用户名: 密码: 验证码:
基于AFM探针刻划可控三维微结构加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的发展,微纳米系统、微纳米尺度零件及相关产品的需求越来越多。无论是微机电系统零件加工,还是微纳米器件制造,都离不开微纳米尺度的微结构加工技术。传统的微结构加工技术,普遍存在某一维度精确自动控制能力差的问题,只能实现二维或准三维的微结构加工。并且它们都不具备加工检测一体化的能力。因此亟需研究一种具备加工检测一体化功能的三维微结构加工技术。扫描探针显微技术的发明,极大地促进了纳米技术的发展。随着科学技术的不断进步,人们越来越多地将其应用于微观世界的改造方面:将AFM(Atomic Force Microscope)金刚石探针模拟为一个尖锐的单点金刚石车刀,以机械刻划去除材料的方式在扫描探针显微镜的高精密操控下对样品进行微纳米尺度下的微结构加工。
     应用现有的AFM扫描成像功能进行微结构刻划加工,只能实现平面二维加工量的精确控制。在刻划深度方向,目前还不具备精确的自动控制能力:现有的AFM系统在对样品进行刻划加工时,刻划驱动与刻划深度之间的控制方式是开环的,刻划深度不仅与驱动有关,还与样品材料性质、微悬臂等效弹性系数等有关。这种控制方式对刻划深度是无法实现精确自动控制的。
     弹性微悬臂探针系统是AFM进行微观三维形貌检测的根本;同时,正是由于微悬臂探针系统的弹性性质,造成了刻划加工深度精确控制方面的困难。如何解决这一矛盾,实现具备加工检测一体化能力的三维微结构加工系统,是基于AFM进行微结构机械刻划加工过程中摆在我们面前的一个全新课题。基于AFM系统,设计相应的辅助控制单元,并深入研究AFM弹性微悬臂探针在微结构刻划加工中的刻划深度形成规律,进而实现刻划深度的实时检测与闭环自动控制,是解决这一矛盾的有效途径。
     本文从相应理论、刻划加工系统组建及刻划加工实验等方面入手,深入研究了基于AFM的微结构机械刻划加工过程中刻划深度控制技术,以多学科交叉应用的手段初步建立起基于AFM可控三维微结构刻划加工技术应用体系。具体研究内容包括如下几个方面:
     从AFM三维微结构刻划加工过程分析入手,辅助其它驱动控制单元,应用材料力学的相关理论,深入分析微悬臂探针系统在刻划加工时刻划深度与AFM相应系统的对应关系,找到刻划加工过程中刻划深度的实时检测方法,为刻划深度的闭环控制奠定基础;
     应用微纳米塑性力学相关理论,对微悬臂探针压入材料样品形成压入深度的过程进行分析,研究压入深度对应于压入驱动的形成规律,建立压入驱动与压入深度之间的对象模型。并应用自动控制相应理论,设计优化相应的控制器及控制算法,实现压入深度的闭环控制。应用有限元仿真手段,研究微悬臂探针对样品刻划加工时刻划深度的变化规律,由此制定出刻划过程中刻划深度的控制方案,最终实现刻划加工全过程的刻划深度闭环精确控制;
     结合AFM及三维微动工作台,应用计算机及微处理器技术研制相应辅助控制装置,组成刻划深度自动闭环控制的三维微结构加工检测一体化加工系统。应用该加工系统,实现设定深度的三维微结构加工,并进一步研究三维连续曲面及复杂曲面的三维微结构刻划加工。
With the development of nanotechnology, the requirements for micro/nano system, micro/nano scale components and associated products have become more and more. Either the fabrication of MEMS (Micro Electro Mechanical Systems) components, or the manufacturing of micro/nano devices, the machining techniques in micro/nano scale are necessary for these fabrications. However, the conventional methods always are restricted by the control accuracy in some dimension during constructing the microstructure. As a result, only the two-dimensional or quasi-three-dimensional structures can be realized. Moreover, these fabrication methods all have no on-line or on-site measuring abilities. Thus, to construct an ideal method including fabrication and measuring to fabricate the three dimensional microstructure is significant urgent. The invention of scanned probe microscopy technology leads to the considerable progress of nanotechnologies. And now this technology is extensively used to modify the micro world, i.e. that the scanning tip is used as a tool to fabricate the micro structure under the control of the high accuracy AFM(Atomic Force Microscope) system. Moreover, due to the measuring capability for 3D topographies and no special limitations to work piece material and machining condition, this technology is therefore a perfect method to fabricate 3D microstructures.
