用户名: 密码: 验证码:
利用基因芯片分析小麦春化过程中茎尖基因表达谱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
春化作用对冬小麦(Triticum aestivum L.)的开花时间以及穗发育均有重要影响,研究小麦春化作用的分子机制对小麦的引种、栽培等生产环节具有重要的指导意义。本研究以小偃6号小麦为材料,利用基因芯片技术检测了春化不同时期茎尖的基因表达谱。以芯片数据为基础,分析了小麦中已知春化相关基因、MADS-box类基因以及组蛋白修饰和DNA甲基化相关基因在春化处理和未春化处理的茎尖和叶片中的表达模式。根据芯片中基因表达量的变化,筛选出部分候选基因并进行序列克隆,通过异源转化拟南芥初步鉴定其功能。
     1.春化过程中小麦茎尖的基因表达谱分析
     利用SAM(Significance Analysis of Microarrays)软件对芯片数据进行分析,在FDR (False Discovery Rate)< 0.1时,共有1201组探针信号具有显著差异。结合形态学的观察结果,我们筛选到在春化作用关键时期发生显著变化的探针233组,并对其进行了功能分类。春化过程中发生显著变化的基因主要有:蛋白激酶、蛋白氧化还原酶及氨基酸转移酶相关基因(上调24个,下调11个),基因表达调控的相关基因(其中上调19个,下调14个),部分逆境胁迫基因及膜结合蛋白基因。推测这些基因参与了小麦茎尖响应春化信号的过程。
     2.已知小麦春化相关基因的表达模式
     通过对芯片数据的挖掘,找到了已知小麦春化相关基因VRN1、VRN2和VRN3的探针,利用qRT-PCR技术检测了这些基因在春化和未春化处理的小麦茎尖及叶片中的表达水平。结果显示,春化处理后VRN1在茎尖和叶片中均被诱导表达,未春化处理的茎尖和叶片中该基因的表达量较低;VRN2在春化和未春化处理的茎尖中表达量均较低,而在未春化处理的叶片中的表达量较高;在春化和未春化处理的茎尖和叶片中都没有检测到VRN3的mRNA积累。我们的实验结果支持了VRN1是小麦中响应春化处理并影响茎尖发育命运的关键基因这一假说。
     3. MADS-box类基因可能在小麦春化作用中起到了重要作用
     通过对芯片数据的分析,发现部分MADS-box基因在春化处理过程中的表达变化显著,进一步检测了这些基因在春化处理和未春化处理的茎尖以及叶片中的表达模式。我们发现,TaMADS1和TaAGL32在茎尖中具有与VRN1相似的表达模式,春化处理能够诱导这两个基因的表达。根据其表达模式,我们推测TaMADS1和TaAGL32可能与VRN1、WFL共同作用,促进了小麦茎尖在春化过程中的成花转变。此外,春化处理能够抑制TaAGL1、TaAGL11、TaAGL13和TaAGL41在茎尖中的表达,说明这些基因的功能可能是抑制小麦茎尖的成花转变,而春化处理能够解除这种抑制。
     4.组蛋白修饰和DNA甲基化相关基因可能参与了小麦春化作用的过程
     我们检测了小麦中组蛋白修饰和DNA甲基化相关基因在春化处理和未春化处理的茎尖及叶片中的表达模式。结果显示,春化处理能够抑制TaVIL1、TaVIL2、TaHAT2、TaHDAC3、TaCMT3和TaMBD1在茎尖的表达,推测这些基因参与了小麦茎尖响应春化处理并进行成花转变过程中的基因表达调控。
     5.过表达TaAP2推迟了拟南芥的开花时间
     在发生显著变化的233组探针中,我们选取了6个转录因子基因进行克隆,并转化拟南芥,研究其对拟南芥开花时间的影响。研究发现,过表达TaAP2能够延迟拟南芥在长日照下的开花时间,而春化处理能够抑制这个基因在茎尖的表达,因此,我们认为这个基因的功能可能是抑制小麦茎尖的成花转变。
     综上所述,本研究以基因芯片分析为切入点,筛选在春化过程中小麦茎尖表达显著变化的基因,并检测了部分基因在春化处理和未春化处理的茎尖及叶片中的表达模式。通过对其表达模式的分析,我们认为MADS-box类基因(VRN1、VRN2、TaMADS1、TaAGL32、VRT2、TaAGL1、TaAGL11、TaAGL13和TaAGL41等)在小麦茎尖响应春化处理并影响茎尖发育命运的过程中起到了关键作用,同时组蛋白修饰和DNA甲基化相关基因也参与了小麦春化过程中茎尖的基因表达调控。
Vernalization is an important physiological process for heading date and spike initiation of winter wheat (Triticum aestivum L.). To study the molecular basis of vernalization in wheat, total RNAs were isolated from shoot apex after treatment at 4°C for 0, 5, 10, 15, 20 days for Microarray hybridization. Based on the Microarray data, 1201 differently expressed sequences were identified (FDR<1%). We examined the expression pattern of different class genes in shoot apex and leaves with or without vernalization. The results were as follows:
     1. Microarray data analysis
     The SAM system software was used to analyze the Microarray data. When the FDR (False Discovery Rate) < 0.1, there were 1201 sets of probes passed the significant difference test. Eighty three percent ( 10/12) differently expressed sequences were confirmed by qRT-PCR. Two hundred thirty three sets of probes may be involved in the transcriptional control of genes expression in wheat shoot apex during vernalization. Classification of differently expressed genes by their functions shows that the genes involved in protein kinase, oxidordeuctase, transferase and transcriptional regulation play the important roles in the wheat vernalization process.
