用户名: 密码: 验证码:
过渡金属纳米结构的构筑及其紫外光激发的表面增强拉曼散射效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼散射(SERS)效应可以使某些纳米结构表面的吸附物种的拉曼信号强度得到极大的增强。由此使得表面增强拉曼光谱成为一种超高灵敏度的表面检测谱学技术,成功地应用于电化学和分析科学等领域。然而,SERS研究的激发线几乎集中在可见光至近红外光的波长范围,若能将激发线拓宽至紫外光区,将对SERS的应用体系拓展和复杂机理揭示做出实质性的贡献。
     SERS效应高低与基底的纳米结构密切相关,迄今传统的SERS基底制备方法难以在多种金属体系获得UV-SERS活性。并且,由于目前拉曼谱仪在紫外光区的性能远低于可见光区(如光通量,CCD量子收集效率,透镜收集效率等),造成UV拉曼信号强度低,故大大限制了UV-SERS的发展。因此,本论文工作的重点是发展和优化UV-SERS活性基底,并利用UV-SERS研究一些重要体系的SERS机理。主要的创新点和成果有以下几点:
     (1)设计和制备具有高UV-SERS活性的纳米结构。利用电化学氧化还原循环法、纳米粒子(包括核壳结构粒子)合成法和聚苯乙烯球模板法,制备了不同的金属纳米结构,以DNA碱基腺嘌呤、SCN~-为探针分子,首次获得了Pt、Pd、Co、Ni四种Ⅷ族过渡金属体系波长325 nm的紫外光激发下的UV-SERS效应。
     (2)研究了Pt和Pd纳米粒子的尺寸、形状和结晶度对UV-SERS效应的影响,提出良好的结晶度是激发纳米粒子的表面等离子体共振吸收(SPR)和提高UV-SERS活性的重要前提。
     (3)系统研究了波长对核壳结构纳米粒子增强效应的影响。通过比较可见和紫外光激发下,Au@Pd和Au@Pt核壳结构纳米粒子的增强效应与Pd或Pt壳厚度的关系,证明了币族金属Au和过渡金属Pd或Pt在可见和紫外光区具有不同的增强效应。可见光激发下,Au核对增强起主要贡献,而在紫外光激发下,增强的贡献皆来自于Pd或Pt壳。
     (4)具有可调SPR吸收且大面积形貌均匀的过渡金属纳米碗阵列的制备和UV-SERS研究。利用聚苯乙烯球模板法,电沉积了直径D在200 nm至900 nm、厚度在0.1 D-1.2 D范围内变化的纳米碗阵列。以腺嘌呤为探针分子,首次获得了Pt和Pd纳米碗的UV-SERS。UV-SERS增强效应与纳米碗的大小和深度密切相关,其中聚苯乙烯球直径200 nm,沉积厚度0.3 D的Pd纳米碗表现出最好的UV-SERS增强效应。
     (5) UV-SERS的电磁场增强机理研究。利用紫外-可见(反射)吸收谱研究了Pt和Pd纳米粒子和纳米碗的吸收特征,首次从实验上证实了Pt和Pd在紫外区有SPR吸收。通过对比分析UV-SERS信号强度与SPR吸收特征,发现两者之间存在较好的匹配关系,证明电磁场增强机理对Pt和Pd纳米结构的UV-SERS效应具有重要作用。
     (6)系统研究了腺嘌呤/金属体系的增强机理。通过改变激发光波长(325 nm、514.5 nm和632.8 nm)和电极电位,研究了腺嘌呤吸附在Rh和Pd电极上的电荷转移增强(CT)机理。观察到波长为325 nm的紫外激光所引起峰值电位的明显位移,以及峰值电位与激发光能量之间具有斜率为正的线性关系,说明CT机理对增强有贡献且电荷转移方向是从金属到分子。这一结果对理解腺嘌呤在Au或Ag的单分子SERS和TERS的巨大增强效应,具有重要的启示作用。另外,推断出该体系共存电荷转移增强、共振增强和电磁场增强三种增强作用。
     (7)利用SERS研究了电化学共吸附和表面取向问题。详细研究了质子化DNA碱基与ClO_4~-在金纳米粒子上的共吸附行为和质子化碱基间的氢键作用;观察到电极表面的吸附氢和氧对吡嗪在铑上取向改变具有较大影响,电位和浓度变化皆会引起的吸附取向的改变。
     综上所述,本论文工作成功地将UV-SERS拓宽到Pt、Pd、Co和Ni四种过渡金属体系,研究了表面等离子体共振吸收对过渡金属UV-SERS的重要贡献,并结合UV-SERS和Vis-SERS对腺嘌呤/Rh(Pd)体系的增强机理进行了系统研究,促进了UV-SERS研究的进展。最后应指出,如果拉曼谱仪及相关光学元件(如CCD收集效率、谱仪的光通量等)在紫外光区的性能能够达到目前可见光区的水平,对于同样的分子/金属体系,UV-SERS的信号甚至要强于Vis-SERS。这预示着UV-SERS还有很大的发展潜力,随着拉曼谱仪和各种光学元件在紫外光区性能的改进,以及制备具有更高UV-SERS活性的纳米结构,UV-SERS以及UV-SERRS将在不远的将来得到广泛应用。
Surface-enhanced Raman scattering can extremely enhance the Raman signal of species adsorbed on the surface of nanostructures,which makes surface-enhanced Raman spectroscopy(SERS) be a very sensitive tool for the detection of surface species,and thus widely used in many fields like electrochemistry and analytical chemistry.However,the excitation lines used in SERS studies almost always focus on the visible to near infrared region.If it can be extended to the UV region,the use of UV excitation will expand the SERS application and provide new insights and experimental data to discover the complicated SERS mechanisms.
     SERS enhancements greatly depend on the nanostructure of SERS substrates. Presently,the traditional methods for fabricating SERS substrates are still difficult to obtain UV-SERS active substrates on various metals.In addition,the performance of Raman spectrometer in UV region is much worse than that in visible region,like the throughput,quantum efficiency of CCD and collection efficiency of objectives,which results in a much lower SERS intensity in UV region than that in visible region.The above two facts greatly restrict the development of UV-SERS studies.Therefore,the objective of this dissertation is to develop and optimize UV-SERS active substrates by using several novel nanostructure fabrication methods,and employ UV-SERS to study the enhancement mechanism of some important molecule/metal systems.
     The main results in this thesis are listed as below:
     (1) Design and fabrication of various nanostructures with high UV-SERS activity.The methods of electrochemical oxidation reduction cycle(ORC),synthesis of nanoparticles (including core-shell nanoparticles) and electrodeposition of nanovoids through polystyrene sphere templates were employed to prepare diverse metallic nanostructures. By using adenine and SCN~- as the probe molecules,for the first time,UV-SERS excited with a 325 nm UV laser was obtained on four metals inⅧgroup,i.e.Pt,Pd,Co and Ni.
     (2) Study of the effect of size,shape and crystallinity of Pt and Pd nanoparticles on the UV-SERS enhancements.It reveals that the nanocrystals with good crystallinity are favorable for the excitation of surface plasmon resonance and the improvement of UV-SERS activity.
     (3) Study of the wavelength effect on the SERS enhancements of core-shell nanoparticles.By comparing the intensity-shell thickness profile of Au@Pt and Au@Pd core-shell nanoparticles excited with the UV and visible lasers,it was proved that coinage metal(Au) and transition metal(Pt or Pd) had very different enhancements in UV and visible region.In visible region,Au core plays a dominant role in the SERS enhancement, but in UV region,the UV-SERS enhancements are solely contributed by Pt or Pd shell.
     (4) Fabrication and UV-SERS study on Pd and Pt nanovoids with tunable SPR absorption and uniform morphology.Electrodeposition through a range of close packed arrays of polystyrene sphere templates was employed to produce a series of palladium and platinum nanovoids with different thicknesses.The diameter(D) of spheres used as the template varies from 200 nm to 800 nm and the thickness of nanovoids varies from 0.1 D to 1.2 D.For the first time,the application of these substrates for UV-SERS was demonstrated,using adenine as the probe molecule,under electrochemical potential control. UV-SERS enhancement of palladium and platinum nanocavities was found to be both void diameter and film thickness dependent,and the Pd nanovoids with the thickness of 0.3 D templated by 200 nm diameter sphere show the best UV-SERS activity.
     (5) Study of the electromagnetic field enhancement mechanism of UV-SERS on Pt and Pd.The surface plasmon resonance(SPR) in UV region was obtained for the first time on Pt and Pd nanoparticles and nanovoids via UV-Vis absorption and normal incidence reflectance measurements.The SPR correlates well with the UV-SERS enhancement, demonstrating that electromagnetic field enhancement plays an important role in the UV-SERS enhancement of Pt and Pd nanostructures.
     (6) Study of the charge transfer enhancement mechanism of adenine/metal systems. The charge transfer(CT) enhancement mechanism of adenine adsorbed on Rh and Pd was studied by changing either excitation energy(hv) or Fermi level which can be easily tuned by changing the applied potential.The obvious shift of E_(max)(potential at which intensity reach the maximum) with the excitation energy,and the linear relationship between hv and E_(max),convincingly demonstrate the existence of CT enhancement and the charge transfer direction is from the metal to adenine molecules.This result is very important for the understanding of the huge enhancement observed in SM-SERS or TERS spectra of adenine adsorbed on Ag or Au.Finally,it was deduced that there were totally three enhancement mechanisms in adenine/Rh and adenine/Pd systems,i.e.charge transfer,pre-resonance Raman effect and electromagnetic field.
     (7) Study of the electrochemical coadsorption and adsorption orientation by SERS. The coadsorption behavior of protonated DNA bases with ClO_4~- and the detection of hydrogen bonds between protonated DNA bases were studied detailedly by SERS;the adsorption orientation of pyrazine on Rh was observed to change both with the applied potentials and the solution concentration,moreover,the coadsorbed O and H were proved to have great influence on its orientation.
     In summary,the present thesis successfully extended UV-SERS to four important transition metals,i.e.Pt,Pd,Co and Ni,and further studied the important role of EM (electromagnetic field) mechanism in the UV-SERS enhancement of nanostructures. Moreover,charge transfer enhancement of adenine/Rh(Pd) systems was also systematically studied by UV and visible laser excited SERS.This work greatly promotes the UV-SERS studies.Finally,what should be specially mentioned here is that UV-SERS intensity will be stronger than that of Vis-SERS provided that optical elements used in UV region can perform as well as those used in visible region.This predicts the great potential of UV-SERS.With the improvement of the performance of Raman spectrometer and optical elements in UV region,together with the fabrication of nanostructures with higher UV-SERS activity,UV-SERS and UV-SERRS will get extensively applications in the near future.
引文
[1]程光熙.拉曼布里渊散射-理及应用.[M].科学出版社:北京,2001.
    [2]Faraday M.Experimental relations of gold(and other metals) to light.[J].Philos.Trans.R.Soc.1857,147,145.
    [3]Kerker M.The scattering of light and other electromagnetic radiation[M].Academic Press:New York,1969.
    [4]Rayleigh L.[J].Phil.gag.1871,41,107.
    [5]Rayleigh L.[J].Phil.Mag.1871,41,274.
    [6]钟锡华.现代光学基础.[M].北京大学出版社:北京,2003.
    [7]Mie G Contributions to the optics of turbid media,especially colloidal metal solutions.[J].Annalen der Physik(Weinheim,Germany).1908,25,377.
    [8]Smekal A.The quantum theory of dispersion.[J].Naturwissenschafien.1923,11,873.
    [9]Raman C V,Krishnan K S.A new type of secondary radiation.[J].Nature(London,United Kingdom).1928,121,501.
    [10]Landsberg G,Mandelstam L.A novel effect of light scattering in crystals.[J].Naturwissenschafien.1928,16,557.
    [11]秦克诚.邮票上的物理学史.[M].清华大学出版社,2005.
    [12]Long D A.The Raman effect - a unified treatment of the theory of Raman scattering by molecules.[M].John Wiley & Sons,2001.
    [13]Smith E,Dent G.Modern Raman spectroscopy - a practical approach.[M].John Wiley & Sons:Chichester,2005.
    [14]Spiro T G,Stein P.Resonance effects in vibrational scattering from complex molecules.[J].Annu.Rev.Phys.Chem.1977,28,501.
    [15]Petty R,Schmitt M,Popp J.Raman spectroscopy - a prospective tool in the life science.[J].ChemPhysChem.2003,4,14.
    [16]Fleischmann M,Hendra P J,McQuillan A J.Raman spectra of pyridine adsorbed at a silver electrode.[J].Chem.Phys.Lett.1974,26(2),163.