     However, based on the commercial AFM system, the fabricated structures are always 2D. This is because there is no precision controlling in the scratching depth. When the scratching is carried out on the AFM system, the control mode between the scratching activation and scratching depth is open loop. As well known, the scratching depth is dependent on the activation, the properties of sample and the equivalent elastic coefficient. And thus, this mode has no access to control the scratching depth accurately.
     AFM works through an elastic cantilever which can undergo the elastic deformation freely corresponding to the surface topographies. The elasticity enabling of the cantilever results in the difficulty in depth controlling. Therefore, how to realize the scratching and measuring integrated system has been a challenging subject for the fabrication of 3D microstructure via AFM. In terms of the application state based on AFM, a promising way is to design the associated assistant controller and discover the forming rule of scratching depth so as to provide the real time inspection and closed-loop control for the scratching depth. From the viewpoint of the related theory, construction of scratching system and scratching experiments of this technique, the control technology of scratching depth during fabrication of microstructure with AFM is studied in-depth in this thesis. Then the control-enable scratching machining system based on AFM is established by using the means from multi-disciplines. The detailed contents are listed as follows:
     Through the analyses for the machining process of 3D microstructures by AFM scratching and the application of the theory of material mechanics, the relationship between the scratching depth of the tip and AFM system is analyzed. Resultantly, the executing method about real time detection during scratching is determined, which acts as a foundation for the closed loop control of scratching depth.
     By application of the micro/nano plastic mechanics, the indenting and depth forming processes using the diamond tip of AFM cantilever on the sample’s surfaces are analyzed. And then the forming rule of scratching depth corresponding to the scratching driving is investigated to set up the object model. And in terms of the automatic control theory and the optimized design of controller and control algorithm, the automatic and accurate closed-loop control for scratching depth is realized. Moreover, the variation rule of scratching depth is investigated through finite element simulations, in which the control scheme for scratching depth is determined. Finally, the accurate and closed loop control system for scratching depth is realized.
     The associated assistant control equipments are developed by using the computer and microprocessor techniques. The machining system integrated with AFM and 3D high precision stage, is established, which can perform the fabrication and measuring procedures and enables the scratching depth to be controlled automatically and accurately. Based on this setup, the fabrication of 3D microstructures with a design depth is carried out. Moreover, the 3D microstructures characterized with the continuous curved faces or other complicated faces all can be fabricated.