     2. Expression patterns of the genes involved in vernalization.
     The Microarray data displayed the primary expression patterns of the genes involved in vernalization. We further used qRT-PCR method to examine the expression patterns of these genes in shoot apex and leaves with or without vernalization treatment. The qRT-PCR results showed that the expression of VRN1 was induced in the shoot apex and leaves with vernalization treatment; but VRN1 was not expressed in the shoot apex or leaves without vernalization. VRN2 was not expressed in the shoot apices with or without vernalization; whereas VRN2 was expressed in leaves, and the vernalization treatment just represses its expression level slightly. Expression of VRN3 was not detected in both shoot apices and leaves with or without vernalization. The results supported the hypothesis that activation of VRN1 mediates the low-temperature flowering response in wheat.
     3. MADS-box genes may play the important roles in wheat vernalization
     Since many MADS-box genes involved in the flowering control and floral development in plants, we examined the expression patterns of wheat MADS-box genes in shoot apex and leaves with or without vernalization treatment. Among them, six genes were chosen for further expression analysis. TaMADS1 and TaAGL32 displayed a similar expression pattern with VRN1 in shoot apices during vernalization or not, but they were not expressed in the leaves. Based on their expression patterns, we proposed that TaMADS1 and TaAGL32 may function together with VRN1 and WFL. TaAGL1, TaAGL11, TaAGL13 and TaAGL41 showed the reduced expression levels in shoot apices with vernalization treatment; but low expression level was detected in leaves during vernalization or not. It was suggested that they may belongs to the repressors of flowering in shoot apices.
     4. Histone modification and DNA methylation may be involved in the process of wheat vernalization
     During vernalization, the levels of Histone modification and DNA methylation had been determined. Based on the microarray data, we examined the expression patterns of some genes including TaVIL1, TaVIL3, TaHAT2, TaHDAC3, TaCMT3 and TaMBD1, and these genes demonstrated the reduced expression patterns. By analysis of the expression levels of those genes in shoot apex with vernalization and without vernalization, we found that low temperature could repress the expression leves of these genes. Thus, it was proposed that these genes may participate in the regulation of gene expression during vernalization in wheat.
     5. The flowering time was delayed by overexpression of TaAP2 in Arabidopsis
     Finally, we isolate six transcription factor genes from these 233 sequences. Late flowering phenotype occurred in overexpressed TaAP2 plants under long day conditions. Related to the deduced expression pattern of TaAP2 in vernalized shoot apex, we proposed that TaAP2 may be a repressor of wheat flowering.
引文
Aasland, R., Gibson, T.J., and Stewart, A.F. (1995). The PHD Finger: Implications for Chromatin-Mediated Transcriptional Regulation. Trends in Biochemical Sciences 20, 56-59.
    Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP Protein Mediating Signals From the Floral Pathway Integrator FT at the Shoot Apex. Science 309, 1052-1056.
    Abegg, F. (1936). A genetic factor for the annual habit in beets and linkage relationship. J Agricultural Res 53, 493-511.
    Adam, H., Ouellet, F., Kane, N.A., Agharbaoui, Z., Major, G., Tominaga, Y., and Sarhan, F. (2007). Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development. Plant Cell Physiol 48, 1192-1206.
    Alvarez-Buylla, E.R., Garcia-Ponce, B., and Garay-Arroyo, A. (2006). Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes. J Exp Bot 57, 3099-3107.
    Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F., and Yanofsky, M.F. (2000). MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24, 457-466.
    Bastow, R., Mylne, J.S., Lister, C., Lippman, Z., Martienssen, R.A., and Dean, C. (2004). Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164-167.
    Bernier, G., Kinet, J.-M., and Sachs, R.M. (1981). The Physiology of Flowering. (Inc, Boca Raton, FL, USA: CRC Press).
    Boss, P.K., Bastow, R.M., Mylne, J.S., and Dean, C. (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16 Suppl, S18-31.
    Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M., and Smyth, D.R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119, 721-743.
