇南地区小麦条锈菌群体遗传多样性SSR分析[J].中国农业科学,2009,42(8):2763-2770.
    25.吕振岳,黄东东,周达民.AFLP标记及在植物中的应用[J].生物技术,2001,11(6):40-43.
    26.潘庆民,于振文.追氮时期对冬小麦籽粒品质和产量的影响[J].麦类作物学报,2002,26(2):65-69.
    27.朴春根,唐文华,曾世迈,等.RAPD技术和聚类分析在小麦条锈菌生理小种研究中的应用[J].植物病理学报,1996,26(3):205-210.
    28.闰文昭,王大一,李晋清,等.22个甘薯品种(系)遗传背景的RAPD图谱分析[ J ].农业生物技术学报,1997,5(1):40-46.
    29.单卫星,陈受宜,吴立人,等.中国小麦条锈菌流行小种的RAPD分析[J].中国农业科学,1995,28(5):1-7.
    30.单卫星,陈受宜,张耕耘,等.小麦条锈菌一个中度重复DNA序列家族的鉴定[J].中国科学(C辑),1997,27(3):241-246.
    31.尚占环,姚爱兴.生物多样性及生物多样性保护[J ].草原与草坪,2002,99 (4):11-13.
    32.施立明.遗传多样性及其保护[J].生物科学信息,1990,(2):158-164.
    33.索广力,黄占景,何聪芬,等.利用RAPD-BSA技术筛选小麦耐盐突变位点的分子标记[ J ].植物学报,2001,43(6):598-02.
    34.唐静,蒲志刚,张敏,等.小麦条锈菌AFLP分子标记技术体系的建立[J].云南农业大学学报,2005,20(6):753-757.
    35.王凤乐,商鸿生,李振岐.中国小麦条锈菌生理小种同工酶分析[J].植物病理学报,1995,25(2):101-105.
    36.王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002.
    37.王金生.分子植物病理学[M],北京:中国农业出版社,1999.
    38.王莉梅,石磊岩.北方棉区棉花黄萎病菌落叶型菌系鉴定[J].植物病理学报,1999,29(2):181-189.
    39.魏松红,张艳贞,张领兵,等.东北春麦区小麦白粉菌生理小种鉴定及其RAPD分析[J] .吉林农业大学学报,2001,23(2):35-40.
    40.向道权,曹海河,曹永国,等.玉米SSR遗传图谱构建及产量性状基因定位[J ].遗传学报,2001,28(8):778-784.
    41.徐丽芳,陈吉炎,罗光明.分子标记技术及其在植物育种中的应用[J].食品与药品,2007,9(10):43-46.
    42.杨慧珍,牛西午,任志强,等.RAPD标记在林木育种中的应用[J].山西农业科学,2007,35(1):73-76.
    43.余仲东,高爱琴,曹支敏.锈菌夏孢子DNA的微量快速提取方法[J].生物技术通讯,2005,16(1):48-50.
    44.袁昭岚,沈颂东,黄鹤忠,等.SSR和ISSR分子标记技术及其在遗传多态性方面的应用[J].水产养殖,2005,26(2):10-13.
    45.张勃,郝保军,王保通,等.小麦条锈菌条中32号生理小种SCAR检测标记的建立[J].西北农林科技大学学报(自然科学版),2009,37(1):177-181.
    46.赵广才,何中虎,王德森,等.栽培措施对面包小麦产量及烘烤品质的调控效应[J].作物学报,2002,26(6):797-802.
    47.赵淑清,武维华.DNA分子标记和基因定位[J].生物技术通报,2000(6):1-4.
    48.郑大勇,张敏,刘太国,等.小麦锈菌夏孢子DNA提取方法研究[A].成卓敏,植物保护科技创新与发展[C],北京:中国农业科学技术出版社,2008.:507-514.
    49.郑文明,陈受宜,康振生,等.甘肃天水地区小麦条锈菌自然群体DNA指纹分析[J].菌物学报,2005,24(2):199-206.
    50.郑文明,陈受宜,康振生,等.PSR(Puccinia Striiformis Repeat)序列的基因特异性和指纹遗传稳定性[J].植物病理学报,2000,30(3):222-225.
