用户名: 密码: 验证码:
江苏省冰雹发生规律及数值模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰雹灾害是由强对流天气系统引起的一种局地性强、季节性明显、具有突发性和阵性特征的气象灾害。一次范围较大、强度较强的降雹,往往伴随着各种阵发性极端灾害性天气过程,如狂风、暴雨、急剧降温等。冰雹是江苏省重要的灾害性天气之一,虽然发生范围小、时间短促,但来势迅猛、强度大,并常伴随狂风、暴雨,易给局部地区造成重大损失。由于冰雹多出现在农作物生长的关键期,十几分钟的降雹即可使农作物遭受毁灭性损害,甚至威胁到人民生命财产。因此,分析江苏省历史上冰雹发生时空变化规律、产生天气背景及主要气候特征的基础上,应用WRF模式对一些冰雹天气过程进行数值模拟试验,结合多普勒天气雷达提供的相关冰雹回波信息,揭示其成因,探明下垫面因素对冰雹产生的影响,并通过对个例模拟输出结果的统计分析,寻找冰雹发生的监测预警参数和预报指标,以提高冰雹天气预报的准确率和精确度,同时为相关部门指导防灾减灾工作提供科学依据。
     本研究根据江苏省70个气象台站1980~2009年间的冰雹观测资料,分析了江苏省冰雹灾害发生的时空变化特征,并结合Mann-Kendall方法探讨了气候变暖对江苏省冰雹发生趋势的影响。研究表明:(1)江苏省上世纪80年代为降雹多发期,90年代明显减少,本世纪初以来又有明显回升趋势。(2)江苏省一年中降雹多发季为春、夏两季,降雹日约占全年总降雹日数的94.7%;一年中降雹最集中的月份为4-8月,沿海和淮北地区6月最多、5月次之,苏南、苏中地区5月最多,6月次之,冬季的3个月(12月~次年2月)为降雹最少的季节。(3)全省降雹空间分布的总体特征是:东部沿海多,西部内陆少;中北部多,南部少;里下河地区的兴化市和东部沿海的射阳县是全省降雹最多的地区,西南部的宁镇扬丘陵地区是全省降雹最少的地区。(4)这30a中发生在江苏省的降雹路径主要有四条:第一条从山东的沂南、营南经江苏的赣榆、连云港、灌云、灌南、响水、滨海到达阜宁(或涟水)一线;第二条从山东的微山湖沿大运河南下,经江苏的邳州、睢宁到达宿迁一线;第三条从江苏省内的东台向南经海安、如皋、靖江到达江阴一线;第四条从省内的无锡向东南经苏州到达昆山一线。(5)与江苏省冰雹灾情年际不稳定度成正相关的雹日空间变异系数自东北向西南递增。(6)导致这30a江苏省冰雹时空变化格局的主要成因是全球气候变暖、大气环流背景、局地中小尺度大气动力场、地形起伏和下垫面热力属性等。
     基于中尺度数值预报模式WRFV3,利用NCEP1°×1°再分析资料、常规气象观测资料及多普勒雷达资料,选取2009年6月5日发生在江苏地区一次冰雹天气过程进行了数值模拟。对模式输出的物理量进行诊断分析后发现:(1)此次强对流天气过程是在东北冷涡持续稳定少动,涡后弱冷空气南下和地面处于冷锋前增温增湿的大环流背景下产生的;(2)多普勒雷达回波组合反射率在55dBz以上、出现正负速度对及中气旋、垂直累积液态水含量在55kg·m-2以上、回波顶高在9km以上,验证这次冰雹过程的产生和发展,在强对流天气的潜势预报中有着重要的指导意义。(3)江苏东部沿海低层水汽辐合带源源不断的水汽输送和辐合,为冰雹的形成提供了较好的水汽条件,同时使得降雹区上空存在上干下湿的层结状况,700hpa附近形成一个干区,中低层的干暖空气促使这次强风暴的发展。(4)降雹前,江苏省东部形成一条大于1600J·kg-1的高能带,与雷达强回波带相对应,加上露点锋、海风锋等地面辐合系统及较强的垂直上升运动,为冰雹的发展提供足够的热力条件和动力条件。(5)0℃层高度在3.5~4km、-20℃层高度在5.5~6.0km是此次过程适宜冰雹增长的高度,0℃和-20℃两层厚度在180~220hPa之间,暖云层与冷云层的厚度比在1:2~1:5之间,也是此次冰雹生长的合适条件。
     考虑下垫面因素的影响,利用WRF模式对2009年6月5日出现的冰雹天气过程模拟效果进行了一系列敏感性试验,结果表明:下垫面性质、地形不一样导致热力非均匀,通过影响低层风、温、湿等气象因素,进而影响冰雹等强对流天气。水体对局地有降温作用,同时使得上空湿度增大,而且对风向风速有一定阻滞作用;丘陵、平原和沿海滩涂对其上大气的温度、湿度等要素的影响各不相同,对局地环流有加强或减缓作用。
The hail damage is a meteorological disaster caused by the strong convective weather systems, which has characteristics of obvious seasonal and paroxysmal. A large range of severe hailstorm often accompanied by paroxysmal extreme disastrous weathers process, such as strong winds, heavy rain, plunged temperature and so on. Hail is one of the most important extreme weather in Jiangsu Province. Although it occurs within narrow zones and shorter in duration, it is fast, violent, intensity and often along with strong winds, heavy rain.which cause serious damage to human-made structures and, most commonly, farmers' crops. Therefore, this becomes particularly important for us to do analysis of hail temporal and spatial variation, weather background and the main climatic characteristics in Jiangsu Province. This paper used WRF model to simulate a