    [17]Jeanmaire D L,Van Duyne R P.Surface Raman spectroelectrochemistry.Part Ⅰ.Heterocyclic,aromatic,and aliphatic amines adsorbed on the anodized silver electrode.[J].J.Electroanal.Chem.1977,84(1),1.
    [18]Albrecht M G,Creighton J A.Anomalously intense Raman spectra of pyridine at a silver electrode.[J].J.Am.Chem.Soc.1977,99(15),5215.
    [19]Campion A,Kambhampati P.Surface-enhanced Raman scattering.[J].Chem.Soc.Rev. 1998,27(4),241.
    [20]Chang R K,Futak T E.Surface enhanced Raman Scattering.[M].Plenum Press:New York,1982.
    [21]Tian Z-Q,Ren B,Wu D-Y.Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures.[J].J.Phys.Chem.B.2002,106(37),9463.
    [22]Birke R L,Lu T,Lombardi J R.Surface-enhanced Raman spectroscopy in techniques for characterization of electrodes and electrochemical processes.[M].John Wiley &Sons,1991.
    [23]Kneipp K,Wang Y,Kneipp H,Perelman L T,Itzkan I,Dasari R R,Feld M S.Single molecule detection using surface-enhanced Raman scattering(SERS).[J].Phys.Rev.Lett.1997,78(9),1667.
    [24]Liu F M,Kollensperger P A,Green M,Cass A E G,Cohen L F.A note on distance dependence in surface enhanced Raman spectroscopy.[J].Chem.Phys.Lett.2006,430,173.
    [25]Xu H,Kaell M.Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates.[J].ChemPhysChem.2003,4(9),1001.
    [26]Jeong D H,Zhang Y X,Moskovits M.Polarized surface enhanced Raman scattering from aligned silver nanowirc rafts.[J].J.Phys.Chem.B.2004,108(34),12724.
    [27]Tian J H,Liu B,Li X,Yang Z L,Ren B,Wu S T,Tao N,Tian Z Q.Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method.[J].J.Am.Chem.Soc.2006,128,14748.
    [28]Lipkowski J,Stolberg L.Molecular adsorption at gold and silver electrodes,in,adsorption of molecules at metal electrodes,.[M].VCH:New York,1992.
    [29]Pettinger B.Adsorption of molecules at metal electrodes.[M].VCH:New York,1992.
    [30]Petersen P,Krasser W.Surface enhanced Raman scattering from a ternary catalyst Cu/ZnO/Al_2O_3 under reaction conditions.[J].Appl.Surf.Sci.1996,103(1),91.
    [31]Williams C T,Tolia A A,Chan H Y H,Takoudis C G,Weaver M J.Surface-enhanced Raman spectroscopy as an in situ real-time probe of catalytic mechanisms at high gas pressures,the CO-NO reaction on platinum and palladium.[J].J.Catal.1996,163(1),63.
    [32]Williams C T,Takoudis C G,Weaver M J.Raman spectral evidence of reactive oxide formation during methanol oxidation on polycrystalline rhodium at high gas pressures.[J].J.Catal.1997,170(1),207.
    [33]Mrozek M F,Luo H,Weaver M J.Formic acid electrooxidation on platinum-group metals:is adsorbed carbon monoxide solely a catalytic poison?[J].Langmuir.2000,16(22),8463.
    [34]Ren B,Li X Q,She C X,Wu D Y,Tian Z Q.Surface Raman spectroscopy as a versatile technique to study methanol oxidation on rough Pt electrodes.[J].Electrochim.Acta.2000,46(2-3),193.
    [35]Rubim J,Gutz I G R,Sala O,Orville-Thomas W J.Surface enhanced Raman spectra of benzotriazole adsorbed on a copper electrode.[J].J.Mol.Struct.1983,100,571.
    [36]Gui J,Devine T M.Obtaining surface-enhanced Raman spectra from the passive film on iron.[J].J.Electrochem.Soc.1991,138(5),1376.
    [37]Gu R,Zhang Z,Hu X,Deng Z.Raman speetro-eleetrochemical study of corrosion on copper surface.[J].物理化学学报.1995,11(5),743.
    [38]Gu R,Ding B.SERS study on inhibitors of iron-pyridine derivatives.[J].光谱学与光谱分析.1995,15(1),39.
    [39]Qian X,Peng X-H,Ansari D O,Yin-Goen Q,Chen G Z,Shin D M,Yang L,Young A N,Wang M D,Nie S.In vivo tumor targeting and spectroscopic detection with surface-enhanced Rarnan nanopartiele tags.[J].Nat.Biotechnol.2008,26(1),83.
    [40]Sun L,Sung K-B,Dentinger C,Lutz B,Nguyen L,Zhang J,Qin H,Yamakawa M,Cao M,Lu Y,Chmura A,Zhu J,Su X,Berlin A A,Chan S,Knudsen B.Composite organic-inorganic manoparticles as Raman labels for tissue analysis.[J].Nano Letters.2007,7(2),351.
    [41]Evanoff D D,Jr.,Heckel J,Caldwell T P,Christensen K A,Chumanov G.Monitoring DPA release from a single germinating bacillus subtilis endospore via surface-enhanced Raman scattering microscopy.[J].J.Am.Chem.Soc.2006,128(39),12618.
    [42]Cao Y C,Jin R,Mirkin C A.Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection.[J].Science.2002,297(5586),1536.
    [43]Braun G,Lee S J,Dante M,Nguyen T-Q,Moskovits M,Reich N.Surface-enhanced Raman spectroscopy for DNAdeteetion by nanoparticle assembly onto smooth metal films.[J].J.Am.Chem.Soc.2007,129(20),6378.
    [44]乔俊莲,郑广宏,李风亭.表面增强拉曼光谱法对水中残留绿麦隆的检测.[J].化学通报.2006,6,462.
    [45]Ruan C,Luo W,Wang W,Gu B.Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples.[J].Anal Chim Acta 2007,605(1),80.
    [46]Gu B,Ruan C.Determination of technetium and its speciation by surface-enhanced Raman spectroscopy.[J].Anal Chem.2007,79(6),2341.
    [47]Wang W,Ruan C,Gu B.Development of gold-silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy.[l].Analytica Chimica Acta.2006,567(1),121.
    [48]Ruan C,Wang W,Gu B.Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles.[J].Analytica Chimica Acta.2006,567(1),114.
    [49]Ren B,Lin X F,Yah J W,Mao B W,Tian Z Q.Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy.[J].J.Phys.Chem.B.2003,107(4),899.
    [50]Gao P,Weaver M J.Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding:benzene and monosubstituted benzenes adsorbed at gold electrodes.[J].J.Phys.Chem.1985,89(23),5040.
    [51]Allen C S,Schatz G C,Van Duyne R P.Tunable laser excitation profile of surface-enhanced Raman scattering from pyridine adsorbed on a copper electrode surface.[J].Chem.Phys.Lett.1980,75(2),201.
    [52]任斌,田中群.电化学催化中的激光拉曼光谱法(上).[J].石油化工.2002,31(6),488.
    [53]任斌,田中群.电化学催化中的激光拉曼光谱法(下).[J].石油化工.2002,31(7),580.
    [54]Blatchford C G,Campbell J R,Creighton J A.Plasma resonance - enhanced Raman scattering by adsorbates on gold colloids:the effects of aggregation.[J].Surf.Sci.1982,120(2),435.
    [55]Kaneta R K,Hiles E A,Gilbert B D,Surface-enhanced Raman scattering of p-nitrobenzoic acid on Ag-coated Au nanoparticle surfaces,in 235th ACS National Meeting.2008:New Orleans,LA,United States.
    [56]Ding L-P,Fang Y.Influence of the microstructure of several substrates on the SERS effect of p-hyroxybenzoic absorbed on Ag nanoparticles.[J].Colloids Surf.2008,316(1-3),253.
    [57]Muniz-Miranda M,Pagliai M,Cardini G,Schettino V.Role of surface metal clusters in SERS spectra of ligands adsorbed on Ag colloidal nanoparticles.[J].J.Phys.Chem.C.2008,112(3),762.
    [58]Ding L-P,Fang Y.The study of resonance Raman scattering spectrum on the surface of Cu nanoparticles with ultraviolet excitation and density functional theory.[J].Spectrochim.Acta,Part A.2007,67A(3-4),767.
    [59]Cazayous M,Langlois C,Oikawa T,Ricolleau C,Sacuto A.Cu-Ag core-shell nanoparticles:A direct correlation between micro-Raman and electron microscopy.[J].Phys.Rev.B:Condens.Matter.2006,73(11),113402/1.
    [60]Kim K,Lee H S.Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper.[J].J.Phys.Chem.B.2005,109(40),18929.
    [61]Cao L,Diao P,Tong L,Zhu T,Liu Z.Surface-enhanced Raman scattering of p-aminothiophenol on a Au(core)/Cu(shell) nanoparticle assembly.[J].ChemPhysChem.2005,6(5),913.
    [62]Zettsu N,McLellan J M,Wiley B,Yin Y,Li Z-Y,Xia Y.Synthesis,stability,and surface plasmonic properties of Rhodium multipods,and their use as substrates for surface-enhanced Raman scattering[J].Angew.Chem.Int.Ed.2006,45,1288.
    [63]Xiong Y,Wiley B,Chen J,Li Z-Y,Yin Y,Xia Y.Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties.[J].Angew.Chem.Int.Ed.2005,44,7913.
    [64]Xiong Y,Mclellan J M,Chen J,Yin Y,Li Z-Y,Xia Y.Kinetically controlled synthesis of triangular and hexaonal nanoplates of palladium and their SPR/SERS[J].J Amer Chem Soc.2005,127,17118.
    [65]Xiong Y,Chert J,Wiley B,Xia Y,Yin Y,Li Z-Y.Size-dependent of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process.[J].Nano Letters.2005,5(7),1237.
    [66]McLellan J M,Xiong Y,Hu M,Xia Y.Surface-enhanced Raman scattering of 4-mercaptopyridine on thin films of nanoscale Pd cubes,boxes,and cages.[J].Chem Phys Lett.2006,417,230.
    [67]李明德.自组装构筑SERS基底、细胞膜的SERS和基于SERS的细胞内pH传感研究初探.[D].厦门大学,硕士,2007
    [68]Nie S,Emory S R.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J].Science.1997,275(5303),1102.
    [69]Miah M R,Ohsaka T.Cathodic detection of H_2O_2 using iodide-modified gold electrode in alkaline media.[J].Anal.Chem.2006,78(4),1200.
    [70]Li J F,Yang Z L,Ren B,Liu G K,Fang P P,Jiang Y X,Wu D Y,Tian Z Q.Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes:toward a versatile vibrational strategy for electrochemicalinterfaces.[J].Langmuir.2006,22(25),10372.
    [71]蒋玉雄.过渡金属电极/溶液界面水分子的表面增强拉曼光谱研究.[D].厦门大学,博士论文,2006
    [72]Bartlett P N,Birkin P R,Ghanern M A.Electrochemical deposition of macroporous platinum,palladium and cobalt films using polystyrene latex sphere templates.[J].Chem.Commun.2000,1671.
    [73]Willets K A,Van Duyne R P.Localized surface plasmon resonance spectroscopy and sensing[J].Annu.Rev.Phys.Chem.2007,58,267.
    [74]Bartlett P N,Baumberg J J,Coylcb S,Abdclsalam M E.Optical properties of nanostructured metal films.[J].Faraday Discuas.2004,125,I17.
    [75]Mahajan S,Baumberg J J,Russell A E,Bartlett P,N.Reproducible SERS from structured gold surfaces.[J].Phys.Chem.Chem.Phys.2007,9(45),6016.
    [76]Abdelsalam M E,Mahajan S,Bartlett P N,Baumberg J J,Russell A E.SERS at structured palladium and platinum surfaces.[J].J.Am.Chem.Soc.2007,129(23),7399.
    [77]Cintra S,Abdelsalam M E,Bartlett P N,Baumberg J.I,KelfT A,Sugawara Y,Russell AE.Sculpted substrates for SERS.[J].Faraday Discuss.2006,132,191.
    [78]McFarland A D,Young M A,Dieringer J A,Van Duyne R P.Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy.[J].J.Phys.Chem.B.2005,109(22),11279.
    [79]Abdelsalarn M E,Bartlett P N,Baumberg J J,Coyle S.Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled pro-patterned macroporous films.[J].Adv.Mater.(Weinheim,Ger.).2004,16(1),90.
