用户名: 密码: 验证码:
传染性法氏囊病毒感染鸡胚成纤维细胞机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传染性法氏囊病毒(infectious bursal disease virus,IBDV)是一种无囊膜双链RNA病毒,它所引起的鸡传染性法氏囊病(infectious bursal disease。IBD)是鸡的一种急性高度接触性致死性传染病,是造成养鸡业严重的经济损失的重要疫病之一。病毒受体在病毒吸附、侵入过程中起着极其重要的作用,病毒吸附是启动感染的第一步。研究IBDV的病毒受体,对于探明IBD发生的分子机制,阻断病毒对细胞的吸附和侵染过程,防止传染病的发生有重大意义。鸡胚成纤维细胞(chickenembryo fibroblast,CEF)也是IBDV的易感细胞,通常被用于IBDV的增殖。构建易感细胞的cDNA文库并利用阻断病毒感染的单克隆抗体筛选受体基因是病毒受体研究中最常用的方法。为了研究存在于CEF表面的IBDV受体或感染相关的分子,本研究首先构建了高质量的CEF细胞cDNA T7噬菌体表达文库和真核表达文库,并建立了制备高效电转化感受态细胞E.coli DH10B方法,用于真核表达文库的扩增;然后将生物素-链亲和素(biotin- streptavidin)用于免疫组化,建立了用于筛选阻断病毒感染的单克隆抗体的方法,并制备了阻断IBDV感染CEF的儿株单克隆抗体,为克隆存在于CEF的IBDV受体等感染相关的分子的基因,及揭示IBDV感染CEF的机理奠定了基础。
     1鸡胚成纤维细胞cDNA T7噬菌体表达文库的构建及鉴定
     培养CEF细胞,利用oligo(dT)-纤维素亲和层析法制备CEF细胞的mRNA,逆转录合成的cDNA双链,与T7 EcoRⅠ/HindⅢ载体臂定向连接,噬菌体包装,构建cDNA表达文库。测定文库的滴度和并用PCR进行重组子鉴定。将文库扩增并鉴定插入片段的长度及分布。结果显示,文库初始滴度为2.2×10~7 pfu/mL,扩增后文库的滴度为3.5×10~(10)pfu/mL。插入片段的平均长度1.3kb,主要分布在0.4~3kb之间。说明成功构建的CEF细胞cDNA T7噬菌体表达文库,为进一步研究CEF细胞以及传染性法氏囊病毒(IBDV)受体研究奠定了基础。
     2鸡胚成纤维细胞cDNA真核表达文库的构建
     从CEF提取mRNA,反转录合成双链cDNA,与EcoRⅠ接头连接,经NotⅠ酶切后用spin column除去小于500 bp的片段,连接到预先经EcoRⅠ和NotⅠ双酶切的真核表达质粒pAP3neo载体上,将重组质粒电转化DH10B,测定文库的容量大小并通过colony PCR鉴定插入cDNA片段的大小。经测定,原始文库滴度为2.7×10~6CFU/mL,重组率大于95%,重组子中插入片段的长度大部分在0.5~2.0kb之间,平均插入外源片段长度大于1.0 kb的约占85.7%。表明构建的文库能够充分满足克隆低丰度mRNA的要求,可以用于筛选IBDV在CEF表面的受体或感染相关分子。
     3高效电转化感受态细胞的制备
     为了能够制备高效的电转化感受态细胞,以用于cDNA真核表达文库的转化和扩增。通过对影响转化效率的参数:生长状况、洗液种类、最后细胞密度、电击强度等各个条件进行优化,建立了简单实用的高效电转化感受态细胞E.coli strain DH10B的制备方法,制备的感受态细胞的转化效率达2~6×10~9cfu/μgDNA,满足了文库转化、基因表达和克隆的特殊需要。同时也为其它大肠杆菌电转化感受态的制备提供了优化思路和借鉴。
     4阻断IBDV感染CEF的单克隆抗体筛选方法的建立
     为了制备阻断IBDV感染CEF的单克隆抗体,必须先建立一种有效的筛选单抗的方法。本研究基于免疫细胞化学的方法,采用Biotin-Streptavidin建立了感染阳性细胞数减少实验的方法,可用于阻断IBDV感染CEF的单克隆抗体的筛选。实验表明该方法简单、敏感、实用,是用来筛选阻断IBDV感染的mAb的较好的方法。该方法的建立制备阻断IBDV感染CEF的单克隆抗体奠定了基础,同时该系统的建立也为其它病毒受体的研究从方法学上提供借鉴。
     5阻断IBDV感染CEF的单克隆抗体的制备和鉴定
     制备阻断IBDV感染CEF的单克隆抗体,用来筛选或鉴定与单抗作用的受体蛋白或基因,是研究病毒受体的重要方法。CEF是IBDV易感细胞之一,该细胞表面有介导其感染的受体。采取不同方案免疫BALB/c小鼠,经三次免疫后采血测定抗体总效价和阻断感染的效果可见,采用长单层的CEF不加佐剂处理直接腹腔注射免疫的可获得高水平的阻断病毒感染的特异性抗体的产生。用病毒感染细胞数减少实验筛选到3株mAb能阻断IBDV感染CEF,其中一株阻断率达到84.5%。且阻断效率在一定范围内具有剂量依赖性。通过流式细胞仪进行结合实验标明该mAb所针对的表位存在丁CEF细胞表面,但是表达量非常低。推测该蛋白很可能是IBDV的受体之一或重要的感染相关分子,因为不能彻底的阻断感染可见另有其它受体或感染相关分子的存在,这与已报道的文献相符合。该单克隆抗体的制备这为揭示IBDV感染CEF的机理奠定了基础。
Infectious bursal disease virus(IBDV),a member of genus Avibirnavirus of the Birnaviridae family,causes a highly contagious disease in young chicks and leads to significant economic losses in the poultry industry.Virus receptor plays an important role in virus binding and cell recognition.Viral attachment to a specific receptor on the surface of susceptible host cells is the first step in virus infection.To study the virus infection at the levels of virus binding,receptor identification is critical for understanding the virus-host cell interactions and pathogenesis of the viral disease.Chicken embryo fibroblast(CEF) cells,susceptible host cells of IBDV,commonly are used for the propagation of IBDV. Constructed a cDNA library of a virus susceptible host cell and used a monoclonal antibody(mAb) that can blocks virus infection to screen the library is commonly used in virus receptor identification research.To identify the IBDV receptor or the infection fator on the surface of CEF,we have done series of works as follows.First,a CEF cDNA expression library displayed on phage T7 was constructed via phage display technique,we also constructed a cDNA eukaryotic expression library of CEF and established a simple method to prepare high efficient electrocompetent cells of E.coli strain DH10B.Then on the basis of immunocytochemistry we set up a method in which the biotin-streptavidin systerm is applied.It can be used to screen the monoclonal antibody(mAb) that can blocks IBDV infection.With the mathod we selected three strains of mAb that can block IBDV infection.And we identified some charactors of the mAb.What we have done have settled the basis to clone the gene of IBDV receptor on the surface of CEF or to reveal the mechanism of IBDV infection.