    Brock, R.D., and Davidson, J.L. (1994). 5-Azacytidine and Gamma Rays Partially Substitute for Cold Treatment in Vernalizing Winter Wheat. Environmental and Experimental Botany 34, 195-199.
    Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares, M., and Haussler, D. (2000). Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci U S A 97, 262-267.
    Burgeff, C., Liljegren, S.J., Tapia-Lopez, R., Yanofsky, M.F., and Alvarez-Buylla, E.R. (2002). MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta 214, 365-372.
    Burn, J.E., Smyth, D.R., Peacock, W.J., and Dennis, E.S. (1993a). Genes conferring late flowering in Arabidopsis thaliana. Genetica 90, 147-155.
    Burn, J.E., Bagnall, D.J., Metzger, J.D., Dennis, E.S., and Peacock, W.J. (1993b). DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci U S A 90, 287-291.
    Busch, M.A., Bomblies, K., and Weigel, D. (1999). Activation of a floral homeotic gene in Arabidopsis. Science 285, 585-587.
    Cao, R., Wang, L.J., Wang, H.B., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039-1043.
    Cavalli, G., and Paro, R. (1999). Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286, 955-958.
    Chandler, J., and Dean, C. (1994). Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana (L.) Heynh. J Exp Bot 45, 1279-1288.
    Chandler, J., Wilson, A., and Dean, C. (1996). Arabidopsis mutants showing an altered response to vernalization. Plant J 10, 637-644.
    Chen, Y., Carver, B.F., Wang, S., Zhang, F., and Yan, L. (2009). Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor Appl Genet 118, 881-889.
    Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu, J.K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17, 1043-1054.
    Chouard, P. (1960). Vernalization and its Relations to Dormancy. Annual Review of Plant Physiology 11, 191-238.
    Clarke, J.H., and Dean, C. (1994). Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol Gen Genet 242, 81-89.
    Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.
    Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002). Drosophila Enhancer of Zeste/ESC Complexes Have a Histone H3 Methyltransferase Activity that Marks Chromosomal Polycomb Sites. Cell 111, 185-196.
    Dai, Y. (2005). Isolation and Characterization of Genes Encoding Histone Modification Enzyme and DNA Methyltransferase in Wheat (Triticum Aestivum.L) (Beijing: China Agricultural University), pp. 111.
    Danyluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B., and Sarhan, F. (2003). TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132, 1849-1860.
    De Bodt, S., Raes, J., Van de Peer, Y., and Theissen, G. (2003). And then there were many: MADS goes genomic. Trends Plant Sci 8, 475-483.
    De Lucia, F., Crevillen, P., Jones, A.M., Greb, T., and Dean, C. (2008). A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105, 16831-16836.
    Dennis, E.S., and Peacock, W.J. (2007). Epigenetic regulation of flowering. Curr Opin Plant Biol 10, 520-527.
    Dennis, E.S., Bilodeau, P., Burn, J., Finnegan, E.J., Genger, R., Helliwell, C., Kang, B.J., Sheldon, C.C., and Peacock, W.J. (1998). Methylation controls the low temperature induction of flowering in Arabidopsis. Symp Soc Exp Biol 51, 97-103.
    Distelfeld, A., Li, C., and Dubcovsky, J. (2009a). Regulation of flowering in temperate cereals. Curr Opin Plant Biol.
    Distelfeld, A., Tranquilli, G., Li, C., Yan, L., and Dubcovsky, J. (2009b). Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol 149, 245-257.
    Dobrowolski, S.F., Banas, R.A., Naylor, E.W., Powdrill, T., and Thakkar, D. (1999). DNA microarray technology for neonatal screening. Acta Paediatr Suppl 88, 61-64.
    Dubcovsky, J., Lijavetzky, D., Appendino, L., and Tranquilli, G. (1998). Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97, 968-975.
    Dubcovsky, J., Loukoianov, A., Fu, D., Valarik, M., Sanchez, A., and Yan, L. (2006).Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60, 469-480.
    Dubcovsky, J., Luo, M.C., Zhong, G.Y., Bransteitter, R., Desai, A., Kilian, A., Kleinhofs, A., and Dvorak, J. (1996). Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143, 983-999.
    Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95, 14863-14868.
    Faure, S., Higgins, J., Turner, A., and Laurie, D.A. (2007). The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176, 599-609.
    Ferrandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725-734.
    Finnegan, E.J., and Dennis, E.S. (2007). Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol 17, 1978-1983.
    Finnegan, E.J., Peacock, W.J., and Dennis, E.S. (1996). Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A 93, 8449-8454.
    Finnegan, E.J., Genger, R.K., Kovac, K., Peacock, W.J., and Dennis, E.S. (1998). DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci U S A 95, 5824-5829.
    Finnegan, E.J., Sheldon, C.C., Jardinaud, F., Peacock, W.J., and Dennis, E.S. (2004). A cluster of Arabidopsis genes with a coordinate response to an environmental stimulus. Curr Biol 14, 911-916.