    51.郑文明,刘峰,康振生,等.中国小麦条锈菌主要流行菌系的AFLP指纹分析[J].自然科学进展,2000,10(6):532-537.
    52.周永力,吕国忠,刘伟成,等.采用PCR-RFLP和RAPD对球壳孢目真菌系统学的研究[J].菌物系统,1998,17(2):160-166.
    53. Anja Klabr, Volker Mohler, Markus Herz, et al. Enhanced power of QTL detection for Fusarium head blight resistance in wheat by means of eodominant scoring of hemizygous molecular markers[J]. Molecular Breeding, 2004, 13: 289-00.
    54. Beckman J, Soller M. Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs[J]. Theor Appl Genet, 1983, 67: 35-43.
    55. Boersma J G, Pallotta M, Li C, et al. Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius L.)[J]. Cellular & Molecular Biology Letters, 2005, 10: 331-344.
    56. Bolvin K, Deu M, Rami J F, et al. Towards a saturated sorghum map using RFLP and AFLP markers[J]. Theoretical and Applied Genetics, 1999, 98: 320-328.
    57. Botstein D, White R L, Skolnick M, et al. Construction of genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32(3): 314-331.
    58. Burton J J, Roelfs A P. Isozyme and virulence variation in asexually reproducing populations of Puccinia graminis and P.recondite on wheat[J]. Phytopathology,1985,75:907-913.
    59. Caetano-Anolles G, Gresshoff P M. DNA amplification fingerprinting using very short arbitrary mini-hairpin oligomucleotide primers[J]. Bio/technology, 1994, 12: 619-623.
    60. Cao LH, Xu SH, Lin RM, et al.Early molecular diagnoses and detection of Puccinia striiformis f.sp.tritici in China. Letters in Applied Microbiology, 2008, 46(5):501-506.
    61. Chen X M, et a1.Relationship between virulence variation and DNA polymorphism in Puccinia striiformis[J]. Phytopathology,1993,83:1489-1497.
    62. Chen X M, et a1. Virulence and polymorphic DNA relationship of Puccinia striiformis f.sp.hordei to other rusts[J]. Phytopathology,1995,85:1335-1342.
    63. Dieffenbach, C.W. and Dveksler G.S. PCR Primer, A laboratory manual[M]. Cold Spring Harbour: Laboratory Press, 1995.
    64. Drenth A, Goodwin S B, Fry W E, et al. Genotypic diversity of Phytophthora infestans in the Netherlands revealed by DNA polymorphisms[J]. Phytopathology , 1993, 83:1087-1092.
    65. Drenth A, Whisson S C, Maclean, et al. The evolution of races of Phytophthora sojae in Australia. Phytopathology,1996,86:163-169.
    66. Enjalbert J, Duan X, Giraud, et a1.Isolates of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f.sp.tritici[J]. Mol Ecol Notes,2002,2:563-565.
    67. Goodwin P H, Annis S L. Rapid identification of genetic variation and pathotypes of Leptosphaeria maculans by random amplified polymorphic DNA assay[J]. Appl. Environ. Microbiol, 1991,57:2482-2486.
    68. Gupta P K, Varshney R K, Sharma P C, et al. Molecular markers and their application in wheat breeding[J]. Plant Breeding, 1999, 118:369-390.
    69. Haley C S, Knott S A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers [J]. Heredity, 1992, 69: 315-324.
    70. HovmФller, et a1. Clonality and long-distance migration of Puccinia striiformis f.sp.tritici in north-west Europe[J]. Plant Pathology,2002,51:24-32.
    71. Howes N K, Kim W K, Rohringer R. Detergent-soluble polypeptides extrates from urediospores of four physiologic races of Puccinia graminis f.sp.tritici[J]. Plant Pathology,1982,21:361-366.
    72. Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via intervalmapping[J]. Genetics, 1994, 136: 1447-1455.
    73. Kolmer J A. Molecular and virulence polymorphism in clonal lineages of the wheat leaf rust fungus,puccinia triticina, in Canada[J]. Acta Phytopathologica Hungarica, 2000,35(14):201-207.
    74. Kolmer J A. Virulence and molecular polymorphism in Puccinia recondite f.sp.tritici in Canada[J]. Phytopathol,l995,85:276-285.