     1.Construction and quality identification of chicken embryo fibroblast cells(CEF) cDNA expression library displayed on Phage T7
     To construct the CEF cell eDNA expression library displayed on phage T7 and to identify its quality,mRNA was prepared from CEF by oligo(dT)-cellulose affinity chromatography and reverse transcripted into cDNA.The CEF cell cDNA expression library was constructed after cloning cDNA into T7 EcoRI/HindⅢvector arms and in Vitro packaging.Titer and recombinant rate of the prime library were determined.The size of the inserts was identified by PCR after a round of library amplification.The titer of the prime constructed library and amplified library was 2.2×10~7 pfu/mL and 3.5×10~(10) pfu/mL.The inserts size largely ranged from 0.4 to 3kb with the average length of 1.3kb.The CEF cell cDNA expression library displayed on phage T7 has high quality.
     2.Construction and identification of a cDNA eukaryotic expression library of CEF.
     The mRNA was extracted from CEF and the cDNA was made by reverse transcription. The cDNA was ligated with the EcoR I adaptor and then digested with Not I.Fragments smaller than 500 bp were removed by a spin column.And then the large fragments were ligated into the eukaryotic expression plasmid pAP3neo predigested by EcoR I and Not I. Competent cells DH10B were transformed with the ligated product by electroporation.The size of the cDNA library and that of inserts were also identified through colony PCR.As a result a cDNA eukaryotic expression library of CEF was constructed.The total original bacterial colonies is 8.8×10~5 in the library.The inserts of the recombinant plasmids larger than 1.0 kb is 85.7%.It indicates that the cDNA library is probably sufficient for cloning of low abundance cDNAs.
     3.Optimize the protocol of preparing high efficient electrocompetent cells
     To construct a cDNA library,a high efficient electro-competent cell is vital.We optimized several aspects which have a great influence on the transformative efficiency of DH10B electro -competent cell such as OD_(600) value,the final resuspend volume and so on. At last we find out a good method to prepare the electro-competent cell DH10B with the high efficiency of up to 2~6×10~9cfu/μgDNA.It is satisfied with the harsh requirement of constructing cDNA library,even in gene expression and clone under some special conditions.
     4.Establish a method to screen the mAb of anti-IBDV receptor on the CEF surface
     An efficient method must be esbablished which is used for screenning the mAb that can block IBDV infection.In this study based on the method of immunocytochemistry,we employ the Biotin-Streptavidin system to establish an efficient method of the number of infection positive cell reduction test which is used for screenning the mAb that can block IBDV infection.It is a simple and sensitive and practical method for screenning the mAb of blocking virus infection.The method has solve the key problem of screenig the anti-virus receptor monoclonal antibody,which make it possible to reveal the IBDV receptor.It is of great important in methodology because this method can also be used to study to other virus receptor.