    Finnegan, E.J., Kovac, K.A., Jaligot, E., Sheldon, C.C., Peacock, W.J., and Dennis, E.S. (2005a). The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J 44, 420-432.
    Finnegan, E.J., Kovac, K.A., Jaligot, E., Sheldon, C.C., Peacock, W.J., and Dennis, E.S. (2005b). The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J 44, 420-432.
    Fu, D., Dunbar, M., and Dubcovsky, J. (2007). Wheat VIN3-like PHD finger genes areup-regulated by vernalization. Mol Genet Genomics 277, 301-313.
    Fuchs, J., Demidov, D., Houben, A., and Schubert, I. (2006). Chromosomal histone modification patterns--from conservation to diversity. Trends Plant Sci 11, 199-208.
    Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525-535.
    Gilmour, S.J., Hajela, R.K., and Thomashow, M.F. (1988). Cold Acclimation in Arabidopsis thaliana. Plant Physiol 87, 745-750.
    Gilmour, S.J., Lin, C., and Thomashow, M.F. (1996). Purification and properties of Arabidopsis thaliana COR (cold-regulated) gene polypeptides COR15am and COR6.6 expressed in Escherichia coli. Plant Physiol 111, 293-299.
    Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., and Thomashow, M.F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16, 433-442.
    Gozani, O., Karuman, P., Jones, D.R., Ivanov, D., Cha, J., Lugovskoy, A.A., Baird, C.L., Zhu, H., Field, S.J., Lessnick, S.L., Villasenor, J., Mehrotra, B., Chen, J., Rao, V.R., Brugge, J.S., Ferguson, C.G., Payrastre, B., Myszka, D.G., Cantley, L.C., Wagner, G., Divecha, N., Prestwich, G.D., and Yuan, J.Y. (2003). The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99-111.
    Greb, T., Mylne, J.S., Crevillen, P., Geraldo, N., An, H., Gendall, A.R., and Dean, C. (2007). The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr Biol 17, 73-78.
    Greenup, A., Peacock, W.J., Dennis, E.S., and Trevaskis, B. (2009). The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot (Lond). Gregis, V., Sessa, A., Colombo, L., and Kater, M.M. (2006). AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18, 1373-1382.
    Gregis, V., Sessa, A., Colombo, L., and Kater, M.M. (2008). AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J 56, 891-902.
    Guy, C.L., Niemi, K.J., and Brambl, R. (1985). Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci U S A 82, 3673-3677.
    Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H., and Huijser, P.(2000). Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21, 351-360.
    He, Y., Michaels, S.D., and Amasino, R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751-1754.
    He, Y., Doyle, M.R., and Amasino, R.M. (2004). PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev 18, 2774-2784.
    Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W., and Dennis, E.S. (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46, 183-192.
    Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., and Coupland, G. (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. Embo J 21, 4327-4337.
    Highkin, H.R. (1956). Vernalization in Peas. Plant Physiol 31, 399-403.
    Hill, K., Wang, H., and Perry, S.E. (2008). A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components. Plant J 53, 172-185.
    Hoheisel, J.D. (2006). Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet 7, 200-210.
    Holstege, F.C., Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green, M.R., Golub, T.R., Lander, E.S., and Young, R.A. (1998). Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717-728.
    Hong, B., Barg, R., and Ho, T.H. (1992). Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol 18, 663-674.
    Horvath, E., Szalai, G., Janda, T., Paldi, E., Racz, I., and Lasztity, D. (2003). Effect of vernalisation and 5-azacytidine on the methylation level of DNA in wheat (Triticum aestivum L., cv. Martonvásár 15). plant sci 165, 689-692.
    Houde, M., Danyluk, J., Laliberte, J.F., Rassart, E., Dhindsa, R.S., and Sarhan, F. (1992). Cloning, Characterization, and Expression of a cDNA Encoding a 50-Kilodalton Protein Specifically Induced by Cold Acclimation in Wheat. Plant Physiol 99, 1381-1387.
    Huala, E., and Sussex, I.M. (1992). Leafy Interacts with Floral Homeotic Genes to Regulate Arabidopsis Floral Development. Plant Cell 4, 901-913.
    Irish, V.F., and Sussex, I.M. (1990). Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2, 741-753.
    Izawa, T. (2007). Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58, 3091-3097.
    Jaeger, K.E., and Wigge, P.A. (2007). FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17, 1050-1054.
    Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106.
    Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and Dean, C. (2000). Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344-347.
    Kane, N.A., Agharbaoui, Z., Diallo, A.O., Adam, H., Tominaga, Y., Ouellet, F., and Sarhan, F. (2007). TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Plant J 51, 670-680.
    Kane, N.A., Danyluk, J., Tardif, G., Ouellet, F., Laliberte, J.F., Limin, A.E., Fowler, D.B., and Sarhan, F. (2005). TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol 138, 2354-2363.