引文
1 崔铮. 微纳米加工技术及其应用. 高等教育出版社, 2005: 4~5
    2 L. Grigore. Metallic Microstructures by Electroplating on Polymers: an Alternative to LIGA Technique. Material Science and Engineering B. 2000, B(74): 299~303
    3 Y. Cheng, B. Y. Shew, et al. Ultral-deep LIGA process and its applications. Nuclear Instruments and Methods in Physics Research A. 2001, 467: 1192~1197
    4 葛璜. 电子束、离子束、光子束纳米微细加工技术的进展. 仪器仪表学报. 1996, 17(1): 70~74
    5 T. Masuzawa, J. O. Benneker, and J. Eindhoven. New Method for Three Dimensional Excimer Laser Micro-Machining, Hole Area Modulation (HAM). Annals of CIRP. 2000, 1(49): 139~142
    6 袁大军, 蒋中伟, 徐藻等. 双光子三维微细加工的进展. 纳米技术与精密工程. 2004, 2 (1): 50~53
    7 S. Kawata, H. B. Sun, T. Tanaka, et al. Finer Features for Functional Micro Devices. Nature. 2001, 412: 697~698
    8 S. Maruo, K. Ikuta, H. Korogi. Submicron Manipulation Tools Driven by Light in a Liquid. App. Phys. Lett. 2001, 78(2): 249~251
    9 J. W. Perry, S. R. Marder, F. Stellacci, et al. Laser and Electron-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning. Adv. Mater. 2002, 14(3): 194~198
    10 盛晓敏, 邓朝晖等. 先进制造技术. 机械工业出版社, 2000: 185~186
    11 K. D. Rajurkar, Z. Y. Yu. 3D Micro-EDM Using CAD/CAM. Annals of CIRP. 2000, 49(1): 127~130
    12 B. X. Jia, Z. L. Wang, F. Q. Hu, et al. Research on Multifunctional Micro Machining Equipment. Materials Science Forum. 2004, 471: 37~42
    13 王经光. 浅谈特种加工在现代制造业中的应用. 机械工程与自动化. 2004, 5(126): 105~106
    14 曹永智, 董申, 王铀等. 嵌段共聚物自组装模板—构造纳米结构的一种新方法. 纳米技术与精密工程. 2003, 1(1): 11~16
    15 张德远, 李雅芹, 孙以凯. 生物加工金属材料的可行性研究. 中国科学 C辑. 1997, 27(5): 410~414
    16 Y. Y. Uno, T. A. Kaneeda, S. I. Yokomizo. Fundamental Study on Biomachining. Proceeding of JSME(C). 1993, 59(10): 3199~3204
    17 李雅琴, 张德远, 吴依陶. 氧化亚铁硫杆菌对金属铜的加工. 微生物学报. 2000, 40(3): 327~330
    18 陈献忠, 姚汉民, 陈旭南等. 纳米印刷光刻技术. 微纳电子技术. 2002, 12: 36~39
    19 孙洪文, 刘景全, 陈迪等. 纳米压印技术. 电子工艺技术. 2004, 25(3): 93~98
    20 H. Tabata, T. Uno, T. Ohtake, et al. DNA Patterning by Nano-imprinting Technique and Its Application for Bio-chips. Photopolymer Science and Technology. 2005, 18(4): 519~522
    21 G. Y. Jung, Z. Y. Li, W. Wu, et al. Improved Pattern Transfer in Nanoimprint Lithography at 30 nm Half-pitch by Substrate-surface Functionalization. Langmuir. 2005, 21(14): 6127~6130
    22 Y. Ishikawa, T. Kitahara. Present and Future of Micromechatronics. IEEE International Symposium on Micromechatronics and Human Science. 1997: 13~20
    23 Z. Lu, T. Yoneyama. Micro Cutting in the Micro Lathe Turning System. International Journal of Machine Tools & Manufacture. 1999, 39: 1171~1183
    24 T. Kitahrar, Y. Ishikawa, T. Terada, et al. Development of Micro-lathe. Mechanical Engineering Laboratory. 1996, 50(5): 117~123
    25 Y. Takeuchi, K. Sawada, T. Sata. Ultraprecision 3D Micromachining of Glass. Annals of CIRP. 1996, 45: 401~404