     5.Prepare the mAb of anti-IBDV receptor on the CEF surface and identify some charactors of the mAb
     That to prepare the anti-virus receptor monoclonal antibody(mAb) is an efficient method to identify the virus receptor or to clone the receptor gene.Chicken embryo fibroblast(CEF) is a kind of the susceptible cell for infectious bursal disease virus(IBDV)and there are some molecular serves as receptor to mediate the virus infection. Four immunization program was adopted to immunize the BALB/c mouse.With the established mathod we selected three strains of mAb that can block IBDV infection.Some charactors of the mAb were identified.The infection inhibitive ratio of mAb is up to 84.5%. It also has the character of does dependent in infection inhibation.By flow cytometry we definated that the molecular that the mAb against is on the surface of CEF.It indicated that the molecular plays an important role in the course of IBDV infection.We speculate that it is one of the possible IBDV receptors or at least it is a relative element in IBDV infection. Because the mAb can not block IBDV infection completely,we speculate that another receptors or molculars also exsist that play an important role in IBDV infecion.It is consistant with what have been reported that there are at least three receptors existing on CEF.What we have done have settled the basis to reveal the mechanism of IBDV infection.
引文
1. Lukert PD, Saif YM. Diseases of Poultry.Tenth edition.Ames USA: Iowa State University Press. 1997: 721-738.
    
    2. Lasher HN, Shane SM. Infectious bursal disease. World's Poultry Sci. 1994. 50: 133-166.
    3. Kibenge FSB, Dhillon AS, Russell RG. Biochemistry and immunology of infectious bursal disease virus. J. Gen. Virol. 1988. 69: 1757-1775.
    4. Muller H, Islam MR , Raue R. Research on infectious bursal disease the past ,the present and the future. Vet. Micro. 2003. 97: 153-165.
    5. Van den Berg TP, Acute infectious bursal disease in poultry; a review. Avian. Pathol. 2000. 29: 175-190.
    6. Muller H, Scholtissek C, Becht H. The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. J. Virol. 1979. 31: 584-589.
    7. Dobos P, Hill BJ, Hallett R, et al. Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J. Virol. 1979. 32: 593-605.
    8. Allan WH, Faragher JT, Cullen GA. Immunosuppression by the infectious bursal agent in chickens immunized against Newcastle disease. Vet .Rec. 1972. 90: 511-512.
    9. Cosgrove AS. An apparently new disease of chickens-avian nephrosis. Avian. Dis. 1962. 6: 385-389.
    10. Hitchner SB. Infectivity of infectious bursal disease virus for embryonating eggs. Poult. Sci. 1970. 49:511-516.
    11. McFerran JB, McNuIty MS, Killop ER, et al. Isolation and serological studies with infectious bursal disease virus from fowl, turkeys and ducks: demonstration of a second serotype. Avian. Pathology. 1980. 9: 395-404.
    12. Rosenberger JK,Cloud SS. Isolation and characterization of variant infectious bursal disease virus. J.Am.Vet.Med.Assoc. 1986. 189:367-394
    13. Rosenberger JK, Cloud SS, Gelb JJ, et al. Sentinel bird survey of Delmarva broiler flocks, in the 20th National Meeting on Poultry Health and Condemnation.
    14. Chettle N, Stuart JC, Wyeth PJ. Outbreak of virulent infectious bursal disease in East Anglia.Vet. Rec. 1989. 125:271-272.
    15. Yu L, Li JR, Huang YW, et al. Molecular characteristics of full-length genomic segment A of three infectious bursal disease viruses in China: two attenuated strains and one virulent field strain. Avian. Dis. 2001.45:862-874.
    16. Wang XN, Zhang GP, Zhou JY,et al. Identification of neutralizing epitopes on the VP2 protein of infectious bursal disease virus by phage-displayed heptapeptide library screening and synthetic peptide mapping. Viral. Immunol. 2005. 18: 549-557.
    17. Chen HY, Zhou Q, Zhang MF, et al. Sequence analysis of the VP2 hypervariable region of nine infectious bursal disease virus isolates from mainland China. Avian. Dis. 1998. 42: 762-769.
    18. Cao YC, Yeung WS, Law M, et al. Molecular characterization of seven Chinese isolates of infectious bursal disease virus: classical, very virulent, and variant strains. Avian. Dis. 1998. 42: 340-351
    19. Jackwood DJ, Saif YM, Hughes JH. Characteristics and serologic studies of two serotypes of infectious bursal disease virus in turkeys. Avian. Dis. 1982. 26: 871-882.
    20. Bottcher B. Kiselev N A, B6ttcher B.Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J. Virol. 1997. 71: 325-330.