number of hail, combined with information provided by Doppler weather Radar, to reveal the causes of hail and the impact of the underlying surface to hail, and through statistical analysis of simulation output of hail cases, to find early warning parameters and forecast indicators of the hail, in order to improve the forecast accuracy of hail, as well as provide a scientific basis for government to guide disaster prevention and reduction
     Based on the observed hail data of70meteorological stations in Jiangsu province during1980to2009, in this study, the temporal and spatial distribution characteristics of hails were analyzed. Mann-Kendall method, a tool of detecting the extraordinary climate variations, was used to discuss the influence of the climate warming on the occurrence tendency of hail disasters in Jiangsu. The results were showed as follows:(1) the inter-decades variations of hail disasters in the whole province were that the highest frequency period of hailing occurred in1980s of the last century, the hailing days per year in1990s reduced obviously, but it had a remarkable raising tendency since2000.(2) The main occurring seasons of hail in Jiangsu Province were spring and summer and their hailing days accounted for94.7per cent of the total hailing days in a year. The concentrated hailing months in a year was April, May, June, July and August. Among them, the month of maximum hailing days was June and the second frequency month was May in the coast regions and the northern side of the Huai River Valley of the province, but the maximum frequency month of hailing was May, the next was June in the other regions. December, January and February in winter has been the rare hailing months of a year.(3)The spatial pattern of hailing in the province was that the hailing days in the eastern coast regions of the province is more than the western inland regions, the hailing days in the middle and north part was more than the south part, Xinhua City in the Lixia River Region and Sheyang along the coast of the Yellow Sea were the high frequency areas of hailing days in the whole province and the Nanjing-Zhengjiang Hilly Region was the lowest frequency area of hails.(4)In recent30years, the hail has four main routes in the province.(5)The spatial variance coefficient of hailing days increased progressively from the northeastern part to the southwestern part in the province.(6) The main mechanisms resulted into this spatio-temporal change situation of hails in the province were the global climate warming, the backgrounds of atmospheric circulation, the local atmospheric dynamic fields, the landforms undulation and the thermodynamics attributes of the surface.