    26 K. Egashira, T. Masuzawa. Microultrosonic Machining by the Application of Workpiece Vibration. Annals of CIRP. 1999, 48(1): 131~134
    27 孙雅洲. 微小型机床及微细铣削加工技术. 哈尔滨工业大学博士学位论文. 2005: 17~35
    28 孙雅洲, 梁迎春, 董申. 微小型化机床的研制. 哈尔滨工业大学学报. 2005, 37(5): 591~593
    29 www.hysitron.com
    30 G.. Binnig, H. Rohrer. Scanning Tunneling Microscope. Helv. Phys Acta. 1982, 55(6): 726~735
    31 白春礼, 田方, 罗克. 扫描力显微术. 科学出版社, 2000: 7~15
    32 R. S. Becker, J. A. Golorchenko, et al. Atomic-Scale Surface Modifications Using a Tunneling Microscopy. Nature. 1987, 325(29): 419~421
    33 J. Jortner, J. Ratner, et al. Molecular Electronics: A Chemistry for the 21st Century. International Union of Pure and Applied Chemistry, Blackwell Science. 1997: 485~493
    34 D. M. Eigler, E. K. Schweizer. Positioning Single Atoms with a Scanning Tunneling Microscope. Nature. 1990, 344: 524~526
    35 H. J. Mamin, S. Chiang, H. Birk, et al. Gold Deposition from a Scanning Tunneling Microscope Tip. J. Vac. Sci. Technol B. 1991, 9: 1398~1402
    36 M. F. Commie, C. P. Hutz, D. M. Eigler. Waves on a Metal-Surface and Quantum Corrals. Surf. Rev. Lett. 1995, 2(1): 127~137
    37 黄德欢. 纳米技术与应用. 中国纺织大学出版社, 2001: 37~60
    38 M. T. Cuberes, J. K. Gimzewshi, R. R. Schlittler. Room-Temperature Repositioning of Individual C60 Molecules at Cu Steps. Operation of a Molecular Counting Device. Appl. Phs. Lett. 1996, 69: 3016~3018
    39 白春礼. 扫描隧道显微术最新进展与原子搬迁. 物理. 1995: 322~324
    40 史强, 朱清时. 用扫描隧道显微术进行单原子操纵的机理研究. 物理学进展. 1998, 18(2): 177~186
    41 雷晓钧, 陈海峰, 刘忠范. 用 STM 针尖诱导热致气化模式的纳米级信息存储. 中国科学 B 辑. 2001, 31(1): 67~71
    42 G. Binng, C. F. Qate, Ch. Gerber. Atomic force microscopy. Phys. Rev. Lett. 1986, 56: 930~931
    43 G. Meyer, N. M. Amer. Novel optical approach to atomic force microscopy. Appl. Phys.Lett. 1988, 53(12): 1045~1047
    44 T. R. Albrecht, C. F. Quate, Atomic resolution with the atomic force microscope on conductors and nonconductors. J. Vac. Sci. Technol A. 1988, 6 (2): 271~274
    45 M. Hoummady, H. Fujitaa. Micromachines for nanoscale science and technology. Nanotechnology. 1999, 10: 29~33
    46 薛群基, 张军. 微观摩擦学研究进展. 摩擦学学报. 1994, 14(4): 360~369
    47 路新春, 温诗铸, 雒建斌. 微观摩擦磨损研究的新进展. 摩擦学学报. 1995, 15(2): 177~183
    48 聂时春, 张嗣伟, 王洪波等. 原子力显微镜在纳米摩擦学中应用的进展. 摩擦学学报. 1998, 18(1): 88~96
    49 温诗铸. 纳米摩擦学. 北京清华大学出版社, 1998: 30~31
    50 http://www.spm.com.cn/index.shtml
    51 J. A. Dagata. Device Fabrication by Scanned Probe Oxidation. Science. 1995, 270(8): 1625~1626
    52 E. S. Snow, P. M. Campbell, F. K. Perkins. Proceedings of The IEEE. 1997, 985: 601~602
    53 Ph. Avouris, R. Martel, T. Hertel, R. Sandstrom. AFM-tip-induced and current-induced local oxidation of silicon and metals. Appl.phys.A: Materials Science Processing. 1998(66), S659: 67~68
    54 Kazuhiko Matsumoto. STM/AFM Nano-Oxidation Process to Room-Temperature-Operated Single-Electron Transistor and Other Devices. Proceedings of the IEEE. 1997(85): 612~628
    55 陈柱成, 郑檄文, 刘忠范. 基于金纳米粒子掩膜的硅表面纳米结构研究. 物理化学学报. 2001, 17(10): 868~872
    56 郑丽芬, 胡晓东, 胡小唐. 基于 AFM 电场诱导氧化的纳米加工. 航空精密制造技术. 2003, 39 (5): 35~37