    21. Lombardo E, Maraver A, Cast n JR, et al. J. Virol. 1999. 73: 6973-6983.
    22. Mirriam tacken. Molecular Interactions of the Infectious Bursal Disease. Virus Proteins. 1970. 18: 12-14.
    23. 殷震.动物病毒学. 北京:科学出版社. 1997. 582-582.
    24. Nick H, Cursiefen D, Becht H. Structural and growth characteristics of infectious bursal disease virus. J .Virol. 1976. 18: 227-234.
    
    25. Petek M, D'Aprile PN,Cancelloti F. Biological and physico-chemical properties of the infectious bursal disease virus (IBDV). Avian Pathology. 1973. 2: 135-152.
    26. Spies U, Muller H, Becht H. Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products. Virus Research. 1987. 8: 127-140.
    27. Somogyi P, Dobos P. Virus-specific RNA synthesis in cells infected by infectious pancreatic necrosis virus. J. Virol. 1980. 33: 129-139.
    28. Mertens PP, Jamieson PB, Dobos P. In vitro RNA synthesis by infectious pancreatic necrosis virus-associated RNA polymerase. J. Gen. Virol. 1982. 59: 47-56.
    29. Dobos P. Protein-primed RNA synthesis in vitro by the virion-associated RNA polymerase of infectious pancreatic necrosis virus. Virology. 1995. 208: 19-25.
    30. Muller H, Scholtissek C, Becht H. The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. J. Virol. 1979. 31: 584-589.
    31. Dobos P, Hill BJ, Hallett R, et al. Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J. Virol. 1979. 32: 593-605.
    32. Chevalier C, Galloux M, Pous J, et al. Structural peptides of a nonenveloped virus are involved in assembly and membrane translocation. J. Virol. 2005. 79: 12253-12263.
    33. Da Costa B, Chevalier C, Henry C, et al. The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J. Virol. 2002. 76: 2393-2402.
    34. Galloux M, Chevalier C, Henry C, et al. Peptides resulting from the pVP2 C-terminal processing are present in infectious pancreatic necrosis virus particles. J. Gen. Virol. 2004. 85: 2231-2236.
    35. Da Costa B, Soignier S, Chevalier C, et al. Blotched snakehead virus is a new aquatic birnavirus that is slightly more related to avibirnavirus than to aquabirnavirus. J. Virol. 2003. 77: 719-725.
    36. Magyar G, Dobos P. Evidence for the detection of the infectious pancreatic necrosis virus polyprotein and the 17-kDa polypeptide in infected cells and of the NS protease in purified virus. Virology. 1994. 204: 580-589.
    37. Heppell J, Tarrab E, Berthiaume L. Characterization of the small open reading frame on genome segment A of infectious pancreatic necrosis virus. J. Gen. Virol. 1995. 76: 2091-2096.
    38. Mundt E, Beyer J, Muller H. Identification of a novel viral protein in infectious bursal disease virus-infected cells. J. Gen. Virol. 1995. 76:437-443.
    39. Calvert JG, Nagy E, Soler M, et al. Characterization of the VPg-dsRNA linkage of infectious pancreatic necrosis virus. J. Gen. Virol. 1991. 72: 2563-2567.
    40. Spies U, Muller H, Becht H. Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products. Virus Res. 1987. 8: 127-140.
    41. Morgan MM, Macreadie IG, Harley VR. Sequence of the small double-stranded RNA genomic segment of infectious bursal disease virus and its deduced 90-kDa product. Virology. 1988. 163: 240-242.
    42. Bottcher B, Kiselev NA, Stel'Mashchuk VY. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J. Virol. 1997. 71: 325-330.
    43.Lejal N,da Costa B,Huet JC.Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites.J.Gen.Virol.2000.81:983-992.
    44.Birghan C,Mundt E,Gorbalenya AE.A non-canonical Ion proteinase lacking the ATPase domain employs the Ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus.EMBO.J.2000.19:114-123.
    45.Brown MD,Skinner MA.Coding sequences of both genome segments of a European "very virulent" infectious bursal disease virus.Virus.Res.1996.40:1-15.
    46.Sanchez AB,Rodriguez JF.Proteolytic processing in infectious bursal disease virus:identification of the polyprotein cleavage sites by site-directed mutagenesis.Virology.1999.262:190-199.
    47.Chevalier C,Galloux M,Pous J,et al.Structural peptides of a nonenveloped virus are involved in assembly and membrane translocation.J.Virol.2005.79:12253-12263.
    48.Sanchez AB,Rodriguez JF.Proteolytic processing in infectious bursal disease virus:identification of the polyprotein cleavage sites by site-directed mutagenesis.Virology.1999.262:190-199.
    49.胡子信,张曼夫.传染性法氏囊病病毒中国强毒株A节段cDNA基因的克隆和序列分析.病毒学报.1999.15:330-337.