     Based on mesoscale numerical prediction models WRFV3.1, using the NCEP1°×1°reanalysis data, the routine meteorological observation data and Doppler Radar data, the hail occurred in June5,2009in the Jiangsu was simulated. By diagnostic analysis of the physical quantities of the model output, found that:(1) the strong convective weather produced in the weather ground which northeast cold vortex is a steady move, weak cold air south after vortex and the ground is warmer and humidifier before the cold front;(2) The CR is above55dBz, appears the positive and negative speed or the cyclone, VIL is more than55kg·m-2, and the echo top is above9km, etc in Doppler Radar. These verified the generation process of hail. There are important guiding significance in potential forecasting for the severe convective weather.(3) In the eastern coastal of Jiangsu Province a steady stream of water vapor transport and moisture convergence from convergence zone in low-level, provided moisture conditions for the formation of hail. While hail district exists the under wet on dry stratification conditions.It has dry area near700hpa, dry and warm air in the lower promotes the development of the strong storm.(4) Before the hail, in eastern of Jiangsu Province, It has a greater than1600J·kg-1high-energy band, corresponding to radar echo zone. The surface convergence systems as dew point front, the sea breeze front and strongly vertical upward motion provide adequate thermal conditions and dynamic conditions for the development of the hail.(5)0℃layer height is3.5-4km,-20℃layer height is5.5-6.0km, which are suitable for hail growth. Thickness between0℃and-20℃C layers is180to220hPa, the thickness ratio of warm clouds and cold clouds is1:2to1:5are also suitable conditions for hail growth.
     Considering the underlying surface factors, this paper used WRF Model simulate the process of hail on June5th,2009and carried out a series of sensitivity tests, the results showed that:the different underlying surface and terrain caused non-uniform heat. It through affected low-level wind, temperature, wet weather factors to influence the hail and other severe convective weather. Water body can cooling local temperature, while increased the humidity over the water body, block to the wind.Hills and plains, coastal differently effect temperature, humidity etc. Otherwise it also enhanced or reduced local circulation
引文
[1]Steiner J T. A three-dimensional model of cumulus clouddevelopment[J]. J Atmos Sci, 1973,30(3):414-435.
    [2]Schlesinger R E. Athree-dimensional numerical model of an isolated thunderstorm[J]. J Atmos Sci,1978,35(4):690-713.
    [3]Kogan E L. Three-dimensional numerical model of droplet cumulus clouds taking into account microphysical processes[J]. Proc Acad Sci USSR,Physics ofAtmospheres and Oceans, 1978,14(8):876-886.
    [4]Tripoli G J and Cotton W R. Anumerical investigation of several factors contributingtothe observed variable intensity ofdeep convection over south Florida[J]. J Appl Meteor, 1980,19(9):1037-1063.
    [5]Wilhelmson R B and Klemp J B. Three-dimensional numerical simulation of splitting severe storms on 3 April 1964[J]. J Atmos Sci,1981,38(8):1581-1600.
    [6]Turpeinen O and Yau M K. Comparison of results from a three-dimensional cloud model with statistics of radar echoes on day 261 of GATE[J]. Mon Wea Rev,1981,109(7):1495-1511.
    [7]Tripoli G J and Cotton W R. The Colorado State Universitythree-dimensionalcloud/mesoscale model[J].J Rech Atmos,1982,16(3):185-219
    [8]Farly R D and Orville H D. Numerical modeling of hailstorms and hailstone growth[J]. J Climate Appl Meteor,1986,25(12):2014-2036.
    [9]Chatterjee P,Pradhan D and De U K. Simulation of hailstorm event using Mesoscale Model MM5 with modified cloud microphysics scheme[J]. Ann Geophys,2008,26,3545-3555
    [10]许焕斌,王思微.三维可压缩大气中的云尺度模式[J].气象学报,1990,48(1):81-90.
    [11]王谦,胡志晋.三维弹性大气模式和实测强风暴的模拟[J].气象学报,1990,48(1):91-101.
    [12]孔凡铀,黄美元,徐华英.对流云中冰相过程的三维数值模拟Ⅰ:模式建立及冷云参数化[J].大气科学,1990,14(4):441-453.
    [13]孔凡铀.冰雹云三维数值模式模拟研究[J].中国科学院大气物理研究所博士学位论文,1991.
    [14]洪延超.三维冰雹云催化数值模式[J].气象学报,1998,56(6):641-653.