    57 朱守星, 丁建宁, 范真等. 用 AFM 导电探针在 n-Si(111)表面进行纳米加工的机理研究. 电子显微学报. 2003, 22 (3): 202~205
    58 吴熊喜, 杨林军. 基于 AFM 的 Si 纳米结构的加工. 机械与电子. 2005, 4: 54~56
    59 宋晓辉, 李艳宁, 匡登峰等. 大气状态下 AFM 阳极氧化加工 Si 的研究. 压电与声光. 2006, 28(2): 209~215
    60 D. P. Richard, Z. Jin, X. Feng, et al. “Dip-Pen” Nanolithography. Science. 1999, 283(29): 661~663
    61 H. Seunghun, A. M. Chard. A Nanoplotter with both Parallel and Serial Writing Capabilities. Science. 2000, 288(9): 1808~1811
    62 洪霞, 魏莉, 郭薇等. 利用DPN技术直接构建磁性纳米图形. 高等学校化学学报. 2002, 09: 1057~1065
    63 周化岚, 魏刚, 刘志国等. Dip-pen刻蚀技术直接构建聚-L-赖氨酸纳米结构. 高等学校化学学报. 2005, 04: 757~759
    64 蒋洪奎, 范真, 蒋洪奎等. 扫描探针刻蚀技术的机理分析及进展. 新技术新工艺. 2006, 01: 86~88
    65 刘小龙, 沙继斌, 张镇西. 蘸笔纳米平板印刷术(DPN)在蛋白质芯片中的应用. 化学通报. 2006, 12: 909~915
    66 P. H. Avouris. Manipulation of Matter at the Atomic and Molecular Levels. Acc Chem Res. 1995, 28: 95~102
    67 T. Junno. Fabrication of Quantum Devices by Angstrom-Level Manipulation of Nanoparticles with and AFM. Applied Physics Letters. 1998, 72(5): 548~550
    68 国立秋, 梁吉, 董申等. 碳纳米管原子力显微镜探针对生物样品高分辨率成像的研究. 中国生物医学工程学报. 2004, 03: 243~246
    69 吕军鸿, 吴世英, 王国华等. DNA单分子的纳米定位切割与拾取研究. 电子显微学报. 2003, 03: 185~188
    70 周星飞,孙洁林,米丽娟等. 基于原子力显微镜技术的单个生物大分子压弹性研究. 电子显微学报. 2005, 03: 238~242
    71 吕鸣, 石宝晨, 李雪玲等. 一种基于单分子纳米操纵的有序化测序策略. 生物化学与生物物理进展. 2006, 07: 660~664
    72 赵铁强, 国立秋. 原子力显微镜碳纳米管探针的制备及其生物学应用. 生物医学工程学杂志. 2003, 02: 352~365
    73 刘赛锦, 申自勇, 侯士敏等. 用原子力显微镜操纵碳纳米管的研究. 物理化学学报. 2003, 03: 233~236
    74 张宇军, 李鹏, 胡元中等. AFM纳米操纵中侧向推动力的测量方法. 清华大学学报(自然科学版). 2004, 08: 1025~1028
    75 E. Meyer. Molecular Resolution Images of LB Films Using AFM. Nature. 1991, 349: 398~400
    76 K. Yano, R. Kuroda, et al. Information storage using conductive change of langmuir-blodgett-film and atomic-force microscope scanning tunneling microscopy. J. Vac. Sci. Technol B. 1996, 14(2): 1353~1355
    77 K. Pohlmann, B. Bhushan, K. H. Z. Gahr. Effect of Thermal Oxidation on Indentation and Scratching of Single-crystal Silicon Carbide on Microscale. Wear. 2000, 237: 116~128
    78 B. Bhushan. Nanoscale Tribophysics and Tribomechanics. Wear. 1999, 225:465~492
    79 B. Bhushan. Nano- to Microscale Wear and Mechanical Characterization Using Scanning Probe Microscopy. Wear. 2001, 251: 1105~1123
    80 Y. R. Jeng, P. C. Tsai, T. H. Fang. Nanomeasurement and Fractal Analysis of PZT Ferroelectric Thin Films by Atomic Force Microscopy. Microelectronic Engineering. 2003, 65: 406~415
    81 H. Gobel, B. Von, D. Enhagen. Atomic Force Microscope as a Tool for Metal Surface Modifications. J. Vac. Sci. Technol B. 1995, 13(3): 1247~1249
    82 X. Lin, W. N. Unertl. Submicrometer Modification of Polymer Surfaces with a Surface Microscope. Appl. Phys. Lett. 1992, 61(6): 657~659
    83 J. Garnaes, T. Bjornholm, J. A. N. Zasadzinski. Nanoscale Lithography on Langmuir-Blodgett Films of Behinic Acid. J. Vac. Sci. Technol B. 1994, 12(3): 1839~1842
    84 S. Tegen, B. Kracke, B. Damaschke. Surface Modifications with a Scanning Force Microscope. Rev. Sci. Instrum. 1997, 68(3): 1458~1460