    50.刘红,庄文忠,于明,等.鸡传染性法氏囊病病毒野毒株VP2基因高可变区酶切位点分析.中国兽医学报.1999.19:320-323.
    51.Yamaguchi T,Ogawa M,Inoshima Y,et al.Identification of sequence changes responsible for the attenuation of highly virulent infectious bursal disease virus.Virology.1996.223:219-223.
    52.Fernandez-Arias A,Martines S,Rodriguez JF,et al.The major antigenic protein of infectious bursal disease virus,VP2,is an apoptotic inducer.J.Virol.1997.71:8014-8018.
    53.Schnitzler D,Bernstein F,M(u|¨)ller H,et al.The genetic basis for theantigenicity of the VP2 protein of the infectious bursal disease virus.J.Gen.Virol.1993.74:1563-1571.
    54.蒋静,孙建和,陆萍.传染性法氏囊病病毒上海超强毒株VP2-4-3基因真核表达质粒的构建与表达.华中农业大学报.2004.23:179-182.
    55.胡子信,张曼夫.传染性法氏囊病病毒中国强毒株A节段cDNA基因的克隆和序列分析.病毒学报.1999.15:330-338.
    56.Chevalier C,Lepault J,Costa B D,et al.The last C-terminal residue of VP3,gluramic acid 257,cont rols capsid assembly of Infectious bursal disease virus.J.Virol.2004.78:3296-3303.
    57.包晓玮,张厚双,高宏雷,等.鸡传染性法氏囊病超强毒Gx及其致弱株基因组B节段的克隆和序列分析.中国预防兽医学报.2005.27:85-89.
    58.Becht H,M(u|¨)ller H,M(u|¨)ller HK.Comparative studies on structural and antigenic properties of two serotypes of infectious bursal disease virus.J.Gen.Virol.1988.69:631-640.
    59.Fahey KJ,O'Donnell IJ,Azad AA.Characterization by Western blotting of the immunogens of infectious bursal disease virus.J.Gen.Virol.1985.66:1479-1488.
    60.Mundt E,Kollner B,Kretzschmar D,VP5 of infectious bursal disease virus is not essential for viral replication in cell culture.J.Virol.1997.71:5647-5651.
    61.Fernandez-Arias A,Serrano A,Carrascosa JL.VP1,the putative RNA-dependent RNA polymerase of infectious bursal disease virus,forms complexes with the capsid protein VP3,leading to efficient encapsidation into virus-like particles.J Virol.1999.73:6973-6983.
    62.包晓玮,张厚双,高宏雷,等.鸡传染性法氏囊病超强毒Gx及其致弱株基因组B节段的克隆和序列分析.中国预防兽医学报.2005.27:85-89.
    63.Kibenge FS,Nagarajan MM,Qian B.Determination of the 5' and 3' terminal noncoding sequences of the bi-segmented genome of the avibirnavirus infectious bursal disease virus.Arch.Virol.1996.141:1133-1141.
    64.Kibenge FS,Dhama V.Evidence that virion-associated VP1 of avibirnaviruses contains viral RNA sequences.Arch.Virol.1997.142:1227-1236.
    65.Villanueva RA,Guacucano M,Pizarro J,et al.Inhibition of virion-associated IPNV RNA polymerase,VP1,by radiolabeled nucleotide analogs.Virus Res.2005.112:132-135.
    66.Spies U,Muller H,Becht H.Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products.Virus Res.1987.8:127-140.
    67.Morgan MM,Macreadie IG,Harley VR,et al.Sequence of the small double-stranded RNA genomic segment of infectious bursal disease virus and its deduced 90-kDa product.Virology.1988.163:240-242.
    68.Spies U,Muller H.Demonstration of enzyme activities required for cap structure formation in infectious bursal disease virus,a member of the birnavirus group.J.Gen.Virol.1990.71:977-981.
    69.Macreadie IG,Azad AA.Expression and RNA dependent RNA polymerase activity of birnavirus VP1 protein in bacteria and yeast.Biochem.Mol.Biol.Int.1993.30:1169-1178.
    70.Magyar G,Chung HK,Dobos P.Conversion of VP1 to VPg in cells infected by infectious pancreatic necrosis virus.Virology.1998.245:142-150.
    71.Kibenge FS,Dhillon AS,Russell RG.Biochemistry and immunology of infectious bursal disease virus.J.Gen.Virol.1988.69:1757-1775.
    72.Lukert PD,Davis RB.Infectious bursal disease virus:growth and characterization in cell cultures.Avi.Dis.1974.18:243-250.
    73.Yehuda H,Pitcovski J,Michael A.Viral protein 1 sequence analysis of three infectious bursal disease virus strains:a very virulent virus,its attenuated form,and an attenuated vaccine.Avi Dis.1999.43:55-64.