    [15]郭学良,黄美元,洪延超,等.三维冰雹分档强对流云数值模式研究Ⅰ:模式建立及冰雹的循环增长机制[J].大气科学,2001,25(5):707-720.
    [16]郭学良,黄美元,洪延超,等.三维冰雹分档强对流云数值模式研究Ⅱ:冰雹粒子的分布特征[J].大气科学,2001,25(6):856-864.
    [17]刘术艳,肖辉,杜秉玉.北京一次强单体雹暴的三维数值模拟[J].大气科学,2004,3(28):455-471.
    [18]王秀明,钟青,韩慎友,等.一次冰雹天气强对流(雹)云演变及超级单体结构的个例模拟研究[J].高原气象,2009,28(2):352-365.
    [19]王正旺等.长治市冰雹气候特征及预报研究[J].自然灾害学报,2007,16(2):34-39.
    [20]王繁强等.日照市短时冰雹定时-定点-定量预报[J].气象科技,2003,31(4):220-222.
    [21]朱艳萍等.福建春季冰雹天气物理量诊断分析[J].气象科技,2006,34(1):73-77.
    [22]张桂梅,刘韬.横山县冰雹天气的气候分析和预报方法[J].陕西气象,2006,(4):6-9.
    [23]李大山.人工影响天气现状与展望[M].北京:气象出版社,2002.163-206,251-324,400-402.
    [24]Stephen Hodanish,David Sharp Waylon Collins. A 10-y monthly lightning climate Florida: 1986~1995[J]. Weather and Forecasting,1997,12(3):439-448.
    [25]Richard E,Orville and Alan c Silver. Lightning ground flash density in the Contiguous United States:1992-1995 [J]. Mon. Wea. Rev.,1997,125(4):631-638.
    [26]Scott C Sheridan,John F Griffiths, Kichard E Orville. Warm season cloud-to-ground lightning-precipitation relationships in the South-central United States[J]. Weather and Forecasting,1997,12(3):449-458.
    [27]BuechlerD E and Goodman S J. Echo size and asymmetry:Impact on NEXRAD storm identification [J]. J Appl Meteor,1990,29(9):962-969.
    [28]MichimotoK A. Study of radar echoes and their relation to lighting discharge of thunderclouds in the Hokuriku District Part 1:Obseration and analysis of thunderclouds in summerandwinter[J]. J Mete or Soc Japan,1991,69:327-355.
    [29]刘欣生.雷电物理及人工引发雷电研究十年进展[J].高原气象,1999,18(3):266-272.
    [30]黄彦彬,王振会.利用SD型闪电频数识别高原雷雨云冰雹云[J].南京气象学院学报,2001,24(2):275-279.
    [31]曾山泊等.苏州地区雷暴活动规律和雷灾分析[J].气象科学,2006,26(5):517-524.
    [32]周筠君等.陇东地区冰雹云系发展演变与其他地闪的关系[J].高原气象,1999,18(2):236-244.
    [33]冯桂力等.冰雹云形成发展与闪电演变特征分析[J].气象,2001,27(3):33-37.
    [34]李建华等.北京强雷暴的地闪活动与雷达回波和降水的关系[J].南京气象学院学报,2006,29(2):228-234.
    [35]Greene D R. A comparison of Echo predictability constant elevation vs VIL radardata patterns [R].15th ConfonRadarMeteor Champaign-Urbana, IL:AMS,1972:111-116.
    [36]Witt A and Nelson S. The relationship between upper-level divergent outflow magnitudeas measured by Doppler radar and hailstorm intensity.Preprints,22nd Radar MeteorologyConf.,AMS,Boston,1984,108-111.
    [37]Witt A and Nelson S P. The use of single-Doppler radar for estimating maximumhailstone size. J Appl Meteor,1991,30,425-431.
    [38]Petrocchi P J.Automatic detection of hail by radar.AFGLTR-82-0277. EnvironmentalResearch Paper 796,Air Force Geophysics Laboratory,Hanscom AFB,MA,1982,33 pp.