    [80]Yao J-L,Xu X,Wu D-Y,Xie Y,Ren B,Tian Z-Q,Pan G-P,Sun D-M,Xue K-H.Electronic properties of metal nanorods probed by surface-enhanced Raman spectroscopy.[J].Chem.Comm.2000,(17),1627.
    [81]Grabar K C,Freeman R G,Hommer M B,Natan M J.Preparation and characterization of Au colloid monolayers.[J].Anal.Chem.1995,67,735.
    [82]Freeman R G,Crabar K C,Allison K J,Bright R M,Davis J A,Guthrie A P,Hemmer M B,Jackson M A,Smith P C,et al.Self-assembled metal colloid monolaycrs:an approach to SERS substrates.[J].Science 1995,267(5204),1629.
    [83]Crrabar K C,Smith P C,Musick M D,Davis J A,Walter D G,Jackson M A,Guthrie A P,Natan M J.Kinetic control of Interparticle spacing in Au colloid-based surfaces:rational nanometer-scale architecture.[J].J.Am.Chem.Soc.1996,118(5),1148.
    [84]Schmitt J,Macchtle P,Eck D,Moehwald H,Helm C A.Preparation and optical properties of colloidal gold monolayers.[J].Langmuir.1999,15(9),3256.
    [85]Brown K R,Natan M J.Hydroxylamine seeding of colloidal Au nanopaxticles in solution and on surfaces.[J].Langmuir.1998,14(4),726.
    [86]高敏侠.均匀的强表面增强拉曼光谱基底的制备和表征.[D].厦门大学,硕士,2007
    [87]Felidj N,Truong S L,Aubard J,Levi G,Krenn J R,Hohenau A,Leitner A,Aussenegg F R.Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,[J].J.Chem.Phys.2004,120(15),7141.
    [88]Gunnarsson L,Bjerneld E J,Xu H,Petronis S,Kaserno B,Kall M.Interparticle coupling effects in nanofabdcated substrates for surface-enhanced Raman scattering,[J].Appl.Phys.Lett.2001,78(6),802.
    [89]Liao P F,Bergman J G,Chcmla D S,Wokaun A,Melngailis J,Hawryluk A M,Economou N P.Surface-enhanced Raman scattering from microlithographic silver particle surfaces.[J].Chem.Phys.Lett.1981,82(2),355.
    [90]Li Z,Tong W M,Stickle W F,Neiman D L,Williams R S,Hunter L L,Talin A A,Li D,Brueck S R J.Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates.[J].Langmuir.2007,23(9),5135.
    [91]Lee K C,Chen S S.The roughness dependence of SERS of crystal violet adsorbed on silver surface.[J].Opt.Commun.1988,67(2),119.
    [92]Xue G,Dai Q,Jiang S.Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques.[J].J.Am.Chem.Soc.1988,110(8),2393.
    [93]Aramaki K,Uchara J.The surface-enhanced Raman scattering spectra of pyridine adsorbed on an iron surface.[J].J.Electrochem.Soc.1990,137(1),185.
    [94]Uchara J,Nishihara H,Aramaki K.An investigation of adsorption and orientation of some nitrogen compounds at iron surface in an acid solution by surface-enhanced Raman scattering spectroscopy.[J].J.Electrochem.Soc.1990,137(9),2677.
    [95]Fleischmann M,Tian Z Q,Li L J.Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates.[J].J.Electroanal.Chem.1987,217(2),397.
    [96]Fleischmann M,Tian Z Q.The effects of the undcrpotential and overpotential deposition of lead and thallium on silver on the Raman spectra of adsorbates.[J].J.Electroanal.Chem.1987,217(2),385.
    [97]Eickmans J,Otto A,Goldmann A.On the annealing of "SERS active" silver films:UPS and TDS of adsorbed xenort[J].Surf.Sci.1986,171(2),415.
    [98]Otto A.Rarnan spectra of cyanide ion adsorbed at a silver surface.[J].Surf.Sci.1978,75(2),L392.
    [99]Schultz S G,Janik-Czachor M,Van Duyne R P.Surface-enhanced Rarnan spectroscopy:a re-examination of the role of surface roughness and electrochemical anodization.[J].Surf.Sci.1981,104(2-3),419.
    [100]King F W,Van Duyne R P,Schatz G C.Theory of Raman scattering by molecules adsorbed on electrode surfaces.[J].J.Chem.Phys.1978,69(10),4472.
    [101]Natan M J.Concluding remarks surface enhanced Raman scattering.[J].Faraday Discuss.2006,132,321.
    [102]Otto A.The 'chemical'(electronic) contribution to surface-enhanced Raman scattering [J].J.Raman.Spectrosc.2005,36,497.
    [103]Moskovits M.Surface-enhanced spectroscopy.[J].Rev.Mod.Phys.1985,57(3),783.
    [104]Gersten J I.The effect of surface roughness on surface-enhanced Raman scattering.[J].J.Chem.Phys.1980,72(10)~ 5779.
    [105]Chen C Y,Burstein E.Giant Raman scattering by molecules at metal-island films.[J].Phys.Rev.Lett.1980,45(15),1287.
    [106]杨志林.金属纳米粒子的光学性质及过渡金属表面增强拉曼散射的电磁场机理研究.[D].厦门大学,博士,2006
    [107]Gersten J,Nitzan A.Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces.[J].J.Chem.Phys.1980,73(7),3023.
    [108]Lombardi J R,Birke R L.Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy.[J].J.Chem.Phys.2007,126,244709.
    [109]Michaels A M,liang J,Brus L.Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules.[J].J.Phys. Chem.B.2000,104(50),11965.
    [110]Bosnick K A,Jiang J,Brus L E.Fluctuations and local symmetry in single-molecule rhodamine 6G Raman seattering on silver nanocrystal aggregates.[J].J.Phys.Chem.B.2002,106(33),8096.
    [111]Otto A,Bruekbauer A,Chen Y X.On the chloride activation in SERS and single molecule SERS.[J].J.Mol.Struct.2003,661-662,501.
    [112]Otto A.On the electronic contribution to single molecule surface enhanced Raman spectroscopy.[J].lndian Journal of Physics,B.2003,77B(2),249.
    [113]Haslett T L,Tay L,Moskovits M.Can surface-enhanced Raman scattering serve as a channel for strong optical pumping?[J].J.Chem.Phys.2000,113(4),1641.
    [114]Kneipp K,Wang Y,Kneipp H,Itzkan I,Dasari R R,Feld M S.Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,[J].Phys.Rev.Lett.1996,76(14),2444.
    [115]Brolo A G,Sanderson A C,Smith A P.Ratio of the surface-enhanced anti-stokes scattering to the surface-enhanced stokes-Raman scattering for molecules adsorbed on a silver electrode.[J].Phys.Rev.B:Condens.Matter.2004,69(4),045424/1.
    [116]Kambhampati P,Child C M,Foster M C,Campion A.On the chemical mechanism of surface enhanced Raman scattering:experiment and theory.[J].J.Chem.Phys.1998,108(12),5013.
    [117]Campion A,Ivanecky J E,III,Child C M,Foster M.On the mechanism of chemical enhancement in surface-enhanced Raman scattering,[J].J.Am.Chem.Soc.1995,117(47),11807.
    [118]Zhou Q,Fan Q,Zhuang Y,Li Y,Zhao G,Zheng J.Effect of substrate onsurface-enhanced Raman scattering of molecules adsorbed on immobilized silver nanoparticles.[J].J.Phys.Chem.B.2006,110(24),12029.
    [119]Wang Y,Sun Z,Wang Y,Hu H,Zhao B,Xu W,Lombardi J R.Surface-enhanced Raman scattering on mereaptopyridine-capped CdS microclusters.[J].Spectrochim.Acta,PartA.2007,66A(4-5),1199.
    [120]Wang Y,Sun Z,Hu H,Jing S,Zhao B,Xu W,Zhao C,Lombardi J R.Raman scattering study of molecules adsorbed on ZnS nanocrystals.[J].J.Raman Spectrosc.2007,38(1),34.
    [121]Livingstone R,Quagliano L G,Perez-Paz N,Munoz M,Tamargo M C,Jean-Mary F,Lombardi J R.SERS as sensing method for bio-molecules on MBE-grown quantum dots.[J].Proceedings of SPIE-The International Society for Optical Engineering. 2005,6008,60080A/1.
    [122]Quagliano L G Observation of molecules adsorbed on Ⅲ-Ⅴ semiconductor quantum dots by surface-enhanced Raman scattering.[J].J.Am.Chem.Soc.2004,126(23),7393.
    [123]Seki H,Philpott M R.Surface-enhanced Raman scattering by pyridine on silver island films in an ultrahigh vacuum.[J].J.Chem.Phys.1980,73(10),5376.
    [124]Saito H,Ikezawa Y,Toda G SERS-active sites on silver electrode induced by oxidation-reduction cycles.[J].Chem.Phys.Lett.1984,110(3),291.
    [125]Goncher G M,Parsons C A,Harris C B.Photochemistry on rough metal surfaces.[J].J.Phys.Chem.1984,88(19),4200.
    [126]Furtak T E,Roy D.Nature of the active site in surface-enhanced Raman scattering [J].Phys.Rev.Lett.1983,50(17),1301.
    [127]Watanabe T,Kawanami O,Honda K,Pettinger B.Evidence for surface silver(l+)complexes as the SERS-active sites on silver electrodes.[J].Chem.Phys.Lett.1983,102(6),565.
    [128]Pettenkofer C,Eickmans J,Ertuerk U,Otto A.On the natures of"SERS active sites".[J].Surf.Sci.1985,151(1),9.
    [129]Kester J J.The effect of underpotential deposition on the surface enhanced Raman effect.[J].J.Chem.Phys.1983,78(12),7466.
    [130]Guy A L,Pemberton J E.Time dependence of surface enhanced Raman scattering at silver in the presence of underpotentially deposited lead and its implications for the roles of surface roughness.[J].Langmuir.1985,1(4),518.
    [131]Moerl L,Pettinger B.The role of copper atoms on silver electrodes in surface enhanced Raman scattering from pyddine:giant enhancement by a minority of adsorbed molecules.[J].Solid State Commun.1982,43(5),315.
    [132]Watanabe T,Yanagihara N,Honda K,Pettinger B,Moerl L.Effects of underpotentially deposited thallium and lead submonolayers on the surface-enhanced Raman scattering(SERS) from pyridine at silver electrodes.[J].Chem.Phys.Lett.1983,96(6),649.
    [133]Osawa M,Matsuda N,Yoshii K,Uchida I.Charge transfer resonance Raman process in surface enhanced Raman scattering from p-aminothiophenol adsorbed on Silver:Herzberg-Teller Contribution.[J].J.Phys.Chem.1994,98,12702.
    [134]Kudelski A,Bukowska J.The CT enhancement in SERS on gold electrodes.How important is it.[J].Chem.Phys.Lett.1994,222,555.
    [135]Chase B,Parkinson B.A study of the wavelength and potential dependence of surface-enhanced Raman scattering on Cu,Ag and Au electrodes.[J].J.Phys.Chem.1991,95,7810.
    [136]Furtak T E,Macomber S H.Voltage-induced shilling of charge-transfer excitations and their role in surface-enhanced Raman scattering.[J].Chem.Phys.Lett.1983,95(4,5),328.
    [137]Burstein E,Chen Y J,Chen C Y,Lundquist S,Tosatti E."Giant" Raman scattering by adsorbed molecules on metal surfaces.[J].Solid State Commun.1979,29(8),567.
    [138]Gerston J I,Birke R L,Lombardi J R.Theory of enhanced light scattering from molecules adsorbed at the metal-solution interface.[J].Phys.Rev.Lett.1979,43(2),147.
    [139]Demuth J E,Sanda P N.Observation of charge-transfer states for pyridine chemisorbed on silver(111).[J].Phys.Rev.Lett.1981,47(1),57.
    [140]Chang R K.Surface enhanced Raman scattering at electrodes:a status report.[J].Berichte der Bunaen-Geaellachafl.1987,91(4),296.
    [141]Otto A,Borncmann T,Ertucrk U,Mrozek I,Pettcnkofer C.Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver.[J].Surf.Sci.1989,210(3),363.
    [142]Thietke J,Billmann J,Otto A.Charge transfer excitations in SERS:comparative study of benzene,pyridine and pyrazine.[J].Jerusalem Symposia on Quantum Chemistry and Biochemistry.1984,17,345.
    [143]A.Otto,J.Billmann,J.Eiekmans,U.Erturk,Pettenkofer C.The"adatom model" of SERS(surface enhanced Raman scattering):The present status.[J].Surf.Sci.1984,138,319.