    74.Yamaguchi T,Ogawa M,Inoshima Y.Identification of sequence changes responsible for the attenuation of highly virulent infectious bursal disease virus.Virology.1996.223:219-223.
    75.Muller H.Replication of IBDV in lymphoid cell.Arch.Virol.1996.87:191-203.
    76.BW卡尔尼克主编.高福,刘文军主译.禽病学(第3版).北京:北京农业大学出版社,1991:554-176.
    77.Tsukamoto K,Matsynyra T,Mase M,et al.A highly sensitive,broad spectrum infectivity assay for IBDV.Avi.Dis.1995.11:575-586.
    78.Komine K,Ohta H,kamata S.Infectivity of infectious bursal disease virus neutralized by maternal antllaely in various chick cells.J.Vet.Sci.1989.51:634-635.
    79.Bukkhardt E,Muller H.Susceptility of chiken blood lymphoblasts and monocytes to IBDV.Arch.Virol.1987.34:237-303.
    80.Inoue M,Yamanoto H,Matou Y.Susceptibility of chicken monocytic cell line to IBDV.J.Vet.Med.Sci.1995.54:575-577.
    81.Muller H,Lange H,Becht H.Formation,characterization and intrefering capacity of a small plague mutant and of imcomplete virus particles of the infectious bursal disease virus(IBDV).Virus Res.1996.4:297-309.
    82.Hassan MK,Nielsen CK,Ward LA,et al.Avi.Dis.1996:832-836.
    83.Jackwood DH,Saif YM,Hμghes JH.Avi.Dis.1987.31:370-375.
    84.Rosenberger JK,Cloud SS,Metz A,et al.Proc,36thWestern Poultry Disease Coference.Davis.Calif.1987.105-109.
    85.Tsai HJ,Saif YM.Avi.Dis.1992.36:415-422.
    86.Saijo K,Higashihara M,Fuyisaky Y,et al.Isolation and characterization of attenunated plague variants of infectious bursal disease virus.Vet.Microl.1990.22:171-178.
    87.Reddy SK,Silim A,RatcliffeM JH.Biological roles of the major capsid protoins and relationships between the ewoexisting serotype of IBDV.Arch.Virol.1997.127:203-222.
    88.Nieper H,Muller H.Susceptibility of chicken lymphoid cells to IBDV doesnot co relate with the presence of specific binding cites.J.Gen.Virol.1996.77:1229-1237.
    89.Komine K,Ohta H,kamata S.Infectivity of infectious bursal disease virus neutralized by maternal antllaely invarious chick cells.J.Vet.Sci.1989.51:634-635.
    90.Komine K,Ohta H,Fujl H,et al.Efficency of subcutaneous application of live IBD vaccing in young chickens with maternally derived antibody.J.Vet.Med.Sci.1995.8:647-653.
    91.Kibenge FS,Qian B,Nagy E.Formation of virus-like particles when the polyprotein gene(segment A) of infectious bursal disease virus is expressed in insect cells.Can.J.Vet.Res.1999.63:49-55.
    92.Darteil R,Bublot M,Laplace E,et al.Herpevirus of turkey recombinant viruses expressing infectious bursal disease virus(IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens.Virology.1995.211:481-490.
    93.Sheppard M,Werner W,Tmtas E,et al.Foul adenovirus recombinant expressing vp2 of IBDV induces protective immunity against bursal disease.Arch.Virol.2000.143:915-930.
    94.Tsukamoto K,Kojima C,Komori Y,et al.Protection of chickens agaist very virulent IBDV and MDV with a recombinant MDV expressing IBDV vp2.Virology.1999.257:352-362.
    95.Tsukamoto K,Sato T,Saito S,et al.Dual-viral vector approach induced strong and long-lasting protective immunity against very virulent infectious bursal disease virus.Virology.2000.269:257-267.
    96.姜平,陈溥言,蔡宝祥,等.传染性法氏囊病毒vp3结构蛋白基因在大肠杆菌中的高效表达.病毒学报.1998.14:249-283.
    97.Li JR,Huang YW,Li XY,et al.Plasmid DNA encoding antigens of infectious bursal disease viruses induce protective immune responses in chickens:factors influencing efficacy.Virus Res.2003.98:63-74.
    98.王笑梅,王牟平,高宏雷,等.传染性法氏囊病毒VP2在酵母细胞内的高效表达及其免疫原性研究.中国农业科学.2003.36:443-447.
    99.于琏,宋坤华,金勇风,等.传染性法氏囊病病毒HZ96 VP2 cDNA的结构分析及在大肠杆菌中的表达.细胞与分子免疫学杂志.1999.15:97-100.
    100.Wang MY,Kuo YY,Lee MS,et al.Self-assembly of the infectious bursal disease virus capsid protein,rVP2,expressed in insect cells and purification of immunogenic chimeric rVP2H particles by immobilized metal-ion affinity chromatography.Biotechnology and Bioengineering.2000.67:104-111.