    [39]Johnson J T,MacKeen P L,Witt A,et al,The Storm Cell Identificationand Tracking(SCIT)algorithm:An enhanced WSR-88D algorithm. Wea Forecasting,1998,13,263-276.
    [40]Witt A,Elits M D and Stumpf G J,et al.,An enhanced hail detection algorithm for the WSR-88D. Wea Forecasting,1998,13:286-303.
    [41]潘江,张培昌.利用垂直积分含水量估测降水[J].南京气象学院学报,2000,23(1):87-92.
    [42]王炜,贾惠珍.用雷达垂直累积液态水含量资料预测冰雹[J].气象,2002,28(1):47-48.
    [43]付双喜等.甘肃中部一次强对流天气的多普勒雷达特征分析[J].高原气象,2006,25(5):932-941.
    [44]吴林林.新一代天气雷达冰雹探测算法及在业务中的应用[J].气象,2006,1(32):51-55
    [45]Arking A,Childs J D.Retrieval of cloud cover parameters from multispectral satellite images. J Atmos Sci,1985,29:937-949
    [46]Nakajima T and King M D. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part Ⅰ:Theory J Atmos Sci,1990,47:1878-1893
    [47]姚祖庆等.上海地区强对流天气短时预报系统[J].南京气象学院学报,2000,23(2):242-250.
    [48]白洁,王洪庆,陶祖钰.卫星红外云图强对流云团的识别与追踪[J].热带气象学报,1997,13(2):158-167.
    [49]张水平,石汉青.利用卫星资料估算中尺度对流云团上升速度的一种方法[J].解放军理工大学学报(自然科学版),2001,2(5):95-99.
    [50]张杰,李文莉,康凤琴,等.一次冰雹云演变过程的卫星遥感监测与分析[J].高原气象,2004,23(6):758-763
    [51]张杰,张强,康凤琴,等.西北地区东部冰雹云的卫星光谱特征和暴雹指数的监测模型.高原气象,2004,23(6):758-763
    [52]郑国光.在第十三次全国云降水物理和人工影响天气科学讨论会闭幕式上的讲话,人工影响天气(十四).“全国人工影响天气办公室”印,2001,16-29.
    [53]魏凤英.现代气候统计诊断与预测技术.北京:气象出版社,1999.
    [54]符涂斌,王强.气候突变的定义和检测方法.大气科学,1992,16(4):482-193.
    [55]张宏,温永宁,刘爱利.地理信息系统算法基础.北京:科学出版社,2006.
    [56]朱求安,张万昌,余钧辉.基于GIS的空间插值方法研究.江西师范大学学报(自然科学版),2004,28(2):184.
    [57]任国玉.气候变化与中国水资源.北京:气象出版社,2007.
    [58]王秋云.沪宁高速公路高、低温胁迫的模拟试验和数值预防技术研究.硕士论文,2011,12-18.
    [59]Laprise R.The Euler Equations of motion with hydrostatic pressure as as independent variable[J]. Mon Wea Rev,1992,120:197-207.
    [60]Wicker L J and Skamarock W C.Time splitting methods for elastic models using forward time schemes [J]. Mon Wea Rev,2002,130:2088-2097.
    [61]Kessler E.On the distribution and continuity of water substance in atmospheric circulation[J].Meteor Monogr Amer Meteor Soc,1969:84.
    [62]Lin Y L, Farley R D and Orville H D.Bulk parameterization of the snow field in a cloud model[J]. J Climate Appl Meteor,1983,22:1065-1092.
    [63]Rutledge S A and Hobbs P V.The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones.XII:A diagnostic modeling study of precipitation development in narrow cloud-frontal rainbands[J]. J Atmos Sci,1984,20:2949-2972.
    [64]Tao W K, Simpson J and McCumber M.An ice-water saturation adjustment[J].Mon Wea Rev,1989,117:231-235.
    [65]Chen S H and Sun W Y.One-dimensional time dependent cloud model [J]. J Meteor Soc Japan,2002,80,99-118.
    [66]Ryan B F. On the global variation of precipitating layer clouds[J]. Bull Amer Meteor Soc,1996,77:53-70.