    Kempin, S.A., Savidge, B., and Yanofsky, M.F. (1995). Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267, 522-525.
    Ki, H. (2003). Microarray Data Analysis Methods Comparison: A Review. In Biochemistry 218 Project. hmkey@stanford.edu.
    Kohonen, T. (1995). Self Organizing Maps. (Berlin: Springer). Kooperberg, C., Fazzio, T.G., Delrow, J.J., and Tsukiyama, T. (2002). Improved background correction for spotted DNA microarrays. J Comput Biol 9, 55-66.
    Koornneef, M., Blankestijndevries, H., Hanhart, C., Soppe, W., and Peeters, T. (1994). The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant J 6, 911-919.
    Kouzarides, T. (2002). Histone methylation in transcriptional control. Current Opinion in Genetics & Development 12, 198-209.
    Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16, 2893-2905.
    Lang, A. (1952). Physiology of Flowering. Annual Review of Plant Physiology 3, 265-306.
    Lang, A. (1965). Physiology of flower initiation. In Encyclopedia of Plant Physiology (Berlin: Springer-Verlag.), pp. 1380-1536.
    Lang, A. (1986). Hyoscyamus niger. In Handbook of flowering, A.H. HALEVY, ed (Boca Raton, FL: CRC Press), pp. 144-186.
    Laurie, D.A. (1997). Comparative genetics of flowering time. Plant Mol Biol 35, 167-177.
    Lee, I., and Amasino, R.M. (1995). Effect of Vernalization, Photoperiod, and Light Quality on the Flowering Phenotype of Arabidopsis Plants Containing the FRIGIDA Gene. Plant Physiol 108, 157-162.
    Lee, I., Bleecker, A., and Amasino, R. (1993). Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol Gen Genet 237, 171-176.
    Lee, I., Michaels, S.D., Masshardt, A.S., and Amasino, R.M. (1994). The late-flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis. Plant J 6, 903-909.
    Lee, J., Oh, M., Park, H., and Lee, I. (2008a). SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55, 832-843.
    Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21, 397-402.
    Lee, S., Woo, Y.M., Ryu, S.I., Shin, Y.D., Kim, W.T., Park, K.Y., Lee, I.J., and An, G. (2008b). Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol 147, 156-168.
    Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., and Dean, C. (2002). Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297, 243-246.
    Li, C., and Dubcovsky, J. (2008). Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55, 543-554.
    Liang, T.B., Yong, W.D., Tan, K.H., Xu, J., and Kang., C. (2001). Vernalization , a Switch in Initiation of Flowering , Promotes Differentiation and Development of Spikelet in Winter Wheat. Acta Bot Sin 43, 788-794.
    Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11, 1007-1018.
    Lin, C., Guo, W.W., Everson, E., and Thomashow, M.F. (1990). Cold Acclimation in Arabidopsis and Wheat : A Response Associated with Expression of Related GenesEncoding ;Boiling-Stable' Polypeptides. Plant Physiol 94, 1078-1083.
    Liu, C., Xi, W., Shen, L., Tan, C., and Yu, H. (2009). Regulation of floral patterning by flowering time genes. Dev Cell 16, 711-722.
    Liu, C., Zhou, J., Bracha-Drori, K., Yalovsky, S., Ito, T., and Yu, H. (2007). Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134, 1901-1910.
    Liu, C., Chen, H., Er, H.L., Soo, H.M., Kumar, P.P., Han, J.H., Liou, Y.C., and Yu, H. (2008). Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135, 1481-1491.
    Loukoianov, A., Yan, L., Blechl, A., Sanchez, A., and Dubcovsky, J. (2005). Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138, 2364-2373.
    Mandel, M.A., and Yanofsky, M.F. (1995). A Gene Triggering Flower Formation in Arabidopsis. Nature 377, 522-524.
    Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273-277.
    March-Diaz, R., Garcia-Dominguez, M., Florencio, F.J., and Reyes, J.C. (2007). SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6. Plant Physiol 143, 893-901.
    Martin-Trillo, M., Larazo, A., Poethig, R.S., Gomez-Mena, C., Pineiro, M.A., Martinez-Zapater, J.M., and Jarillo, J.A. (2006). EARLY IN SHORT DAYS 1 (ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes that positively regulates FLC accumulation in Arabidopsis. Development 133, 1241-1252.
    Marton, M.J., DeRisi, J.L., Bennett, H.A., Iyer, V.R., Meyer, M.R., Roberts, C.J., Stoughton, R., Burchard, J., Slade, D., Dai, H., Bassett, D.E., Jr., Hartwell, L.H., Brown, P.O., and Friend, S.H. (1998). Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 4, 1293-1301.
    Medina, J., Bargues, M., Terol, J., Perez-Alonso, M., and Salinas, J. (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119, 463-470.
    Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A., and Beeckman, T. (2008).Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40, 1489-1492.
    Michaels, S.D. (2009). Flowering time regulation produces much fruit. Curr Opin Plant Biol 12, 75-80.
    Michaels, S.D., and Amasino, R.M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949-956.
    Michaels, S.D., and Amasino, R.M. (2000). Memories of winter: vernalization and the competence to flower. Plant Cell and Environment 23, 1145-1153.
    Michaels, S.D., and Amasino, R.M. (2001). Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13, 935-941.
    Michaels, S.D., He, Y., Scortecci, K.C., and Amasino, R.M. (2003a). Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A 100, 10102-10107.
    Michaels, S.D., Ditta, G., Gustafson-Brown, C., Pelaz, S., Yanofsky, M., and Amasino, R.M. (2003b). AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33, 867-874.
    Monroy, A.F., Castonguay, Y., Laberge, S., Sarhan, F., Vezina, L.P., and Dhindsa, R.S. (1993). A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol 102, 873-879.
    Montiel, G., Breton, C., Thiersault, M., Burlat, V., Jay-Allemand, C., and Gantet, P. (2007). Transcription factor Agamous-like 12 from Arabidopsis promotes tissue-like organization and alkaloid biosynthesis in Catharanthus roseus suspension cells. Metab Eng 9, 125-132.
    Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.G., and Lee, I. (2003). The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35, 613-623.
    Morgan, B.J.T., and Ray, A.P.G. (1995). Non-uniqueness and Inversions in Cluster Analysis Applied Statistics 44, 117-134.
    Muller, J., Hart, C.M., Francis, N.J., Vargas, M.L., Sengupta, A., Wild, B., Miller, E.L., O'Connor, M.B., Kingston, R.E., and Simon, J.A. (2002). Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 111, 197-208.
    Murai, K., Miyamae, M., Kato, H., Takumi, S., and Ogihara, Y. (2003). WAP1, a wheatAPETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol 44, 1255-1265.
    Mylne, J.S., Barrett, L., Tessadori, F., Mesnage, S., Johnson, L., Bernatavichute, Y.V., Jacobsen, S.E., Fransz, P., and Dean, C. (2006). LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc Natl Acad Sci U S A 103, 5012-5017.
    Nam, J., Kim, J., Lee, S., An, G.H., Ma, H., and Nei, M.S. (2004). Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci U S A 101, 1910-1915.
    Naoki Shitsukawa, C.I.T.M.T.S.A.I.S.T.K.M. (2007). Wheat SOC1 functions independently of WAP1/VRN1, an integrator of vernalization and photoperiod flowering promotion pathways, pp. 627-636.
    Napp-Zinn, K. (1987). Vernalization :environmental and genetic regulation. In Manipulation of flowering, J.G. Atherton, ed (London: Butterworths: Butterworths), pp. 123-132.
    Nuwaysir, E.F., Bittner, M., Trent, J., Barrett, J.C., and Afshari, C.A. (1999). Microarrays and toxicology: the advent of toxicogenomics. Mol Carcinog 24, 153-159.
    Oh, S., Zhang, H., Ludwig, P., and van Nocker, S. (2004). A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. Plant Cell 16, 2940-2953.
    Oliver, S.N., Finnegan, E.J., Dennis, E.S., Peacock, W.J., and Trevaskis, B. (2009). Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci U S A. Parcy, F., Bomblies, K., and Weigel, D. (2002). Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129, 2519-2527.
    Parcy, F., Nilsson, O., Busch, M.A., Lee, I., and Weigel, D. (1998). A genetic framework for floral patterning. Nature 395, 561-566.
    Peng, M.S., Cui, Y.H., Bi, Y.M., and Rothstein, S.J. (2006). AtMBD9: a protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis. Plant J 46, 282-296.
    Pharis, R.P., and King, R.W. (1985). Gibberellins and Reproductive Development in Seed Plants. Annual Review of Plant Physiology 36, 517-568.
    Pidal, B., Yan, L., Fu, D., Zhang, F., Tranquilli, G., and Dubcovsky, J. (2009). The CArG-Box Located Upstream from the Transcriptional Start of Wheat VernalizationGene VRN1 Is Not Necessary for the Vernalization Response. J Hered.
    Preston, J.C., and Kellogg, E.A. (2006). Reconstructing the Evolutionary History of Paralogous APETALA1/FRUITFULL-Like Genes in Grasses (Poaceae), pp. 421-437.
    Preston, J.C., and Kellogg, E.A. (2007). Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses. Plant J 52, 69-81.
    Preston, J.C., and Kellogg, E.A. (2008). Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering. Plant Physiol 146, 265-276.
    Purvis, O.N., and Gregory, F.G. (1952). Studies in Vernalisation: XII. The Reversibility by High Temperature of the Vernalised Condition in Petkus Winter Rye. Ann Bot 16, 1-21.