    101.J acob P,Bezalel G,Gilad G,et al.Development and large scale use of recombinant VP2 vaccine for the prevention of infectious bursal disease of chickens.Vaccine.2003.21:4736-47431.
    102.李建荣,于涟,黄耀伟,等.传染性法氏囊病病毒浙江分离株(ZJ2000)基因组A节段全长cDNA的克隆和序列分析.中国兽医学报.2002.22:10-14.
    103.李广兴,孙宗禹,刘文周,等.四株鸡传染性法氏囊病病毒毒力的研究.中国畜禽传染病.1998.20:324-326.
    104.Darteil R,Bublot M,Laplace E,et al.Herpevirus of turkeyrecombinant viruses expressing infectious bursal disease virus(IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens.Virology.1995.211:481-490.
    105.蔺祥清.鸡传染性法氏囊病河北野毒株的分离研究.中国家禽.2000.22:11-13.
    106.田少敏,阮康成,钱建飞,等.高免疫原性的失活病毒.生物化学与生物物理学报.2001.31:78-86.
    107.Giambrone J,Singn N,Locy R,et al.AAES scientist s developing edible transgenic plant vaccine immunizing chickens against infectious bursal disease virus.2001.
    108.M(u|¨)ller H,Islam MR,Raue R,Research on infectious bursal disease-the past,the present and the future.Vet.Micro.2003.97:153-165.
    109.Ogawa M,Yamaguchi T,Setiyono A,et al.Some characteristics of a cellular receptor for virulent infectious bursal disease virus by using flow cytometry.Arch.Virol.1998.143:2327-2341.
    110.Hirai K,Calnek BW.In vitro replication of infectious bursal disease virus in established lymphoid cell lines and chicken B lymphocytes.Infect.Immun.1979.25:964-970.
    111.Veromaa T,Vainio O,Eerola E,et al.Monoclonal antibodies against chicken Bu-la and Bu-lb alloantigens.Hybridoma.1988.7:41-48.
    112.Pink JR,Rijnbeek AM.Monoclonal antibodies against chicken lymphocyte surface antigens.Hybridoma.1983.2:287-296.
    113. Nieper H, Muller H, et al. Susceptibility of chicken lymphoid cells to infectious bursal disease virus does not correlate with the presence of specific binding sites. J. Gen. Virol. 1996. 77: 1229-1237.
    114. Augus S, Tomokazu H, et al. Detection of cell membrane proteins that interact with virulent infectious bursal disease virus. J. Vet. Med. Sci. 2001. 63: 219-221.
    115. Setiyono A, Yamaguchi T, et al. Isolation of monoclonal antibodies that inhibit the binding of infectious bursal disease virus to LSCC-BK3 cells. J. Vet. Med. Sci. 2001. 63: 215-218.
    116. Paglini G, Pereyra ED, Paglini S. Cellular receptor for pixuna virus in chicken embryonic fibroblasts. Med. Microbiol. Immunol. 2005. 12: 1-8.
    117. Diaz-Griffero F, Jackson AP, Brojatsch J. Cellular uptake of avian leu kosis virus subgroup B is mediated by clathrin. Virology. 2005. 337:45-54.
    118. Lin TW, Lo CW. Chicken heat shock protein 90 is a component of the putative cellular receptor complex of infectious bursal disease virus. J. Virol. 2007. 81: 8730-8741.
    119. Yip CW, Yeung YS, et al, Demonstration of receptor binding properties of VP2 of very virulent strain infectious bursal disease virus on Vero cells. Virus Res. 2007. 123: 50-56.
    120. Haywood AM. Virus receptors: binding, adhesion strengthening, and changes in viral strucrure. J. Virol. 1994.68:1-5.
    121. Rajcani J. Molecular mechanisms of virus spread and virion components as tools of virulence. Acta. Microbiol. Immunol. Hung. 2003. 50: 407-443.
    122. 郭爱珍, 陆承平. 病毒的细胞膜受体. 中国病毒学. 1997.12:295-300.
    123. Nussbaum O, Broder CC, Moss B, et al. Functional and structural interactions between measles virus hemagglutinin and CD46. J. Virol. 1995. 69: 3341-3349.
    124. Naniche D, Varior-Krishnan G, Cervoni F, et al. Human membrane cofactor protein (CD46) acts as a cellcular receptor for measles virus. J. Virol. 1993. 67: 6025-6032.
    125. Ponka P, Lok CN. The transferrin receptor: role in health and disease Int. J. Biochem. Cell Biol. 1999.31: 1111-1137.
    126. Susan R. Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc. Natl. Acad. Sci. U S A. 2002. 99: 12386-12390.
    127. Lee JH, Engler JA, Collawn JF, et al. Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur. J. Biochem. 2001. 268: 2004-2012.