    [144]Chang R K,Furtak T E.Surface enhanced Raman scattering;[J].Plenum Press:New York.1982.
    [145]Moskovits M.Surface-enhanced spectroscopy.[J].Rev.Mod.Phys.1985,57,783.
    [146]Birke R L,Lombardi J R,Gersten J I.Observation of a continuum in enhanced Raman scattering from a metal-solution interface.[J].Phys.Rev.Lett.1979,43(1),71.
    [147]Ueba H.Theory of charge transfer excitation in surface enhanced Rarnan scattering,[J].Surf.Sci.1983,131,347.
    [148]Billmann J,Otto A.Electronic surface state contribution to surface enhanced Raman scattering[J].Solid State Commun.1982,44(2),105.
    [149]Billmann J,Otto A.Charge transfer between adsorbed cyanide and silver probed by SERS.[J].Surf.Sci.1983,138,1.
    [150]Otto A.On the contribution of charge transfer excitation to SERS.[J].J.Electron Spectrosc.Relat.Phenom.1983,29,329.
    [151]Furtak T E,Roy D.Nature of the active site in surface-enhanced Raman scattering [J].Phys.Rev.Lett.1983,50,1301.
    [152]Lombardi J R,Birke R L,Sanchez L A,Bernard I,Sun S C.The effect of molecular structure on voltage induced shifts of charge transfer excitation in surface enhanced Raman scattering[J].Chem.Phys.Lett.1984,104(2,3),240.
    [153]Xie Y,Wu D Y,Liu G K,Hnang Z F,Ren B,Yan J W,Yang Z L,Tian Z Q.Adsorption and photon-driven charge transfer of pyridine on a cobalt electrode analyzed by surface enhanced Raman spectroscopy and relevant theories.[J].J.Electroanal.Chem.2003,554-555,417.
    [154]Maler S A.Plasmonics:fundamentals and applications[M].Springer 2007.
    [155]Homola J,Yee S S,Gauglitz G.Surface plasmon resonance sensors:review.[J].Sensors and Actuators B.1999,B54(1-2),3.
    [156]Van Duyne R P.Physics:molecular plasmonics.[J].Science.2004,306(5698),985.
    [157]Haes A J,Haynes C L,McFarland A D,Schatz G C,van Duyne R P,Zou S.Plasmonic materials for surface-enhanced sensing and spectroscopy.[J].MRS Bulletin.2005,30(5),368.
    [158]Kelly K L,Coronado E,Zhao L L,Schatz G C.The optical properties of metal nanoparticles:the influence of size,shape,and dielectric environment[J].J.Phys.Chem.B.2003,107(3),668.
    [159]Barnes W L,Dereux A,Ebbesen T W.Surface plasmon subwavelength optics.[J].Nature.2003,424(6950),824.
    [160]Knobloch H,Brunner H,Leitner A,Aussenegg F,Knoll W.Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies.[J].J.Chem.Phys.1993,98(12),10093.
    [161]Brockman J M,Nelson B P,Corn R M.Surface plasmon resonance imaging measurements of ultrathin organic films.[J].Annu.Rev.Phys.Chem.2000,51,41.
    [162]Knoll W.Interfaces and thin films as seen by bound electromagnetic waves.[J].Annu.Rev.Phys.Chem.1998,49,569.
    [163]Raether H.Surface polaritons on smooth and rough surfaces and on gratings.[M].Springer-Verlag:Berlin,1988.
    [164]KelfT A,Sugawara Y,Cole R M,Baumberg J J,Abdelsalam M E,Cintra S,Mahajan S,Russell A E,Bartlett P N.Localized and delocalized plasmons in metallic nanovoids.[J].Phys.Rev.B.2006,74(24),245415/1.
    [165]Hicks E M,Zhang X,Zou S,Lyandres O,Spears K G,Schatz G C,Van Duyne R E Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography.[J].J.Phys.Chem.B.2005,109(47),22351.
    [166]Ordal M A,Long L L,Bell R J,Bell S E,Bell R R,Alexander R W,Ward J,Ward C A.Optical properties of metals Al,Co,Cu,Au,Fe,Pb,Ni,Pd,Pt,Ag,Ti,and W in the infrared and far infrared.[J].Appl.Opt.1983,11,1099.
    [167]Kretschmann E,Racther H.Radiative decay of nonradiativc surface plasmons excited by light.[J].Zeitschrift fuer Naturforschung,Teil A:Astrophysik,Physik und Physikalische Chemie.1968,23(12),2135.
    [168]Otto A.Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection.[J].Zeitschrift fuer Physik.1968,216(4),398.
    [169]Matsubara K,Kawata S,Minami S.Optical chemical sensor based on surface plasmon measurement.[J].Appl.Opt.1988,27(6),1160.
    [170]Nelson S G,Johnston K S,Yee S S.High sensitivity surface plasmon resonance sensor based on phase detection.[J].Sensors and Actuators B.1996,35-36,187.
    [171]Nylander C,Liedberg B,Lind T.Gas detection by means of surface plasmon resonance.[J].Sensors and Actuators.1982,3(1),79.
    [172]Liedberg B,Nylander C,Lundstroem I.Surface plasmon resonance for gas detection and biosensing.[J].Sensors and Actuators.1983,4(2),299.
    [173]Jensen T R,Schatz G C,Van Duyne R P.Nanosphere lithography:surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,[J].J.Phys.Chem.B.1999,103(13),2394.
    [174]El-Sayed I H,Huang X,E1-Sayed M A.Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanopartieles in cancer diagnostics:Applications in oral cancer.[J].Nano Letters.2005,5(5),829.
    [175]MeFarland A D,Van Duyne R P.Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity.[J].Nano Letters.2003,3(8),1057.
    [176]许鑫华,韩明川,陈强,李冬光,姚康德.表面等离子体共振传感技术在高分子研究中的应用.[J].,高分子通报.2004,(2),42-47.
    [177]Miller M M,Lazafides A A.Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.[J].J.Phys.Chem.B.2005,109(46),21556.
    [178]Berger C E H,Beumer T A M,Kooyman R P H,Greve J.Surface plasmon resonance multisensing,[J].Anal.Chem.1998,70(4),703.
    [179]Gotoh M,Hasegawa Y,Shinohara Y,Shimizu M,Tosu M.A new approach to determine the effect of mismatches on kinetic parameters in DNA hybridization using an optical biosensor.[J].DNA Research.1995,2(6),285.
    [180]Brockman J M,Frutos A G,Corn R M.A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging[J].J.Am.Chem.Soc.1999,121(35),8044.
    [181]Mrksich M,Grunwell J R,Whitesides G M.Biospecific adsorption of carbonic anhydrase to self-assembled monolayers of alkanethiolates that rresent benzenesulfonamide groups on gold.[J].J.Am.Chem.Soc.1995,117(48),12009.
    [182]Mann D A,Kanai M,Maly D J,Kiessling L L.Probing low affinity and multivalent interactions with surface plasmon resonance:ligands for concanavalin A.[J].J.Am.Chem.Soc.1998,120(41),10575.
    [183]Englebienne P,Hoonacker A V,Verhas M.Surface plasrnon resonance:principles,methods and applications in biomedical sciences.[J].Spectroscopy 2003,17,255.
    [184]Pendry J.Playing tricks with light[J].Science 1999,285(5434),1687.
    [185]Hecht B,Bielefeldt H,Novotny L,Inouye Y,Pohl D W.Local excitation,scattering,and interference of surface plasmons.[J].Phys.Rev.Lett.1996,77(9),1889.
    [186]Schatz G C,Van Duyne R P.Electromagnetic mechanism of surface-enhanced spectroscopy in handbook of vibrational spectroscopy.[M].Wiley:New York,2002.
    [187]Jensen T R,Malinsky M D,Haynes C L,van Duyne R P.Nanosphere lithography:tunable localized surface plasmon resonance spectra of silver nanoparticles.[J].J.Phys.Chem.B.2000,104(45),10549.
    [188]Schultz S,Smith D R,Mock J J,Schultz D A.Single-target molecule detection with nonbleaching multicolor optical immunolabels.[J].Proc.Natl.Acad.Sci.U.S.A.2000,97(3),996.
    [189]Yang W-h,Hulteen J,Schatz G C,Van Duyne R P.A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl) ethylene adsorbed onto silver film over nanosphere electrodes.Vibrational assignments: experiment and theory.[J].J Chem.Phys.1996,104(11),4313.
    [190]Geddes C D,Asian K,Gryczynski I,Malieka J,Lakowicz J R.Noble-metal surfaces for metal enhanced fluorescence.[J].Rev.Fluores.2004,1,365.
    [191]Jensen T R,Van Duyne R P,Johnson S A,Maroni V A.Surface-enhanced infrared spectroscopy:a comparison of metal island films with discrete and nondiscrete surface plasmons.[J].Appl.Spectrosc.2000,54(3),371.
    [192]Shimizu K T,Woo W K,Fisher B R,Eisler H J,Bawendi M G.Surface-enhanced emission from single semiconductor nanocrystals.[J].Phys.Rev.Lett.2002,89(11),117401/1.
    [193]Moran A M,Sung J,Hicks E M,Van Duyne R P,Spears K G.Second harmonic excitation spectroscopy of silver nanoparticle arrays.[J].J.Phys.Chem.B.2005,109(10),4501.
    [194]Futamata M,Maruyama Y,Ishikawa M.Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method.[J].J.Phys.Chem.B.2003,107(31),7607.
    [195]Su K H,Wei Q H,Zhang X,Mock J J,Smith D R,Schultz S.Interparticle coupling effects on plasmon resonances of nanogold particles.[J].Nano Letters.2003,3(8),1087.
    [196]Inoue M,Ohtaka K.Surface enhanced Raman scattering by metal spheres.I.Cluster effect.[J].J.Phys.Soc.Jpn.1983,52(11),3853.
    [197]Aravind P K,Nitzan A,Metiu H.The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres.[J].Surf.Sci.1981,110(1),189.
    [198]Nordlander P,Oubre C,Prodan E,Li K,Stockman M I.Plasmon hybridization in nanopartiele directs.[J].Nano Letters.2004,4(5),899.
    [199]Xu H,Aizpttrua J,Kall M,Apell P.Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,[J].Phys.Rev.E.2000,62(3-B),4318.
    [200]Xu H,Bjerneld E J,Kall M,Borjesson L.Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,[J].Phys.Rev.Lett.1999,83(21),4357.
    [201]Hao E,Schatz G C.Electromagnetic fields around silver nanoparticles and dimers.[J].J.Chem.Phys.2004,120(1),357.
    [202]Futamata M,Maruyama Y,Ishikawa M.Critical importance of the junction in touching Ag particles for single molecule sensitivity in SERS.[J].J.Mol.Struct.2005,735-736,75.
    [203]Lu Y,Liu G L,Lee L P.High-density silver nanoparticle film with temperature -controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate.[J].Nano Letters.2005,5(1),5.
    [204]Wang H,Levin C J,Halas N J.Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates.[J].J.Am.Chem.Soc.2005,127(43),14992.
    [205]Svedberg F,Li Z,Xu H,Kaell M.Creating hot nanoparticle pairs for surface enhanced Raman spectroscopy through optical manipulation.[J].Nano Letters.2006,6(12),2639.
    [206]Tian J-H,Liu B,Li X,Yang Z-L,Ren B,Wu S-T,Tao N,Tian Z-Q.Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method.[J].J.Am.Chem.Soc.2006,128(46),14748.
    [207]Michaels A M,Nirmal M,Brus L E.Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals.[J].J.Am.Chem.Soc.1999,121(43),9932.
    [208]Le Ru E C,Galloway C,Etchegoin P G On the connection between optical absorption/extinction and SERS enhancements.[J].Phys.Chem.Chem.Phys.2006,8,3083.
    [209]Yonzon C R,Jeoung E,Zou S,Sehatz G C,Mrksieh M,Van Duyne R P.A comparative analysis of localized and propagating surface plasmon resonance sensors:the binding of concanavalin to a monosacchafide functionalized self-assembled monolayer.[J].J.Am.Chem.Soc.2004,126(39),12669.
    [210]Haes A J,Van Duyne R P.A unified view of propagating and localized surface plasrnon resonance biosensors.[J].Anal Bioanal Chem.2004,379,920.
    [211]O'Neal D P,Hirsch L R,Halas N I,Payne J D,West J L.Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles.[J].Cancer Letters 2004,209(2),171.
    [212]Hirsch L R,Stafford R J,Bankson J A,Sershen S R,Rivera B,Price R E,Hazle J D,Halas N J,West J L.Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.[J].Proc.Natl.Acad.Sci.U.S.A.2003,100(23),13549.