    85 Shojiro MIYAKE, Masanori ISHII, Toshiaki OTAKA, et al. Nanometer-scale Mechanical Processing of Muscovite Mica by Atomic Force Microscope. Journal of the Japan Society for Precision Engineering. 1997, 63(3): 426~430
    86 H. Sugihara, A. Takahara, T. Kajiyama. Mechanical Nanofabrication of Lignoceric Acid Monolayer with Atomic Force Microscopy. J. Vac. Sci. Technol B. 2001, 19(2): 593~595
    87 V. Bouchiat, D. Esteve. Lift-off Lithography Using an Atomic Force Microscope. Appl. Phys. Lett. 1996, 69(20): 3098~3100
    88 R. Magno, B. R. Bennett. Nanostructure Patterns Written in III-V Semiconductors by an Atomic Force Microscope. Appl. Phys. Lett. 1997, 70(14): 1855~1857
    89 H. W. Schumacher, U. F. Keyser, U. Zeitler, et al. Controlled Mechanical AFM Machining of Two-Dimensional Electron Systems: Fabrication of a Single-Electron Transistor. Physica E. 2000, 6: 860~863
    90 J. Q. Song, Z. F. Liu, C. Z. Li, et al. SPM-Based Nanofabrication Using a Synchronization Technique. Appl. Phys A. 1998, 66(S715): 1247~1251
    91 T. F. Fang, C. I. Weng, J. G. Chang. Machining Characterization of the Nano-Lithography Process Using Atomic Force Microscopy. Nanotechnology.2000, 11: 181~187
    92 Q. L. Zhao, T. Sun, Y. C. Liang, et al. Atomic force microscope using a diamond tip: A tool for micro/nano-machining on single crystal silicon surface. Proceedings of SPIE - The International Society for Optical Engineering. 2001, 4601: 73~78
    93 M. Heyde, K. Rademann, B. Cappella, et al. Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope. Review of Scientific Instruments. 2001, 72 (1): 136~141
    94 T. Sumomogi, T. Endo, K. Kuwahara. Micromachining Of Metal Surface By Scanning Probe Microscope. J. Vac. Sci. Technol B. 1994, 12(3): 1876~1880
    95 Z. Jiang, C. J. Lu, D. B. Bogy, et al. An Investigation of the Experimental Conditions and Characteristics of A Nano-wear Test. Wear. 1995, 181: 777~783
    96 朱吉牧, 章海军, 张冬仙. AFM 在纳米结构加工中的应用研究. 激光与红外. 2003, 33(4): 283~285
    97 Yan Yongda, Sun Tao, Dong Shen. Removal of material on nanometer scale during AFM cutting. 3rd International Symposium on Instrumentation Science and Technology. Aug. Xi An, China. 2004, 3: 0357~0361
    98 闫永达, 孙涛, 董申. 采用 AFM 研究单晶硅纳米加工特性. 中国机械工程增刊. 2005, 16: 349~351
    99 闫永达. 基于 AFM 的纳米加工机理及相关工艺技术研究. 哈尔滨工业大学博士学位论文. 2007: 58~84
    100 Q. L. Zhao, T. Sun, S. Dong, et al. Micro/nano-Machining on Silicon Surface with a Modified Atomic Force Microscope. Chinese Journal of Mechanical Engineering. 2001, 14(3): 207~211
    101 Q. L. Zhao, T. Sun, S. Dong. Investigation of an Atomic Force Microscope Diamond Tip Wear in Micro/nano-Machining. Key Engineering Materials. 2001, 202: 315~320
    102 C. M. Mate, G. M. Mcclelland, R. Erlandsson, et al. Atomic-Scale Friction of a Tungsten Tip on a Graphite Surface. Physical review letters. 1987, 59(17): 1942~1945
    103 G.. Bogdanovic, A. Meurk, M. W. Rutland. Tip Friction-Torsional Spring Constant Determination Colloids and Surface B: Biointerfaces. 2000, 19:397~405
    104 G.. Y. Li, N. Xi, M. M. Yu, et al. Augmented Reality System for Real-Time Nanomanipulation. IEEE Int. Conf. Nanotechnology, San Francisco. CA, August. 2003, 12: 64~67