    [67]Hong S Y,Dudhia J and Chen S H.A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation [J]. Mon Wea Rev,2004,132:103-120.
    [68]Mlawer E J,Taubman S J,Brown P D,Iacono M J and Clough S A.Radiative transfer for inhomogeneous atmosphere:RRTM,a validated correlated-k model for the longwave[J].J Geophys Res,1997,102 (D14):16663-16682.
    [69]Lacis A A and Hansen J E. A parameterization for the absorption of solar radiation in the earth's atmosphere[J]. J Atmos Sci,1974,31:118-133.
    [70]Sasamori T,London J and Hoyt D V.Radiation budget of the SoutheHemisphere[J].Meteor Monogr,1972,35(13):9-23.
    [71]Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model [J]. J Atmos Sci,1989,46:3077-3107.
    [72]Chou M D and Suarez M J. An efficient thermal infrared radiation parameterization for use in general circulation models [J]. NASA Tech Memo,1994,104606:3-85.
    [73]Lacis A A and Hansen J E.A parameterization for the absorption of solar radiation in the earth's atmosphere[J]. J Atmos Sci,1974,31:118-133.
    [74]Sasamori T, London J and Hoyt D V.Radiation budget of the SoutheHemisphere[J].Meteor Monogr,1972,35(13):9-23.
    [75]Kain J S and Fritsch J M. A one-dimensional entraining/detraining plume model and its application in convective parameterization [J]. J Atmos Sci,1990,47:2784-2802.
    [76]Kain J S and Fritsch J M. Convective parameterization for mesoscale models:The Kain-Fritcsh scheme, The representation of cumulus convection in numerical models, K. A.Emanuel and D.J. Raymond, Eds [J].Amer Meteor Soc,1993,246.
    [77]Betts A K. A new convective adjustment scheme. Part I:Observational and theoretical basis[J]. Quart J Roy Meteor Soc,1986,112:677-691.
    [78]Betts A K and Miller M J.A new convective adjustment scheme. Part Ⅱ:Single column tests using GATE wave, BOMEX, and arctic air-mass data sets[J]. Quart J Roy Meteor Soc,1986,112: 693-709.
    [79]Janjic Z I. The surface layer in the NCEP Eta Model, Eleventh Conference on Numerical Weather Prediction,Norfolk,VA,19-23 August[J]. Amer Meteor Soc,Boston,MA,1996,354-355.
    [80]Janjic Z I.Comments on "Development and Evaluation of a Convection Scheme for Use in Climate Models" [J]. J Atmos Sci,2000,57:3686.
    [81]Grell G A and Devenyi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques [J]. Geophys Res Lett,2002,29(14):1693.
    [82]Hong S Y and Pan H L.Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Mon Wea Rev,1996,124:2322-2339.
    [83]Mellor G L and Yamada T.Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys,1982,20:851- 875.
    [84]Chen F and Dudhia J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system[J]. Part Ⅰ Model description and implementation.Mon Wea Rev,2001,129:569-585
    [85]秦大河,孙鸿烈,孙枢,等.2005~2020中国气象事业发展战略[J].地球科学进展,2005,20(3):268-273.
    [86]戴小苏,高云.关注气候变化,倡导可持续发展[J].地球科学进展,2004,19(5):872.
    [87]吴孝祥.江苏省主要气象灾害概况及其时空分布[J].气象科学,1996,16(3):291-297.
    [88]Cao Z. Severe hail frequency over Ontario, Canada:Recent trend and variability[J]. Geophys Research Letters,2008,35,L14803:1-3
    [89]Michalis S,Terence M and Jonathan D C. Hail frequency, distribution and intensity in Northern Greece[J]. Atmospheric research.2009,93(1-3):526-533
    [90]周嵬,张强,康凤琴.我国西北地区降雹气候特征及若干研究进展[J].地球科学进展,2005,20(9):1029-1036.
    [91]纪晓玲,马筛艳,丁永红,等.宁夏近40年灾害性冰雹天气分析[J].自然灾害学报,2007,16(3):24-28.