    [213]Yguerabide J,Yguerabide E E.Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications.Ⅱ.Experimental characterization.[J].Anal.Biochem.1998,262(2),157.
    [214]Yguerabide J,Yguerabide E E.Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications.Ⅰ.Theory.[J].Anal.Biochem.1998,262(2),137.
    [215]Yguerabide J,Yguerabide E E.Resonance light scattering particles as ultrasensitive labels for detection of analysis in a wide range of applications.[J].J.Cell.Biochem.2000,37,71.
    [216]Smith W E,Faulds K,Graham D.Quantitative surface-enhanced resonance Raman spectroscopy for analysis.[J].lop.Appl.Phys.2006,103,381.
    [217]Cunningham D,Littleford R E,Smith W E,Lundahl P J,Khan I,McComb D W,Graham D,Laforest N.Practical control of SERRS enhancement.[J].Faraday Discuss.2006,132,135.
    [218]Faulds K,Littleford R E,Graham D,Dent G,Smith W E.Comparison of surface-enhanced resonance Raman scattering from unaggregated and aggregated nanoparticles.[J].Anal.Chem.2004,76(3),592.
    [219]Faulds K,Smith W E,Graham D.Evaluation of surface-enhanced resonance raman scattering for quantitative DNA analysis.[J].Anal.Chem.2004,76(2),412.
    [220]Rohr T E,Cotton T,Fan N,Tarcha P J.Immunoassay employing surface-enhanced Raman spectroscopy.[J].Anal.Biochem.1989,182(2),388.
    [221]Le Ru E C,Galloway C,Etchegoin P G.On the connection between optical absorption/extinction and SERS enhancements.[J].Phys.Chem.Chem.Phys.2006,8,3083.
    [222]Futamata M.Single molecule sensitivity in SERS:importance of junction of adjacent Ag nanoparticles.[J].Faraday Discuss.2006,132,45.
    [223]Stair P C,Li C.Ultraviolet Raman spectroscopy of catalysts and other solids.[J].J.Vac.Sci.Technol.A.1997,15(3),1679.
    [224]Ianoul A,Coleman T,Asher S A.UV resonance Raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes.[J].Anal.Chem.2002,74,1458.
    [225]Tarcea N,Harz M,Roesch P,Frosch T,Schmitt M,Thiele H,Hochleitner R,Popp J.UV Raman spectroscopy-A technique for biological and mineralogical in situ planetary studies.[J].Spectrochim.Acta,PartA.2007,68A(4),1029.
    [226]Yoshimoto M,Nishigaki H,Harima H,Kang K,Yoo W S.Ultraviolet Raman spectroscopic study on flash-anneal recrystallization of ultra-shallow boron-implanted layer on silicon,in Prec.- Electrochem.See.2005,50
    [227]Nakashima S,Mitani T.Characterization of SiC crystals by using deep UV excitation Raman spectroscopy.[J].Mater.Sci.2006,527-529,333.
    [228]Zhang J,Li M,Feng Z,Chert J,Li C.UV Raman spectroscopic study on TiO_2.I.phase transformation at the surface and in the bulk.[J].J.Phys.Chem.B.2006,110(2),927.
    [229]Chua Y T,Stair P C,Nicholas J B,Song W,Haw J F.UV Raman spectrum of 1,3-dimethylcyclopentenyl cation adsorbed in zeolite H-MFL[J].J.Am.Chem.Soc.2003,125,866.
    [230]Sullivan V S,Jackson S D,Stair P C.In situ ultraviolet Raman spectroscopy of the reduction ofchromia on alumina catalysts.[J].J.Phys.Chem.B.2005,109,352.
    [231]Wen Z Q,Overman S A,Thomas G J J.Structure and interactions of the single-stranded DNA genome of filamentous virus fd:investigation by ultraviolet resonance Raman spectroscopy.[J].Biochem.Cell Biol.1997 36,7810.
    [232]Wen Z Q,Thomas G J J.UV resonance Raman spectroscopy of DNA and protein constituents of viruses:assignments and cross sections for excitations at 257,244,238,and 229 nm.[J].Biopolymers.1998,45 247.
    [233]Nelson W H,Manoharan R,Sperry J F.UV resonance Raman studies of bacteria.[J].Appl.Spectrosc.Rev.1992,27,67.
    [234]Toyama A,Ohta K,Takeuchi H.Correlation between the UV resonance Raman intensity and hydrogen bonding of the adenine ring,[J].J.Mol.Struct.2005,735-736,235.
    [235]Asher S A,Mikhonin A V,Bykov S.UV Raman demonstrates that r-helical polyalanine peptides melt to polyproline Ⅱ conformations.[J].J.Am.Chem.Soc 2004,126,8433.
    [236]Ravindran T R,Jackson B R,Badding J V.UV Raman spectroscopy of single-walled carbon nanotubes.[J].Chem.Mater 2001,13,4187.
    [237]Chen J,Feng Z,Ying P,Li C.ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies.[J].J.Phys.Chem.B.2004,108,12669.
    [238]Chua Y T,Stair P C.A novel fluidized bed technique for measuring UV Raman spectra of catalysts and adsorbates.[J].J.Catal.2000,196(1),66.
    [239]Ren B,Lin X F,Yang Z L,Liu G K,Aroca R F,Mao B W,Tian Z Q.Surface-enhanced Raman scattering in the ultraviolet spectral region:UV-SERS onrhodium and ruthenium electrodes.[J].J.Am.Chem.Soc.2003,125,9598.
    [240]Doerfer T,Schmitt M,Popp J.Deep-UV surface-enhanced Raman scattering.[J].J.Raman.Spectrosc.2007,38(11),1379.
    [241]Wang P J,Wu G Z.Ultraviolet laser excited surface enhanced Raman scattering of thiocyanate ion on the Au electrode.[J].Chem.Phys.Lett.2004,385,96.
    [242]Wen R,Fang Y.Surface Raman scattering studies on the adsorption of p-hydroxybenzoic acid at Au electrodes with ultraviolet excitation.[J].J.Electroanal.Chem.2005,576 237.
    [243]DiLella D P,Gohin A,Lipson R H,McBreen P,Moskovits M.Enhanced Raman spectroscopy of carbon monoxide adsorbed on vapor-deposited silver.[J].J.Chem.Phys.1980,73(9),4282.
    [1]马科斯.波恩,埃米尔.沃耳夫,杨葭荪.光学原理蹦nciples 0foptics.[M].北京:电子工业出版社,2004.
    [2]Wu D Y,Li J F,Ren B,et al.Electrochemical surface-enhanced Raman spectroscopy of nanostructures.[J].Chem.Soc.Rev.2008,37,1025.
    [3]Mahajan S,Baumberg J J,Russell A E,et al.Reproducible SERS from structured gold surfaces.[J].Phys.Chem.Chem.Phys.2007,9(45),6016.
    [4]Kelf T A,Sugawara Y,Cole R M,et al.Localized and delocalized plasmons in metallic nanovoids.[J].Phys.Rev.B.2006,74(24),245415/1.
    [5]Bartlett P N,Baumberg J J,Coyle S,et al.Optical properties of nanostructured metal films.[J].Faraday Discuss.2004,125,117.
    [6]Cintra S,Abdelsalam M E,Bartlett P N,et al.Sculpted substrates for SERS.[J].Faraday Discuss.2006,132,191.
    [7]Abramowitz M,Microscope Basics and Beyond 2003,Olympus America Inc.,Scientific Equipment Division,Two Corporate Center Drive,Melville,NY.
    [8]http://olympusmicro.com.
    [9]http://www.microscopy,fsu.edu.
    [10]国家机械工业局,中华人民共和国机械行业标准:光学显微镜术语,全国光学和光学仪器标准化技术委员会,1999.
    [1]Kneipp K,Kncipp H,Moskovits M.Surface-enhanced Raman scattering:physics and applications.[M].Springer GmbH:Berlin,2006.
    [2]Willets K A,Van Duyne R.P.Localized surface plasmon resonance spectroscopy and sensing.[J].Ann.Rev.Phys.Chem.2007,58,267.
    [3]Campion A,Kambhampati P.Surface-enhanced Raman scattering.[J].Chem.Soc.Rev.1998,27(4),241.
    [4]Kneipp K,Kneipp H,Itzkan I,et al.Ultrasensitive chemical analysis by Raman spectroscopy.[J].Chem.Rev.1999,99(10),2957.
    [5]Schatz G C,Young M A,Van Duyne g P.Electromagnetic mechanism of SERS.[J].Top.Appl.Phys.2006,103,19.
    [6]Shah N C,Lyandres O,Walsh J T,Jr.,et al.Lactate and sequential lactate-glucose sensing using surface-enhanced Raman spectroscopy.[J].Anal.Chem.2007,79(18),6927.
    [7]Qian X M,Peng X H,Ansari D O,ctal.In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.[J].Nat.Biotechnol.2008,26(1),83.
    [8]Fodor S P A,Spiro T G.Ultraviolet resonance Raman spectroscopy of DNA with 200-266-nm laser excitation.[J].J.Am.Chem.Soc.1986,108(12),3198.
    [9]Yu Y,Xiong G,Li C,et al.Characterization of iron atoms in the framework of MFI-type zeolites by UV resonance Raman spectroscopy.[J].J.Catal.2000,194(2),487.
    [10]Le gu E C,Galloway C,Etchegoin P G.On the connection between optical absorption/extinction and SERS enhancements.[J].Phys.Chem.Chem.Phys.2006,8, 3083.
    [11]Ren B,Lin X F,Yang Z L,et al.Surface-enhanced Raman scattering in the ultraviolet spectral region:UV-SERS onrhodium and ruthenium electrodes.[J].J.Am.Chem.Soc.2003,125,9598.
    [12]Doerfer T,Schmitt M,Popp J.Deep-UV surface-enhanced Raman scattering[J].J..Raman.Spectrosc.2007,38(11),1379.
    [13]Zettsu N,McLellan J M,Wiley B,et al.Synthesis,stability,and surface plasmonic properties of rhodium multipods,and their use as substrates for surface-enhanced Raman scattering,[J].Angew.Chem.Int.Ed.2006,45(8),1288.
    [14]Tian N,Zhou Z Y,Sun S G;et al.Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity.[J].Chem.Commun.2006,(39),4090.
    [15]McLellan J M,Xiong Y,Hu M,et al.Surface-enhanced Raman scattering of 4-mercaptopyfidine on thin films of nanoscale Pd cubes,boxes,and cages.[J].Chem.Phys.Lett.2006,417(1-3),230.
    [16]Gomez R,Perez J M,Solla-Gullon J,et al.In situ surface enhanced Raman spectroscopy on electrodes with platinum and palladium nanoparticle ensembles.[J].J.Phys.Chem.B.2004,108(28),9943.
    [17]张勇.不同形状铂纳米粒子的合成及其SERS活性初步研究.[D].厦门大学,硕士,2005
    [18]Tian Z Q,Ren B,Wu D Y.Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures.[J].J.Phys.Chem.B.2002,106(37),9463.
    [19]Xie Y,Wu D Y,Liu G K,et al.Adsorption and photon-driven charge transfer of pyridine on a cobalt electrode analyzed by surface enhanced Raman spectroscopy and relevant theories.[J].J.Electroanal.Chem.2003,554-555,417.
    [20]Gu W,Cui Y,Liu G-K,et al.Surface-enhanced Raman spectroscopic activity on bare nickel electrode roughened by electrochemical method.[J].Gaodeng Xuexiao Huaxue Xuebao.2006,27(11),2132.
    [21]Huang Q J,Lin X F,Yang Z L,et al.An investigation of the adsorption of pyrazine and pyridine on nickel electrodes adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy.[J].J.Electroanal.Chem.2004,563(1),121.
    [22]顾伟.电化学方法获得具有表面增强拉曼活性的镍电极及其表面缓蚀剂的研究.[D].苏州大学,硕士,2005
    [23]Tian Z Q,Yang Z L,Ren B,et al.SERS from transition metals and excited by ultraviolet light.[J].Topics in Applied Physics.2006,103,125.
    [24]Ren B,Wu D Y,Mao B W,et al.Surface-enhanced Raman study of cyanide adsorption at the platinum surface.[J].J.Phys.Chem.B.2003,107(12),2752.
    [25]Ren B,Xu X,Li X Q,et al.Extending surface Raman spectroscopic studies to transition metals for practical applications Ⅱ.Hydrogen adsorption at platinum electrodes.[J].Surf.Sci.1999,427-428,157.