    105 G.. Y. Li, N. Xi, M. M. Yu, et al. Modeling of 3-D Interactive Forces in Nanomanipulation. Proceedings of the 2003 IEEE/RSJ. Intl. Conference on Inteligent Robots and systems. Las Vegas, Nevade. October. 2003: 2127~2132
    106 唐玉兰. 基于分子动力学单晶材料纳米切削过程及相关技术的研究. 哈尔滨工业大学博士学位论文. 2004: 1~15
    107 J. Belak, I. F. Stowers. A Molecular Dynamics Model of the Orthogonal Cutting Process. Proc. ASPE. Annal Conf., Rochester. NY. 1990: 23~28
    108 J. Belak, D. A. Lucca, R. Lomanduri, et al. Molecular Dynamics Simulation of the Chip Forming Process in Single Crystal Copper and Comparison with Experimental Data. Proc. ASPE Annual Conference. 1991: 100~103
    109 Y. Isono, T. Tanaka. Three-Dimensional Molecular Dynamics Simulation of Atomic Scale Precision Processing Using a Pin Tool. JSME. 1997, 40(3): 211~218
    110 D. Mulliah, S. D. Kenny, R. Smith, et al. Molecular Dynamic Simulations of Nanoscratching of Silver (100). Nanotechnolgoy. 2004, 15: 243~249
    111 Y. D. Yan, S. Dong, T. Sun. 3D force components measurement in AFM scratching tests. Ultramicroscopy. 2005, 105: 62~71
    112 Y. D. Yan, T. Sun, S. Dong, X. C. Luo and Y. C. Liang. Molecular dynamics simulation of processing using an AFM pin tool. Applied Surface Science. 2006, 252(20): 7523~7531
    113 Y. D. Yan, T.Sun, S.Dong. Study on effects of tip geometry on AFM nanoscratching tests. Wear. 2007, 262: 477~483
    114 Y. D.Yan, T.Sun, S.Dong. Study on Effects of the Feed on AFM-based Nanomachining Process. Material science Forum. 2006, 532: 257~260
    115 Y. D. Yan, S.Dong, T.Sun. Investigation on Influencing Factors of AFM Micro Probe Nanomachining. Materials Science Forum. 2004, 471: 816~820
    116 S. Cruchon-Dupeyrat, S. Porthun, G. Y. Liu. Nanofabrication Using Computer- Assisted Design and Automated Vector-Scanning ProbeLithography. Applied Surface Science. 2001, 175: 636~642
    117 朱吉牧. 基于原子力显微镜的纳米加工技术及软件系统研究. 浙江大学硕士论文. 2005: 8~27
    118 区仲荣. 基于 AFM 实时可控纳米加工技术研究. 广东大学硕士论文. 2006: 13~21
    119 J. M. Lee, H. J. Won, E. K. Dae. Application of Single Asperity Abrasion Process for Surface Micro-Machining. Wear. 2001, 251: 1133~1143
    120 J. M. Lee, I. H. Sung, E. K. Dae. Process Development of Precision Surface Micro-Machining Using Mechanical Abrasion and Chemical Etching. Microsystem Technologies. 2002, 8: 419~426
    121 I. H. Sung, J. C. Yang, D. E. Kim et al. Micro/nano-Tribological Characteristics of Self-Assembled Monolayer and Its Application in Nano-Structure Fabrication. Wear. 2003, 255: 808~818
    122 Y. D. Yan, T. Sun, S. Dong, Y. C. Liang, et al. An Investigation on the 3D Micromachining Techniques based on a SPM. Key Engineering Materials. 2004, 257: 465~470
    123 T. Sun, Y. D. Yan, J. F. Xia, et al. Research on Micro Machining Using AFM Diamond Tip. Key Engineering Materials. 2004, 259: 577~581
    124 Sun Tao, Yan Yongda, Gao Dangzhong, et al. Processing Technique of Target Capsule’s Micro Inflation Hole with the Scanning Probe. Science in China (Series E). 2004, 47(1): 77~84