    75. Korzun V, Roder M S, Wendehake K, et al. Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat [J]. Theoretical and Applied Genetics, 1999, 98(1): 1202-1207.
    76. Levy M et al. DNA fingerprinting with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus[J].Plant Cell,1991,3:95-102.
    77. Litt, M. and Luty, J. A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. Am. J. Hum. Genet. 1989,44:397-401.
    78. Maughan P J, Saghai Maroof M A, Buss G R, et al. Amplified fragment length polymorphism(AFLP)in soybean: species diversity, inheritance and near-isogenic lines[J]. Theoretical and Applied Genetics, 1996, 93: 392-401.
    79. Mba R E C, Stephenson P, Edwards K, et al. Simple sequece repeat (SSR) markers survey of the cassava (Manihot esculenta crantz) genome: towards an SSR-based molecular genetic map of cassava [ J ]. Theoretical and Applied Genetics, 2001, 102(1): 21-31.
    80. McDermott, J M, McDonald B A. Gene flow in palnt pathosystem[J]. Ann.Rev.Phytopathol., 1993,31:353-373
    81. Millar C, Libby W J. Strategies for conserving clinal, Ccotypic, Ana disjunct population diversity in widespread species[A]. In: Fald DAHolsinger KE.Genetics and Conservation of Rare Plants[M]. New York: Oxford University Press, 1991, 149-170.
    82. Mueller U G, Wolfenbarger L L. AFLP genotyping and fingerprinting[J]. Trends in Ecology & Evolution, 1999, 14(10): 389-395.
    83. Newton A C. Variation for isoenzymes and double-strand RNA among isolates of Puccinia striiformis and two other cereal rusts[J]. Plant Pathology,1985,34:235-247.
    84. Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce[J]. Theor Appl Genet, 1992, 85(8):985-993.
    85. Ratnaparkhe M B, Santra D K, Tullu A, et al. Inheritance of inter-simple sequence repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea[J]. Theoretical and Applied Genetics, 1998, 96: 348-353.
    86. Santini A, Capretti P. Analysis of the Italian population of ceratocystis fimbriata f.sp. platani using RAPD and minisatellite markers[J]. Plant Pathology, 2000,49(4):461-467.
    87. Shan X, Blake T K, Talbert L E. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat [J]. Theoretical and Applied Genetics, 1999, 98: 1072-1078.
    88. Spielman L J, Drenth A, Davidse L C, et al. A second world-wide migration and population displacement of Phytophthora infestans[J]. Plant Pathol., 1991, 40:422-430.
    89. Steele K A, Humphreys E, Wellings C R, et a1. Support for stepwise mutation model for pathogen evolution in Australasian Puccinia striiformis f.sp.tritici by use of molecular markers. Plant Pathology,2001,50:174-180.
    90. Tan M K, Timmer L W, Broadbent P, et al. Differentiation by molecular analysis of Elsinoe spp. causing scab diseases of citrus and its epidemiological implications[J]. Phytopathology, 1996,86(10):1039-1044.
    91. Vallaréal L M A, et a1. Genetic variability in Puccinia striiformis f.sp.tritici during natural epidemics[J]. Applied and Environmental Microbiology,2002,68(12):6138-6149.
    92. Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Research, 1995, 23: 4407-4414.
    93. Waugh R, Bonar N, Baird E, et al. Homology of AFLP products in three mapping populations of barley[J]. Molecular and General Genetics, 1997, 255: 311-321.
    94. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Research, 1990, 18(24):7213-7218.
    95. Williams J G K, Kubelik A, Livak K, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Research, 1990, 18(22):6531-6536.
    96. Yang H, Shankar M, Buirchell B J, et al. Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.)[J]. Theoretical and Applied Genetics, 2002, 105: 265-270.
    97. Yang H, Sweetingham M W, Cowling W A, et al. DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.)[J]. Molecular Breeding, 2001, 7: 203-209.
    98. You M P, Boersma J G, Buirchell B J, et al. A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding[J]. Cellular & Molecular Biology Letters, 2005, 10: 123-134.
    99. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification[J]. Genomics, 1994, 20: 176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700