    [26]Henglein A,Ershov B G;Marlow M.Absorption spectrum and some chemical reactions ofcolloidal platinum in aqueous solution.[J].J.Phys.Chem.1995,99(38),14129.
    [27]Ahmadi T S,Wang Z L,Green T C,et al.Shape-controlled synthesis of colloidal platinum nanoparticles.[J].Science.1996,272(5270),1924.
    [28]Rampino L D,Nord F F.Preparation of palladium and platinum synthetic high-polymer catalysts and the relationship between particle size and rate of hydrogenation.[J].J.Am.Chem.Soc.1941,63,2745.
    [29]Wang Y,Xu X,Tian Z Q,et al.Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution.[J].Chem.Eur.J.2006,12(9),2542.
    [30]Kneipp K,Haka A S,Kneipp H,et al.Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles.[J].Appl.Spectrosc.2002,56(2),150.
    [31]Watanabe H,Ishida Y,Hayazawa N,et al.Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule.[J].Phys.Rev.B.2004,69(15),155418/1.
    [32]Taro Ichimura N H,Mamoru Hashimoto,Yasushi Inouye,and Satoshi Kawata.Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging [J].Phys.Rev.Letters.2004,92(22),220801.
    [33]Hayazawa N,Yano T,Watanabe H,et al.Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy.[J].Chem.Phys.Lett.2003,376,174.
    [34]Futamata M.Single molecule sensitivity in SERS:importance of junction of adjacent Ag nanoparticles.[J].Faraday Discuss.2006,132,45.
    [35]Kneipp K,Kneipp H,Itzkan I,et al.Surface-enhanced Raman scattering and biophysics.[J].J.Phys.:Condens.Matter.2002,14(18),R597.
    [36]Kneipp K,Kneipp H,Kartha V B,et al.SM-SERS:detection and identification of a single DNA base molecule using SERS.[J].Phys.Rev.E.1998,57(6),R6281.
    [37]Del Bene J E.Molecular orbital study of the protonation of DNA bases.[J].J.Phys.Chem.1983,87(2),367.
    [38]Russo N,Toseano M,Grand A,et al.Protonation of thymine,cytosine,adenine,and guanine DNA nucleic acid bases:Theoretical investigation into the framework of density functional theory.[J].J.Comput.Chem.1998,19(9),989.
    [39]Puppels G J,Otto C,Greve J,et al.Raman microspectroseopic study of low-pH-induced changes in DNA structure of polytene chromosomes.[J].Biochemistry.1994,33(11),3386.
    [40]Xue Y,Xie D,Yan G Density functional theory studies on molecular structure and IR spectra of 9-methyladenine:a scaled quantum mechanical force field approach[J].Int.J..Quantum Chem.2000,76(6),686.
    [1]Tian Z Q,Ren B.Encyclopedia of electrochemistry.[M].Wiley & VCH:Weinheim,2003.
    [2]Fan F R,Liu D Y,Wu Y F,Duan S,Xie Z X,Jiang Z Y,Tian Z Q.Epitaxial growth of heterogeneous metal nanocrystals:from gold nano-oetahedra to palladium and silver nanocubes.[J].J.Am.Chem.See.2008,130(22),6949.
    [3]Bao F,Li J F,Ren B,Yao J L,Gu R A,Tian Z Q.Synthesis and characterization of Au@Co and Au@Ni core-shell nanoparticles and their applications in surface-enhanced Raman spectroscopy.[J].J.Phys.Chem.C.2008,112(2),345.
    [4]Tian Z Q,Ren B,Li J F,Yang Z L.Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy.[J].Chem.Commun.2007,(34),3514.
    [5]HU J W,Li J F,Ren B,Wu D Y,Sun S G,Tian Z Q.Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate.[J].J.Phys.Chem.C.2007,111(3),1105.
    [6]Li J F,Hu J W,Ren B,Tian Z Q.Tuning the SERS activity of Au@Pd core-shell nanoparticles by controlling the thickness of the Pd shell.[J].物理化学学报.2005,21(8),825.
    [7]Hu J W,Zhang Y,Li J F,Liu Z,Ren B,Sun S G,Tian Z Q,Lian T.Synthesis of Au@Pd core-shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy.[J].Chem.Phys.Lett.2005,408,354.
    [8]Ren B,Lian X B.[J].Faraday Discuss.2008,in press.
    [9]Jiang Y X,Li J F,Wu D Y,Yang Z L,Ren B,Hu J W,Chow Y L,Tian Z Q.Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy.[J].Chem.Commun.2007,(44),4608.
    [10]Liu Z,Yang Z L,Cui L,Ren B,Tian Z Q.Electrochemically roughened palladium electrodes for surface-enhanced Raman spectroscopy:methodology,mechanism,and application.[J].J.Phys.Chem.C 2007,111,1770.
    [11]Frens G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.[J].Nature.1973,241(105),20.
    [12]Li J F,Yang Z L,Ren B,Liu G K,Fang P P,Jiang Y X,Wu D Y,Tian Z Q.Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes:toward a versatile vibrational strategy for electrochemicalinterfaces.[J].Langmuir.2006,22(25),10372.
    [13]Kreibig U,Vollmer M.Optical properties of metal clusters.[M].Springer:Berlin,Germany,1995.
    [14]Balarnurugan B,Maruyama T.Size-modified d bands and associated interband absorption ofAg nanoparticles.[J].J.Appl.Phys.2007,102,034306.
    [15]Weaver J H.Optical properties of Rh Pd Ir and Pt.[J].Phys.Rev.B.1975,11(4),1416.
    [16]Langhammer C,Yuan Z,Zoric I,Kasemo B.Plasmonic properties of supported Pt and Pd nanostructures.[J].Nano Lett.2006,6(4),833.
    [17]McLellan J M,Xiong Y,Hu M,Xia Y N.Surface-enhanced Raman scattering of 4-mercaptopyridine on thin films ofnanoscale Pd cubes,boxes,and cages.[J].Chem.Phys.Lett.2006,417(1-3),230.
    [18]林旭峰.铑电极的表面增强拉曼光谱:从可见光到紫外光.[D].厦门大学,硕士,2003
    [19]Prado C e,Prieto F,Rueda M,Feliu J,Aldaz A.Adenine adsorption on Au(111)and Au(100)electrodes:characterisation,surface reconstruction effects and thermodynamic study.[J].Electrochim.Acta.2007,52,3168.
    [20]Ren B,Liu G K,Lian X B,Yang Z L,Tian Z Q.Raman spectroscopy on trapsition metals.[J]Anal.Bioanal.Chem.2007,388(1),29.
    [1]Bartlett P N,Birkin P R,Ghanem M A.Electrochemical deposition of macroporous platinum,palladium and cobalt films using polystyrene latex sphere templates.[J].Chem Comm.2000,1671.
    [2]Mahajan S,Baumberg J J,Russell A E,Bartlett P,N.Reproducible SERS from structured gold surfaces.[J].Phys.Chem.Chem.Phys.2007,9(45),6016.
    [3]Abdelsalam M E,Mahajan S,Bartlett P N,Baumberg J J,Russell A E.SERS at structured palladium and platinum surfaces.[J].J.Am.Chem.soc.2007,129(23),7399.
    [4]Cintra S,Abdelsalam M E,Bartlett P N,Baumberg J J,Kelf T A,Sugawara Y,Russell A E.Sculpted substrates for SERS.[J].Faraday Discuss.2006,132,191.
    [5]Jensen T R,Schatz G C,Van Duyne R P.Nanosphere lithography:surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,[J].J.Phys.Chem.B.1999,103(13),2394.
    [6]Hulteen J C,Treichel D A,Smith M T,Duval M L,Jensen T R,Van Duyne R P.Nanosphere lithography:size-tunable silver nanoparticle and surface cluster arrays.[J].J.Phys.Chem.B.1999,103(19),3854.
    [7]McFarland A D,Young M A,Dieringer J A,Van Duyne R P.Wavelength-scanned surface-enhanced Raman excitation spectroscopy.[J].J.Phys.Chem.B.2005,109(22),11279.
    [8]Haynes C L,Van Duyne R P.Plasmon-sampled surface-enhanced Raman excitation spectroscopy.[J].J.Phys.Chem.B.2003,107(30),7426.
    [9]Poehlein G W,Ottewill R H,Goodwin J W.Science and technology of polymer colloids.[M].Martinus NijhoffPublishers:Boston,1983.
    [10]Nagayama K.Two-dimensional self-assembly of colloids in thin liquid films.[J].Colloids Surf.,A.1996,109,363.
    [11]Bartlett P N,Baumberg J J,Coyle S,Abdelsalam M E.Optical properties of nanostructured metal films.[J].Faraday Discuss.2004,125,117.
    [12]Yin Y,Lu Y,Gates B,Xia Y.Template-assisted self-assembly:a practical route to complex aggregates of monodispersed colloids with well-defined sizes,shapes,and structures.[J].J.Am.Chem.Soc.2001,123(36),8718.
    [13]Abdelsalam M E,Bartlett P N,Baumberg J J,Coyle S.Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled pre-patterned macroporous films.[J].Adv.Mater.(Weinheim,Ger.).2004,16(1),90.
    [14]Abdelsalam M E,Bartlett P N,Baurnberg J J,Cintra S,Kelf T A,Russell A E.Electrochemical SERS at a structured gold surface.[J].Electrochem.Commun.2005,7(7),740.
    [15]Jiang P,Bertone J F,Hwang K S,Colvin V L.Single-crystal colloidal multilayers of controlled thickness.[J].Chem.Mater.1999,11(8),2132.
    [16]Dimitrov A S,Miwa T,Nagayama K.A comparison between the optical properties of amorphous and crystalline monolayers of silica particles.[J].Langmuir.1999,15(16),5257.
    [17]Dimitrov A S,Nagayama K.Steady-state unidirectional convective assembling of fine particles into two-dimensional arrays.[J].Chem.Phys.Lett.1995,243(5,6),462.
    [18]Dimitrov A S,Nagayama K.Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces.[J].Langmuir.1996,12(5),1303.
    [19]Vlasov Y A,Bo X-Z,Sturm J C,Norris D J.On-chip natural assembly of silicon photonic bandgap crystals.[J].Nature(London,U.K.).2001,414(6861),289.
    [20]Ren B,Liu G-K,Lian X-B,Yang Z-L,Tian Z-Q.Raman spectroscopy on transition metals.[J].Anal.Bioanal.Chem.2007,388(1),29.
    [21]Barnes W L,Dereux A,Ebbesen T W.Surface plasmon subwavelength optics.[J].Nature.2003,424(14),824.
    [22]Willets K A,Duyne R P V.Localized surface plasmon resonance spectroscopy and sensing,[J].Annu.Rev.Phys.Chem.2006,58,267.
    [23]Oldenburg S J,Genick C C,Clark K A,Schultz D A.Base pair mismatch recognition using plasmon resonant particles labels.[J].Anal.Biochem.2002,209,109.
    [24]Englebienne P,Hoonacker A V,Verhas M.Surface plasmon resonance:principles,methods and applications in biomedical sciences.[J].Spectroscopy 2003,17,255.
    [25]许鑫华,韩明川,强陈,李冬光,姚康德.表面等离子体共振传感技术在高分子研究中的应用.[J].高分子通报2004,2,42-47.
    [26]汪洛.表面等离子体激元共振与生物分子相互作用分析.[J].生物化学与生物物理进展.1996,23(6),483.
    [27]Kelf T A,Sugawara Y,Cole R M,Baumberg J J,Abdelsalam M E,Cintra S,Mahajan S,Russell A E,Bartlett P N.Localized and delocalized plasmons in metallic nanovoids.[J].Physical Review B:Condensed Matter and Materials Physics.2006, 74(24),245415/1.
    [28]Sugawara Y,Kelf T A,Baumberg J J,Abdelsalam M E,Bartlett P N.Strong coupling between localized plasmons and organic excitons in metal nanovoids.[J].Phys.Rev.Lett.2006,97(26),266808/1.
    [29]Perney N M B,Banmberg J J,Zoorob M E,Charlton M D B,Mahnkopf S,Netti C M.Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering.[J].Optics Express.2006,14(2),847.
    [30]Cole R M,Sugawara Y,Baumberg J J,Mahajan S,Abdelsalam M,Bartlett P N.Easily coupled whispering gallery plasmons in dielectric nanospheres embedded in gold films.[J].Phys.Rev.Lett.2006,97(13),137401.
    [31]Amezcua-Correa A,Yang J,Finlayson C E,Peacock A C,Hayes J R,Sazio P J A,Baumberg J J,Howdle S M.Surface-enhanced Raman scattering using microstructured optical fiber substrates.[J].Adv.Funct.Mater.2007,17(13),2024.