    [92]李红斌,麻服伟.黑龙江省冰雹天气气候特征及近年变化[J].气象,2001,8(27):49-51
    [93]李永振,齐颖,崔莲等.吉林省冰雹天气的时空分布[J].气象科技,2005,2(33):133-135
    [94]赵燕生.江苏省冰雹天气气候分析[J].气象科学,1982,2(1):140-146.
    [95]沈树勤.沿海槽后西北气流冰雹发生条件的对比分析[J].气象科学,1985,5(1):18-22.
    [96]沈树勤.下垫面热力非均匀性及其对冰雹等强对流天气影响的初步研究[J].气象,1991,17(8):20-25.
    [97]孟翠丽.江苏省干旱发生规律及其监测预警指标研究.硕士论文,2011,7-8
    [98]李吉顺.我国冰雹和暴雨的若干气候特征[J].北方天气文集(2).北京:北京大学出版社,1982:31-39.
    [99]IPCC. Emissions Scenarios:A Special Report of Working GroupIII of the Intergovernmental Panels on Climate Change[R]. Cambridge Press,2000.
    [100]王瑛,王静爱,吴文斌,等.中国农业雹灾灾情及其季节分区[J].自然灾害学报,2002,11(4):31-36.
    [101]雷雨顺,吴宝俊,吴正华.冰雹概论[M].北京:科学出版社,1978:126-131.
    [102]蔡义勇,王宏,余永江.福建省冰雹时空分布与天气气候特征分析[J].自然灾害学报,2009,18(4):43-48.
    [103]陈晓燕,罗松,杨玲.黔西南州冰雹时空分布及春夏冰雹环境条件分析[J].暴雨灾害,2010,29(1):49-53.
    [104]张强,康凤琴.中国西北冰雹研究[M].北京:气象出版社,2005.
    [105]俞樟孝,吴仁广,翟国庆,等.浙江冰雹天气与边界层辐合的关系[J].大气科学,1985,9(3):268-275.
    [106]曾志云,戴泽军,彭志超,等.近40年湖南冰雹时空分布和变化特征及机理分析[J].防灾科技学院学报,2008,10(3):23-27.
    [107]王静爱,史培军,刘颖慧,等.中国1990-1996年冰雹灾害及其空间动态分析[J].自然灾害学报,1999,8(2):46-53.
    [108]邢秀芹.胶东半岛地区海陆风特征[J].气象,1997,23(5):55-57.
    [109]Tracy K D. Performance of the Hail Differential Reflectivity (HDR) Polarimetric Radar Hail Indicator. Journal Applied meteorolory and climatology,2007,46:1290-1301
    [110]李国昌,李照荣,李宝梓.冰雹过程中闪电演变和雷达回波特征的综合分析[J].干旱气象3(26):26-33
    [111]李德俊,唐仁茂,熊守权,等.强冰雹和短时强降水天气雷达特征及临近预警[J].气象,2011,4(37):474-480
    [112]隋东,沈桐立,张涛.沈阳地区一次冰雹天气过程形成机制的数值模拟[J].气象7(31):20-23
    [113]尹东屏,吴海英,张备,等.一次海风锋触发的强对流天气分析[J].高原气象,2010,5(29):1262-1269.
    [114]王建国,汪应琼.CINRAD/SA雷达产品在冰雹预警中的适用性分析[J].暴雨灾害,2008,27(3):268-272.
    [115]孙莹,寿绍文,沈新勇,等.广西地区一次强冰雹过程形成机制分析[J].高原气象,2008,27(3):677-685.
    [116]吴剑坤,俞小鼎.强冰雹天气的多普勒天气雷达探测与预警技术综述[J].干旱气象,2009,27(3):197-206.
    [117]Miller R C. Notes on analysis and severe-storm forecasting procedures of the Air Force Global Weather Central. AWS Tech, Rep.200(rev), Air Weather Service,Scott AFB,IL, 1972:190.
    [118]Johns R H and Doswell III C A. Severe local storms forecasting. Wea Forecasting,1992,7,588-612
    [119]雷雨顺,吴宝俊,吴正华.冰雹概论[M].北京:气象出版社,1987:36-157.