    Rappaport, L., and Bonner, J. (1960). Interactions of Gibberellin, Vernalization, Photoperiod and Temperature in the Flowering of Endive. Plant Physiol 35, 98-102.
    Ratcliffe, O.J., Bradley, D.J., and Coen, E.S. (1999). Separation of shoot and floral identity in Arabidopsis. Development 126, 1109-1120.
    Ratcliffe, O.J., Nadzan, G.C., Reuber, T.L., and Riechmann, J.L. (2001). Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol 126, 122-132.
    Ratcliffe, O.J., Kumimoto, R.W., Wong, B.J., and Riechmann, J.L. (2003). Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15, 1159-1169.
    Reeves, P.H., and Coupland, G. (2001). Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants. Plant Physiol 126, 1085-1091.
    Reiner, A., Yekutieli, D., and Benjamini, Y. (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368-375.
    Rihn, B.H., Mohr, S., McDowell, S.A., Binet, S., Loubinoux, J., Galateau, F., Keith, G., and Leikauf, G.D. (2000). Differential gene expression in mesothelioma. FEBS Lett 480, 95-100.
    Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259-1269.
    Ryu, D.D., and Nam, D.H. (2000). Recent progress in biomolecular engineering. Biotechnol Prog 16, 2-16.
    Saleh, A., Alvarez-Venegas, R., and Avramova, Z. (2008). Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci. Gene 423, 43-47.
    Sasani, S., Hemming, M.N., Oliver, S.N., Greenup, A., Tavakkol-Afshari, R., Mahfoozi, S., Poustini, K., Sharifi, H.R., Dennis, E.S., Peacock, W.J., and Trevaskis, B. (2009). The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare). J Exp Bot.
    Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470.
    Schonrock, N., Bouveret, R., Leroy, O., Borghi, L., Kohler, C., Gruissem, W., and Hennig, L. (2006). Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev 20, 1667-1678.
    Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20, 898-912.
    Sheldon, C.C., Jean Finnegan, E., James Peacock, W., and Dennis, E.S. (2009). Mechanisms of gene repression by vernalization in Arabidopsis. Plant J. Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., and Dennis, E.S. (2000). The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A 97, 3753-3758.
    Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., and Dennis, E.S. (1999). The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445-458.
    Shimada, S., Ogawa, T., Kitagawa, S., Suzuki, T., Ikari, C., Shitsukawa, N., Abe, T., Kawahigashi, H., Kikuchi, R., Handa, H., and Murai, K. (2009). A genetic network of flowering time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J.
    Shitsukawa, N., Takagishi, A., Ikari, C., Takumi, S., and Murai, K. (2006). WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem. Genes Genet Syst 81, 13-20.
    Shitsukawa, N., Ikari, C., Shimada, S., Kitagawa, S., Sakamoto, K., Saito, H., Ryuto, H., Fukunishi, N., Abe, T., Takumi, S., Nasuda, S., and Murai, K. (2007). The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst 82, 167-170.
    Simon, I., Tenzen, T., Reubinoff, B.E., Hillman, D., McCarrey, J.R., and Cedar, H. (1999).Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401, 929-932.
    Sung, S., and Amasino, R.M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159-164.
    Sung, S., and Amasino, R.M. (2005). Remembering winter: toward a molecular understanding of vernalization. Annu Rev Plant Biol 56, 491-508.
    Sung, S., Schmitz, R.J., and Amasino, R.M. (2006a). A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Dev 20, 3244-3248.
    Sung, S., He, Y., Eshoo, T.W., Tamada, Y., Johnson, L., Nakahigashi, K., Goto, K., Jacobsen, S.E., and Amasino, R.M. (2006b). Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat Genet 38, 706-710.
    Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science 316, 1033-1036.
    Tapia-Lopez, R., Garcia-Ponce, B., Dubrovsky, J.G., Garay-Arroyo, A., Perez-Ruiz, R.V., Kim, S.H., Acevedo, F., Pelaz, S., and Alvarez-Buylla, E.R. (2008). An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol 146, 1182-1192.
    Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., and Church, G.M. (1999). Systematic determination of genetic network architecture. Nat Genet 22, 281-285.
    Thomashow, M.F. (1999). PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50, 571-599.
    Thomashow, M.F. (2001). So what's new in the field of plant cold acclimation? Lots! Plant Physiol 125, 89-93.
    Thompson, H.C. (1944). Further studies on effect of temperature on initiation of flowering in celery. Proceedings of the American Society of Horticultural Science 35, 425-430.
    Tilghman, S.M. (1999). The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96, 185-193.
    Tranquilli, G., and Dubcovsky, J. (2000). Epistatic interaction between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat. J Hered 91, 304-306.
    Trevaskis, B., Hemming, M.N., Peacock, W.J., and Dennis, E.S. (2006). HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140, 1397-1405.