    [32]Perney N M B,Garcia de Abajo F J,Baumberg J J,Tang A,Netti M C,Charlton M D B,Zoorob M E.Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering.[J].Physical Review B:Condensed Matter and Materials Physics.2007,76(3),035426/1.
    [33]Cole R M,Baumberg J J,Garcia de Abajo F J,Mahajan S,Abdelsalam M,Bartlett P N.Understanding plasmons in nanoscale voids.[J].Nano Letters.2007,7(7),2094.
    [34]Zhao J,Zhang X,Yonzon C R,Haes A J,Van Duyne R P.Localized surface plasmon resonance biosensors.[J].Nanomedicine.2006,1(2),219.
    [35]Haes A J,Chang L,Klein W L,Van Duyne R P.Detection of a biomarker for alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor.[J].J.Am.Chem.Soc.2005,127(7),2264.
    [1]A.Otto,J.Billmann,J.Eickrnans,et al.The"adatom model" of SERS(surface enhanced Raman scattering):The present status.[J].Surf.Sci.1984,138,319.
    [2]Chang R K,Furtak T E.Surface enhanced Raman scattering,[J].Plenum Press:New York.1982.
    [3]Moskovits M.Surface-enhanced spectroscopy.[J].Rev.Mod.Phys.1985,57,783.
    [4]Birke R L,Lombardi J R,Gersten J I.Observation of a continuum in enhanced Raman scattering from a metal-solution interface.[J].Phys.Rev.Lett.1979,43(1),71.
    [5]Ueba H.Theory of charge transfer excitation in surface enhanced Raman scattering,[J].Surf.Sci.1983,131,347.
    [6]Billmann J,Otto A.Electronic surface state contribution to surface enhanced Raman scattering,[J].Solid State Commun.1982,44(2),105.
    [7]Billmann J,Otto A.Charge transfer between adsorbed cyanide and silver probed by SERS.[J].Surf.Sci.1983,138,1.
    [8]Otto A.On the contribution of charge transfer excitation to SERS.[J].J.Electron Spectrosc.Relat.Phenom.1983,29,329.
    [9]Furtak T E,Roy D.Nature of the active site in surface-enhanced Raman scattering[J].Phys.Rev.Lett.1983,50,1301.
    [10]Furtak T E,Macomber S H.Voltage-induced shifting of charge-transfer excitations and their role in surface-enhanced Raman scattering,[J].Chem.Phys.Lett.1983,95(4,5),328.
    [11]Lombardi J R,Birke R L,Sanchez L A,et al.The effect of raolecular structure on voltage induced shifts of charge transfer excitation in surface enhanced Raman scattering,[J].Chem.Phys.Lett.1984,104(2,3),240.
    [12]Osawa M,Matsuda N,Yoshii K,et al.Charge transfer resonance Raman process in surface enhanced Raman scattering from p-aminothiophenol adsorbed on Silver:Herzberg-Teller Contribution.[J].J.Phys.Chem.1994,98,12702.
    [13]Watanabe H,Ishida Y,Hayazawa N,et al.Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule.[J].Phys.Rev.B:Condens.Matter Mater.Phys.2004,69(15),155418/1.
    [14]Ichimura T,Hayazawa N,Hashimoto M,et al.Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging,[J].Phys.Rev.Lett.2004,92(22),220801/1.
    [15]Hayazawa N,Yano T,Watanabe H,et al.Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy.[J].Chem.Phys.Lett.2003,376,174.
    [16]Futamata M.Single molecule sensitivity in SERS:importance of junction of adjacent Ag nanoparticles.[J].Faraday Discuss.2006,132,45.
    [17]Kneipp K,Kneipp H,Itzkan I,et al.Surface-enhanced Raman scattering and biophysics.[J].J.Phys.:Condens.Matter.2002,14(18),R597.
    [18]Kneipp K,Kneipp H,Kartha V B,et al.SM-SERS:detection and identification of a single DNA base molecule using SERS.[J].Phys.Rev.E.1998,57(6),R6281.
    [19]Lombardi J R,Birke R L.Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy.[J].J.Chem.Phys.2007,126,244709.
    [20]Otto A B A,Chen YX On the chloride activation in SERS and single molecule SERS [J].J.Mol.Struct.2003,661,501.
    [21]Domke K F,Zhang D,Pettinger B.Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111).[J].J.Am.Chem.Soc.2007,129(21),6708.
    [22]Kneipp K,Haka A S,Kneipp H,et al.Surface-enhanced Raman spectroscopy in single living cells using gold nanopartieles.[J].Appl.Spectrosc.2002,56(2),150.
    [23]Otto A.The 'chemical'(electronic) contribution to surface-enhanced Raman scattering [J].J.Raman.Spectrosc.2005,36,497.
    [24]Xiao Y J,Chen Y F,Gao X X.Comparative study of the surface enhanced near infrared Raman spectra of adenine and NAD on a gold electrode.[J].Spectrochimica Acta Part A.1999,55,1209.
    [25]Kudelski A,Bukowska J.The CT enhancement in SERS on gold electrodes.How important is it.[J].Chem.Phys.Lett.1994,222,555.
    [26]Ren B,Lin X F,Yah J W,et al.Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy.[J].J.Phys.Chem.B.2003,107(4),899.
    [27]Arenas J F,Woolley M S,Tocon I L,et al.Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states.[J].J.Chem.Phys.2000,112(17),7669.
    [28]Cui L,Liu Z,Duan S,et al.Orientation change of adsorbed pyrazine ortroughened rhodium electrodes as probed by surface-erthanced Raman spectroscopy.[J].J.Phys.Chem.B.2005,109,17597.
    [29]Chase B,Parkinson B.A study of the wavelength and potential dependence of surface-erdaanced Raman scattering on Cu,Ag and Au electrodes.[J].J.Phys.Chem.1991,95,7810.
    [30]Liu Z,Yang Z L,Cui L,et al.Electrochemically roughened palladium electrodes for surface-enhanced Raman spectroscopy:methodology,mechanism,and application.[J]. J.Phys.Chem.C.2006,111,1770.
    [31]Xue Y,Xie D,Yan G.Density functional theory studies on molecular structure and IR spectra of 9-methyladenine:a scaled quantum mechanical force field approach.[J].Int.J.Quantum Chem.2000,76(6),686.
    [32]Birke R L,Lombardi J R.Spectroelectrochemistry -theory and practice.[M].Plenum:New York,1988.
    [33]Tian Z Q,Ren B,Wu D Y.Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostmctures.[J].J.Phys.Chem.B.2002,106,9463.
    [34]Wu D Y,Li J F,Ren B,et al.Electrochemical surface-enhanced Raman spectroscopy of nanostmctures.[J].Chem.Soc.Rev.2008,37,1025.
    [35]Wu D Y,Hayashi M,Lin S H,et al.Theoretical differential Raman scattering cross-sections of totally-symmetric vibrational modes of free pyridine and pyridine-metal cluster complexes.[J].Spectrochim.Acta,Part A.2004,60A(1-2),137.
    [36]Zhao L,Jensen L,Schatz G C.Pyridine-Ag20 cluster:a model system for studying surface-enhanced Raman scattering[J].J..Am.Chem.Soc.2006,128(9),2911.
    [37]Ali A H,Foss C A,Jr.Electrochemically induced shifts in the plasmon resonance bands of nanoscopic gold particles adsorbed on transparent electrodes.[J].J.Electrochem.Soc.1999,146(2),628.
    [38]Smith E,Dent G,Modern Raman spectroscopy-a practical approach.[M].John Wiley & Sons:Chichester,2005.
    [1]Tian Z Q,Ren B,Wu D Y.Surface-enhanced haman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures.[J].J.Phys.Chem.B.2002,106(37),9463.
    [2]Tian Z Q,hen B,Li J F,Yang Z L.Expanding generality of surface-enhanced haman spectroscopy with borrowing SERS activity strategy.[J].Chem.Commun.2007,(34),3514.
    [3]Ren B,Liu G K,Lian X B,Yang Z L,Tian Z Q.Raman spectroscopy on transition metals.[J].Anal.Bioanal.Chem.2007,388(1),29.
    [4]Abdelsalam M E,Mahajan S,Bartlett P N,Baumberg J J,Russell A E.SERS at structured palladium and platinum surfaces.[J].J.Am.Chem.Soc.2007,129,7399.
    [5]Tian N,Zhou Z Y,Sun S G;Cui L,Ren B,Tian Z Q.Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity.[J].Chem.Commun.2006,(39),4090.
    [6]McLellan J M,Xiong Y,Hu M,Xia Y N.Surface-enhanced Raman scattering of 4-mercaptopyridine on thin films of nanoscale Pd cubes,boxes,and cages.[J].Chem.Phys.Lett.2006,417(1-3),230.
    [7]Liu Z,Yang Z L,Cui L,Ren B,Tian Z Q.Electrochemically roughened palladium electrodes for surface-enhanced Raman spectroscopy:methodology,mechanism,and application.[J].J.Phys.Chem.C.2007,111(4),1770.
    [8]Kneipp K,Kneipp H,Moskovits M.Surface-enhanced Raman scattering:physics and applications.[M].Springer GmbH:Berlin,2006.
    [9]Qian X M,Peng X H,Ansari D O,Yin Goen Q Q,Chen G Z,Shin D M,Yang L,Young A N,Wang M D,Nie S M.In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.[J].Nat.Biotechnol.2008,26(1),83.
    [10]Ruan C,Luo W,Wang W,Gu B.Surface-enhanced Raman spectroscopy for uranium detection and analysis in enviroumental samples.[J].Anal Chim Acta 2007,605(1),80.
    [11]Gu B,Ruan C.Determination of technetium and its speciation by surface-enhanced Raman spectroscopy.[J].Anal Chem.2007,79(6),2341.
    [12]Cao Y C,Jin R,Mirkin C A.Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection.[J].Science.2002,297(5586),1536.
    [13]He L,Musiek M D,Nicewarner S R,Salinas F G,Benkovic S J,Natan M J,Keating C D.Colloidal Au-enhanced surface plasmon resonance for ultra.sensitive detection of DNA hybridization.[J].J.Am.Chem.Soc.2000,122(38),9071.
    [14]Kobori A,Horie S,Suda H,Saito I,Nakatani K.The SPR sensor detecting cytosine-cytosine mismatches.[J].J.Am.Chem.Soc.2004,126(2),557.
    [15]Gearheart L A,Ploehn H J,Murphy C J.Oligonueleotide adsorption to gold nanoparticles:a surface-enhanced Raman spectroscopy study of intrinsically bent DNA.[J].J.Phys.Chem.B.2001,105(50),12609.
    [16]Sato Y,Noda H,Mizutani F,Yamakata A,Osawa M.In situ surface-enhanced infrared study of hydrogen bond pairing of complementary nucleic acid bases at the electrochemical interface.[J].Anal Chem.2004,76(18),5564.
    [17]Demers L M,Oestblom M,Zhang H,Jang N H,Liedberg B,Mirkin C A.Thermal desorptionbehavior and binding properties of DNA bases and nueleosides on gold.[J].J.Am.Chem.Soc.2002,124(38),11248.
    [18]Kimura-Suda H,Petrovykh Dmitri Y,Tarlov Michael J,Whitman Lloyd J.Base-dependent competitive adsorption of single-stranded DNA on gold.[J].J..Am.Chem.Soc.2003,125(30),9014.
    [19]Piana S,Bilic A.The nature of the adsorption of nucleobases on the gold[111]surface.[J].J.Phys.Chem.B.2006,110(46),23467.
    [20]Puppels G J,Otto C,Greve J,Robert-Nicoud M,Arndt-Jovin D J,Jovin T M.Raman microspectroscopie study of low-pH-induced changes in DNA structure of polytene chromosornes.[J].Biochemistry.1994,33(11),3386.
    [21]Kumar Gopinatha S,Das S,Bhadra K,Maiti M.Protonated forms ofpoly[d(G-C)]and poly(dG).poly(dC) and their interaction with berberine.[J].Bioorg.Med.Chem.2003,11(23),4861.
    [22]Ke W Z,Zhou D F,Wu J Z.Effects of UV irradiation on calf thymus DNA in aqueous solution.A Raman spectroscopic study.[J].J.Raman.Spectrosc.2005,36,39.
    [23]Muntean C M,Segers-Nolten G M J.Rarnan microspectroscopie study of effects of Na(Ⅰ) and Mg(Ⅱ) ions on low pH induced DNA structural changes.[J].Biopolymers.2003,72(4),225.