    [120]刘建文,郭虎,李耀东,等.天气分析预报物理量计算基础[M].北京:气象出版社,2005:82-217.
    [121]Wehry W,Lesch L and Gerecht C. Nowcasting of extreme weather events like large amount of convective rain or hail in Central Europe. Preprints,16th Conf.on WAF,AMS,1998,323-325.
    [122]Waldvogel A et al. Criteria for the detection of hail cells. J.Appl.Met,1979,12(18):1521-1525
    [123]Thomson A D,R list.High-resolution measurement of hail region ba vertically pointing Doppler radar.J Atmos Sci.1999,56(13):2132-2151.
    [124]廖晓农,俞晓鼎,王迎春.北京地区一次罕见的雷暴大风过程特征分析[J].高原气象,2008,27(6):1350-1362.
    [125]俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理与业务应用[M].北京:气象出版社,2004.
    [126]吴剑坤.我国强冰雹发生的环境条件和雷达特征的初步分析.硕士论文,2010,1-105
    [127]李德俊,唐仁茂,熊守权,等.强冰雹和短时强降水天气雷达特征及临近预警[J].气象,2011,37(4):474-480
    [128]官莉,王雪芹,黄勇.2009年江苏一次强对流天气过程的遥感监测[J].大气科学学报,2012,35(1):73-79.
    [129]李耀,东刘健文,高守亭.动力和能量参数在强对流天气预报中的应用研究[J].气象学报,2004,4(62):401-409
    [130]于玉斌,姚秀萍.干侵入的研究及其应用进展[J].气象学报,2003,6(61):769-778.
    [131]Lyons T J,Halldin S. Surface heterogeneity and the spatial varia-tion of fluxes[J]. Agricultural and Forest Meteorology,2004,121:153-165.
    [132]谷国军,王昂生,许焕斌.有地形存在时对流云发展的数值模拟研究[J].气象学报,1994,1(52):90-98.
    [133]姜金华,胡非,刘熙明,等.水陆不均匀条件下大气边界层结构的模拟研究[J].南京气象学院学报,2007,2(30):162-168.
    [134]周颖,文继芬,黄浩隽.复杂地形下冰雹预报的数值试验研究[J].成都信息工程学院学报,2004,4(19):553-557.
    [135]李强,李永华,周锁铨,等.基于WRF模式的三峡地区局地下垫面效应的数值试验[J].高原气象,2011,30(1):83-93.
    [136]刘一玮,寿绍文,解以扬,等.热力不均匀场对一次冰雹天气影响的诊断分析[J].高原气象,2011,30(1):226-234.
    [137]倪敏莉,申双和,张佳华.长江三角洲城市群热环境研究[J].大气科学学报,2009,32(5):711-715.
    [138]孙学金,宫福久.初始扰动对冰雹云发展影响的数值研究[J].气象科学,1998,18(2):113-119.
    [139]翟国庆,高坤,俞樟孝,等.暴雨过程中尺度地形作用的数值试验[J].大气科学,1995,19(4):475-480.
    [140]吕雅琼,杨显玉,马耀明.夏季青海湖局地环流及大气边界层特征的数值模拟[J].高原气象,2007,26(4):686-692.
    [141]吕雅琼,马耀明,李茂善,等.纳木错湖夏季典型大气边界层特征的数值模拟[J].高原气象,2008,27(4):733-740.
    [142]张可欣,汤剑平,邰庆国,等.鲁中山区地形对山东省一次暴雨影响的敏感性数值模拟试验[J].气象科学,2007,27(5):510-515.
    [143]毕宝贵,刘月巍,李泽椿.秦岭大巴山地形对陕南强降水的影响研究[J].高原气象,2006,25(3):485-494.
    [144]吴飞.江苏省土地整理潜力分析及其对粮食安全的影响研究.硕士论文,2004.
    [145]邵玲玲,黄宁立,王倩怡,等.冰雹指数产品剖析及在灾害性强降水预报中的应用.气象,2006,32(11):48-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700