    125 J. Israelachvili, Intermolecular and Surface Forces. San Diego: Academic Press, 1992: 122~127
    126 黄敏珍, 施隆照, 陈钰清等. 四边行结构 PSD 的输出特性研究. 光电子激光. 2003,14(7): 690~693
    127 Y. J. Sohn, J. H. Kwon, O. S. Choel. Portable autocollimators using the laser diode and the position sensitive detector. Rve Sci Instru. 1998, 69(2): 402~405
    128 赵九江, 张少实, 王春香. 材料力学. 哈尔滨工业大学出版社, 1995, 138~144
    129 http://www.pi.ws
    130 W. C. Oliver, G. M. Pharr. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement SensingIndentation Experiments. J. Mater. Res. 1992, 7(6): 1564~1565
    131 J. B. Pethica. Microhardness Tests with Penetration Depths than Ion Implanted Layer Thickness in Ion Implantation into Metals. Ashworth V, et al. eds. Third International conference on Modification of Surface Properties of Metals by Ion-Implantation. Oxford: Pergammon Press. 1982: 147~157
    132 M. F. Doerner, W. D. Nix. A Method of Interpreting the Data from Depth-Sensing Indentation Instruments. J. Mater. Res. 1986, 1(4): 601~609
    133 W. C. Oliver, G. M. Pharr. Measurement of Hardness and Elastic Modulus by Instrumented Indentaion: Advance in Understanding and Refinements to Methodology. J. Mater. Res. 2004, 19(1): 3~20
    134 张泰华. 微/纳米力学测试技术及其应用. 机械工业出版社, 2004: 20~31
    135 胡寿松. 自动控制原理. 科学出版社, 2001: 357~393
    136 吴麒, 王诗宓. 自动控制原理. 清华大学出版社, 2006: 48~52
    137 K. J. Astrom, T. Hagglund. The Future of PID Fontrol. Control Engineering Practice. 2001, 9: 1163~1175
    138 L. Desbourough, R. Miller. Increasing Customer Value of Industrial Control Preformance Monitoring-Honeyell’s Experience. AIChE Symposium Series. 2002, 98(326): 153~186
    139 梅晓榕, 庄显义. 自动控制原理. 科学出版社, 2002: 149~154
    140 戴忠达. 自动控制理论基础. 清华大学出版社, 1989: 177~181
    141 夏德钤. 自动控制理论. 机械工业出版社, 1997: 74~78
    142 方刚, 曾攀. 切削加工过程数值模拟的研究进展. 力学进展. 2001, 31(3): 394~404
    143 L. J. Hagaman. Automative Adaptive Remeshing in ALPID, an Advanced Forging Simulation Program. Comput.Engng. 1987, 2: 93~97
    144 V. T. Nicolas, E. Citipitioglu. A General Isoparametric Finite Element Program SDRC SUPERB. Comput.Struct. 1977, 7: 303~313
    145 J. Cheng. Automaitc Adaptive Remeshing for Finite Element Simulation of Forming Processes. Int.J.Num.Meth.Engng. 1988, 26: 118~119
    146 陈火红. MSC.Marc/Mentat2003 基础与应用实例. 科学出版社, 2004: 327~331
    147 K. W. Kim, W. Y. Lee, H. C. Sin. A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect. International Joumal of Machine Tool & Manufacture. 1999, 39: 1507~1524
    148 李华, 孙晓民, 李红青等. MCS-51 系列单微机实用接口技术. 北京航空航天大学出版社, 1993: 1~27
    149 http://www.winbond.com.tw
    150 http://www.chinadz.com/icver/readme.htm
    151 马忠梅, 籍顺心, 张凯等. 单片机的 C 语言应用程序设计. 北京航空航天大学出版社, 1998: 46~142
    152 http://www.wave-cn.com/
    153 唐泽圣. 程序设计 Visual C++ 6. 电子工业出版社, 2000: 1~120
    154 Chris H.Pappas, William H.Murray. Visual C++ 6 参考大全. 希望图书创作室. 北京希望电脑公司, 1999: 1~706
    155 Y. Takeuchi, K. Sawada, T. Sata. Ultraprecision 3D Micromachining of Glass. CIRP Annals. 1996, 45(1): 401~404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700