    [24]Behe M J,Felsenfeid G,Szu S C,Charney E.Temperature-dependent conformational transitions in poly(dG-dC) and poly(dG-m5dC).[J].Biopolymers.1985,24(2),289.
    [25]Berger I,Winston W,Manoharan R,Schwartz T,Alfken J,Kim Y-G;Lowenhaupt K,Herbert A,Rich A.Spectroscopic characterization of a DNA-binding domain,Za,from the editing enzyme,dsRNA adenosine deaminase:evidence for left-handed Z-DNA in the Za-DNA complex.[J].Biochemistry.1998,37(38),13313.
    [26]Herbert A,Rich A.Left-handed Z-DNA:structure and function.[J].Genetica.1999,106(1-2),37.
    [27]Hickey E W,Hirshfield I N.Low-pH-induced effects on patterns of protein synthesis and on internal pH in escherichia coli and salmonella typhimudum.[J].Appl.Environ.Microbiol.1990,56(4),1038.
    [28]Bink H H J,Hellendoorn K,Van der Meulen J,Pleij C W A.Protonation of non-Watson-Crick base pairs and encapsidation of turnip yellow mosaic virus RNA.[J].Prec.Natl.Acad.Sci.U.S.A.2002,99(21),13465.
    [29]Tian Z Q,Li W H,Mao B W,Gao J S.Surface-enhanced Raman spectroscopic studies on structural dynamics of coadsorption of thiourea and ClO_4~- at Ag electrodes.[J].J.Electroanal.Chem.1994,379(1-2),271.
    [30]Ruan C,Wang W,Gu B.Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles.[J].Analytica Chimica Acta.2006,567(1),114.
    [31]Wang W,Ruan C,Gu B.Development of gold-silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy.[J].Analytica Chimica Acta.2006,567(1),121.
    [32][J].Chem.Rev.1997,97(5),1231.
    [33]Wilson D S,Nook S.Recent developments in protein microarray technology.[J].Angew.Chem.,Int.Ed.2003,42(5),494.
    [34]Ariga K,Kunitake T.Molecular recognition at air-water and related interfaces:complementary hydrogen bonding and multisite interaction.[J].Acc.Chem.Res.1998,31(6),371.
    [35]Toyama A,Ohta K,Takenehi H.Correlation between the UV resonance Raman intensity and hydrogen bonding of the adenine ring,[J].J.Mol.Struct.2005,735-736,235.
    [36]Ishizaka S,Kinoshita S,Nishijima Y,Kitamura N.Direct observation of molecular recognition mediated by triple hydrogen bonds at a water/oil interface:time-resolved total internal reflection gluorometry study.[J].Anal.Chem.2003,75(22),6035.
    [37]Sowers L C,Fazakerley G V,Eritja R,Kaplan B E,Goodman M F.Base pairing and mutagenesis:observation of a protonated base pair between 2-aminopurine and cytosine in an oligonucleotide by proton NMR.[J].Proc.Natl.Acad.Sci.U.S.A.1986,83(15),5434.
    [38]Manalo Marion N,Kong X,Li Wang A.1JNH values show that N1...N3 hydrogen bonds are stronger in dsRNA A:U than dsDNA A:T base pairs.[J].J.Am.Chem.Soc.2005,127(51),17974.
    [39]T.Boland,B.D.Ratner.Direct measurement of hydrogen bonding in DNA nueleotide bases by atomic force microscopy.[J].Proc.Natl.Acad.Sci.1995,92,5297.
    [40]Lee G U,Chrisey L A,Colton R J.Direct measurement of the forces between complementary strands of DNA.[J].Science.1994,266(5186),771.
    [41]Del Bene J E.Molecular orbital study of the protonation of DNA bases.[J].J.Phys.Chem.1983,87(2),367.
    [42]Russo N,Toseano M,Grand A,Jolibois F.Protonation of thymine,cytosine,adenine,and guanine DNA nucleic acid bases:Theoretical investigation into the framework of density functional theory.[J].J.Comput.Chem.1998,19(9),989.
    [43]Gourishankar A,Shukla S,Ganesh K N,Sastry M.Isothermal titration calorimetry studies on the binding of DNA bases and PNA base monomers to gold nanoparticles.[J].J..Am.Chem.Soc.2004,126(41),13186.
    [44]Ostblom M,Liedberg B,Demers Linette M,Mirkin Chad A.On the structure and desorption dynamics of DNA bases adsorbed on gold:a temperature-programmed study.[J].J.Phys.Chem.B.2005,109(31),15150.
    [45]Muntean C M,Puppels G J,Greve J,Segers-Nolten G M J,Cinta-Pinzaru S.Raman microspectroscopic study on low-pH-induced DNA structural transitions in the presence of magnesium ions.[J].J.Raman Spectrosc.2002,33(10),784.
    [46]Jang Y H,Goddard W A,Noyes K T,Sowers L C,Hwang S,Chung D S.pKa values of guanine in water:Density functional theory calculations combined with Poisson-Boltzmann continuum-solvation model.[J].J.Phys.Chem.B.2003,107(1),344.
    [47]Hermann P,Fredericq E.The role of the AT pairs in the acid denaturation of DNA.[J].Nucleic Acids Res.1977,4(8),2939.
    [48]Moskovits M,Suh J S.Surface geometry change in 2-naphthoic avid adsorbed on silver.[J].J.Phys.Chem.1988,92(22),6327.
    [49]Wolkow R A,Moskovits M.A comparative study of the electron energy loss spectrum and the surface-enhanced Raman spectrum of benzene adsorbed on silver.[J].J.Chem. Phys.1992,96(5),3966.
    [50]Wolkow R A,Moskovits M.Benzene adsorbed on silver:an electron energy loss and surface-enhanced Raman study.[J].J.Chem.Phys.1986,84(9),5196.
    [51]Moskovits M,Sub J S.Surface selection rules for surface-enhanced Raman spectroscopy:calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver.[J].J.Phys.Chem.1984,88(23),5526.
    [52]Hallmark V M,Campion A.Selection roles for surface Raman spectroscopy:experimental results.[J].J.Chem.Phys.1986,84(6),2933.
    [53]Baudy B J,Lloyd D R,Richardson N V.Selection rules in photoemission from adsorbates:pyridine adsorbed on copper.[J].Surf.Sci.1979,89(1-3),344.
    [54]Iannelli A,Merza J,Lipkowski J.Adsorption of pyrazine at the Au(111)|aqueous solution interface.[J].J.Electranal.Chem.1994,376(1-2),49.
    [55]Iannelli A,Richer J,Lipkowski J Adsorption of pyrazine at the polycrystalline gold-solution interface.[J].Langmuir.1989,5(2),466.
    [56]Conway B E,Mathieson J G,Dhar H P.Orientation behavior of adsorbed pyridine and pyrazine at the mercury-water interface in relation to solution thermodynamic properties.[J].J..Phys.Chem.1974,78(12),1226.
    [57]Lazarescu V.Adsorption of pyrazine on Au(111) and Ag(111):on the role of the electronic factor.[J].Surf.Sci.1995,335(1-3),227.
    [58]Hamm U W,Lazarescu V,Kolb D M.Adsorption of pyrazine on Au(111) and Ag(111)electrodes.An ex situ XPS study.[J].J.Chem.Soc.,Faraday Trans.1996,92(20),3785.
    [59]Brolo A G,Irish D E,Lipkowski J.Surface-enhanced Raman spectra of pyridine and pyrazine adsorbed on a Au(210) single-crystal electrode.[J].J.Phys.Chem.B.1997,101(20),3906.
    [60]Brolo A G,Irish D E,Szymanski G,Lipkowski J.Relationship between SERS intensity and both surface coverage and morphology for pyrazine adsorbed on a polycrystalline gold electrode.[J].Langmuir.1998,14(2),517.
    [61]Brolo A G,Irish D E.The adsorption and orientation ofpyrazine on silver electrodes:a surface-enhanced Raman scattering study.[J].J.Electranal.Chem.1996,414(2),183.
    [62]Otto A,Reihl B.EELS,inverse and direct photoemission of pyrazine silver(111).[J].Surf.Sci.1986,178(1-3),635.
    [63]Erdheim G R,Birke R L,Lombardi J g.Surface enhanced gaman spectrum of pyrazine.Observation of forbidden lines at the electrode surface.[J].Chem.Phys.Lett. 1980,69(3),495.
    [64]Dornhaus R,Long M B,Benner R E,Chang R K.Time development of SERS from pyridine,pyrimidine,pyrazine,and cyanide adsorbed on silver electrodes during an oxidation-reduction cycle.[J].Surf.Sci.1980,93(1),240.
    [65]Arenas J F,Woolley M S,Otero J C,Marcos J I.Charge-transfer processes in surface-enhanced Raman scattering.Franck-Condon active vibrations of pyrazine.[J].J.Phys.Chem.1996,100(8),3199.
    [66]Huang Q J,Lin X F,Yang Z L,Hu J W,Tian Z Q.An investigation of the adsorption of pyrazine and pyridine on nickel electrodes adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy.[J].J.Electranal.Chem.2004,563(1),121.
    [67]Huang Q J,Yao J L,Mao B W,Gu R A,Tian Z Q.Surface Raman spectroscopic studies of pyrazine adsorbed onto nickel electrodes.[J].Chem.Phys.Lett 1997,271(1,2,3),101.
    [68]Ikezawa Y,Koda Y,Shibuya M,Terashima H.In situ FTIR study ofpyrazine adsorbed on Au(111),Au(100) and Au(110) electrodes.[J].Eleetrochim.Acta.2000,45(13),2075.
    [69]Cai W B,Amano T,Osawa M.A comparison of surface-enhanced infrared and surface-enhanced Raman spectra of pyrazine adsorbed on polyerystalline gold electrodes.[J].J.Electranal.Chem.2001,500(1-2),147.
    [70]Soto J,Fernandez D J,Centeno S P,Tocon I L,Otero J C.Surface orientation of pyrazine adsorbed on silver from the surface-enhanced Ramanscattering recorded at different electrode potentials.[J].Langmuir.2002,18(8),3100.
    [71]Conway B E,Dhar H P.Solvent structure and molecular orientation in the double layer at the mercury-water interface.[J].Croat.Chem..4eta.1973,45(1),109.
    [72]Conway B E,Angerstein-Kozlowska H,Dhar H P.Selection of standard states in adsorption isotherms.[J].Electrochim.Acta.1974,19(8),455.
    [73]Niu J,Conway B E.States of orientation of pyridine and 1,4-pyrazine as a function of electrode potential and surface charge at a high-area,porous C electrode.[J].J.Electranal.Chem.2004,564(1-2),53.
    [74]Moskovits M,DiLella D P,Maynard K J.Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver:selection rules and molecular reorientation.[J].Langmuir.1988,4(1),67.
    [75]Arenas J F,Woolley M S,Tocon I L,Otero J C,Marcos J I.Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states.[J].J.Chem.Phys.2000,112(17),7669.
    [76]Arenas J F,Soto J,Lopez Tocon I,Fernandez D J,Otero J C,Marcos J I.The role of charge-transfer states of the metal-adsorbate complex in surface-enhanced Raman scattering.[J].J.Chem.Phys.2002,116(16),7207.
    [77]Zou S,Chan H Y H,Williams C T,Weaver M J.Formation and stability of oxide films on platinum-group metals in electrochemical andrelated environments as probed by surface-enhanced Raman spectroscopy:dependence on the chemical oxidant.[J].Langmuir.2000,16(2),754.
    [78]Luo H,Park S,Chan H Y H,Weaver M J.Surface oxidation of platinum-group transition metals in ambient gaseous environments.Role of electrochemical versus chemical pathways.[J].J.Phys.Chem.B.2000,104(34),8250.
    [79]Chart H Y H,Zou S,Weaver M J.Mechanistic differences between electrochemical and gas-phase thermal oxidation of platinum-group transition metals as discerned by surface-rnhanced Raman spectroscopy.[J].J..Phys.Chem.B.1999,103(50),11141.
    [80]Vivoni A,Birke R L,Foucault R,Lombardi J R.Ab initiofrequency calculations of pyridine adsorbed on an adatom model of a SERS active site of a silver surface.[J].J.Phys.Chem.B.2003,107(23),5547.
    [81]Haq S,King D A.Configurational transitions of benzene and pyridine adsorbed on Pt{111} and Cu{110} surfaces:an Infrared study.[J].J.Phys.Chem.1996,100(42),16957.
    [82]Wilson E B,Jr.The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule.[J].Physical Review.1934,45,706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700