    Trevaskis, B., Hemming, M.N., Dennis, E.S., and Peacock, W.J. (2007a). The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12, 352-357.
    Trevaskis, B., Bagnall, D.J., Ellis, M.H., Peacock, W.J., and Dennis, E.S. (2003). MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci U S A 100, 13099-13104.
    Trevaskis, B., Tadege, M., Hemming, M.N., Peacock, W.J., Dennis, E.S., and Sheldon, C. (2007b). Short Vegetative Phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143, 225-235.
    Turner, A., Beales, J., Faure, S., Dunford, R.P., and Laurie, D.A. (2005). The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031-1034.
    von Zitzewitz, J., Szucs, P., Dubcovsky, J., Yan, L., Francia, E., Pecchioni, N., Casas, A., Chen, T.H., Hayes, P.M., and Skinner, J.S. (2005). Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59, 449-467.
    Wagner, D., Sablowski, R.W.M., and Meyerowitz, E.M. (1999). Transcriptional activation of APETALA1 by LEAFY. Science 285, 582-584.
    Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843-859.
    Wellensiek, S.J. (1961). Leaf Vernalization. Nature 192, 1097.
    Wellensiek, S.J. (1962). Dividing Cells as the Locus for Vernalization. Nature 195, 307-308.
    Wellensiek, S.J. (1964). Dividing Cells as the Prerequisite for Vernalization. Plant Physiol 39, 832-835.
    Werner, J.D., Borevitz, J.O., Uhlenhaut, N.H., Ecker, J.R., Chory, J., and Weigel, D. (2005). FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics 170, 1197-1207.
    Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056-1059.
    William, D.A., Su, Y., Smith, M.R., Lu, M., Baldwin, D.A., and Wagner, D. (2004). Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A 101, 1775-1780.
    Winzeler, E.A., Richards, D.R., Conway, A.R., Goldstein, A.L., Kalman, S., McCullough, M.J., McCusker, J.H., Stevens, D.A., Wodicka, L., Lockhart, D.J., and Davis, R.W. (1998). Direct allelic variation scanning of the yeast genome. Science 281, 1194-1197.
    Wood, C.C., Robertson, M., Tanner, G., Peacock, W.J., Dennis, E.S., and Helliwell, C.A. (2006). The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci U S A 103, 14631-14636.
    Xia, J.-C., LV, Q., GUO, M.-F., and HE, Y.-K. (2008). Cold Acclimation of Higher Plants. Chinese Journal of Biochemistry and Molecular Biology 24, 295-301.
    Xing, L., Li, J., Xu, Y., Xu, Z., and Chong, K. (2009). Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS ONE 4, e4854.
    Yan, L., von Zitzewitz, J., Skinner, J.S., Hayes, P.M., and Dubcovsky, J. (2005). Molecular characterization of the duplicated meristem identity genes HvAP1a and HvAP1b in barley. Genome 48, 905-912.
    Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., and Dubcovsky, J. (2003). Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100, 6263-6268.
    Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V., and Dubcovsky, J. (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640-1644.
    Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S., and Dubcovsky, J. (2006). The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A 103, 19581-19586.
    Yeung, K.Y., Haynor, D.R., and Ruzzo, W.L. (2001). Validating clustering for gene expression data. Bioinformatics 17, 309-318.
    Yong, W.D., Xu, Y.Y., Xu, W.Z., Wang, X., Li, N., Wu, J.S., Liang, T.B., Chong, K., Xu, Z.H., Tan, K.H., and Zhu, Z.Q. (2003). Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta 217, 261-270.
    Yu, H., Xu, Y., Tan, E.L., and Kumar, P.P. (2002). AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci U S A 99, 16336-16341.
    Yu, H., Ito, T., Wellmer, F., and Meyerowitz, E.M. (2004). Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet 36, 157-161.
    Zeevaart, J. (1983). Gibberellins and flowering. In The Biochemistry and Physiology of Gibberellins, A. Crozier, ed (New York: Praeger.
    Zeevaart, J.A.D. (1976). Physiology of Flower Formation. Annual Review of Plant Physiology 27, 321-348.
    Zhang, X., Germann, S., Blus, B.J., Khorasanizadeh, S., Gaudin, V., and Jacobsen, S.E. (2007a). The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol 14, 869-871.
    Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y.V., Pellegrini, M., Goodrich, J., and Jacobsen, S.E. (2007b). Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5, e129.
    Zhang, Y.F., Cao, G.Y., Qu, L.J., and Gu, H.Y. (2009). Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15. Journal of Genetics and Genomics 36, 99-107.
    Zhao, T., Ni, Z., Dai, Y., Yao, Y., Nie, X., and Sun, Q. (2006a). Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol Genet Genomics 276, 334-350.
    Zhao, X.Y., Cheng, Z.J., and Zhang, X.S. (2006b). Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta 223, 698-707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700