    128. Negrete OA. Two Key Residues in Ephrin B3 Are Critical for Its Use as an Alternative Receptor for Nipah Virus. PLoS. Pathog. 2006. 10: 2.
    129. Spillmann D. Heparan sulfate: anchor for viral intruders?. Biochimie. 2001. 83: 811-817.
    130. Chen Y, Maguire T, Hileman RE, et al. Nat. Med. 1997. 3: 866-871.
    131. Vanderheijden N, Delputte PL, et al. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J. Virol. 2003. 77: 8207-8215.
    132. Delputte PL, Vanderheijden N, et al. Involvement of the Matrix Protein in Attachment of Porcine Reproductive and Respiratory Syndrome Virus to a Heparinlike Receptor on Porcine Alveolar Macrophages. J Virol. 2002. 76: 4312-4320.
    133. Miguel B, Pharr GT, Wang C. The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch. Virol. 2002. 147: 2047-2056.
    134. Sidorenko SP, Clark EA. The dual-function CD150 receptor subfamily: the viral attraction. Nat. immunol. 2003 ;4(1): 19-24.
    135. Maurer K, Krey T, Moennig V, et al. CD46 is a cellular receptor for bovine viral diarrhea virus. J. Virol. 2004. 78: 1792-1799.
    136. Cattaneo R. Four viruses, two bacteria, and one receptor: membrane cofactor protein (CD46) as pathogens' magnet. J. Virol. 2004. 78: 4385-4388.
    137. Roelvink et al. The coxsack ievirus adenovirus receptor protein can function as a cellular attachment protein for adenovirus seroktypes from subgroupsA. C. D. E and F. J. Virol. 1998. 72: 7909-7915.
    138. Bergelson et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science. 1997.275:1320-1323.
    139. Arias CF, Isa P, Guerrero CA, et al. Molecular biology of rotavirus cell entry. Arch. Med. Res. 2002. 33: 356-361.
    140. Masciopinto F, Campagnoli S, Abrignani S, et al. The small extracellular loop of CD81 is necessary for optimal surface expression of the large loop, a putative HCV receptor. Virus Research. 2001. 80: 1-10.
    141. Samson, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutantalleles of the CCR-5 chemokine receptor gene. Nature. 1996. 382: 722-725.
    142. Huang, et al. The role of a mutant CCR5 allele in HIV-1 transm ission and disease progression. Nat. Med. 1996.2: 1240-1243.
    143. 王学,等.人免疫缺陷病毒的受体与辅助受体.中国病毒学, 1999.14:1.
    
    144. Jackson T, King AM, Stuart DI, et al. Structure and receptor binding. Virus Res. 2003. 91: 33-46.
    145. Pandey A, Mann M. Proteomics to study genes and genomes. Nature. 2000. 405: 837-846.
    146. Li WH, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for SARS coronavirus. Nature. 2003. 426: 450-454.
    
    147. Triantafilou K, Fradelizi D, Wilson K, et al. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J. Virol. 2002. 76:633-643.
    148. Dalziel RG, Hopkins J, Watt NJ, et al. Identification of a putative cellular receptor for the lentivirus visna virus. J. Gen. Virol. 1991. 72: 1905-1911.
    149. Tallet B, Astier-Gin T, Londos-Gagliardi D, et al. Expression, purification and biological properties of the carboxyl half part of the HTLV-I surface envelope glycoprotein. J. Chromatogr. Biomed. Sci. Appl. 2000. 737: 85-95.
    150. Kim JK, Fahad AM, Shanmukhappa K, et al. Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. J. Virol. 2006. 80: 689-696.
    151. Ryu CJ, Cho DY, Gripon P, et al. An 80-kilodalton protein that binds to the Pre-S1 domain of hepatitis B virus. J. Virol. 2000. 74: 110-116.
    152. Dalgleish AG, Beverley PCL, Clapham PR, et al. The CD4 antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984. 312: 763-766.
    153. Maurer K, Krey T, Moennig V, et al. CD46 is a cellular receptor for bovine viral diarrhea virus. J. Virol. 2004. 78: 1792-1799.
    154. Dorig RE, Marcil A, Chopra A, et al. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993. 75: 295-305.
    155. Naniche D, Varior-Krishnan G, Cervoni F, et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 1993. 67: 6025-6032.
    156. Yeager CL, Ashmun RA, Williams RK, et al. Human aminopeptidase N is a receptor for human coronavirus 229 E. Nature. 1992. 357: 420-422.
    157. Salas-Benito JS, Del-Angel RM. Identification of two surface proteins from C6/36 cells that bind Dengue type 4 virus. J. Virol. 1997. 71: 7246-7252.
    158.Craig RB,Rase LB,Stuart K,et al.Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors.J.Bio.Chem.1994.269:17067-17074.
    159.Chen YP,Terry M,Ronald E,et al.Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate.Nat.Med.1997.3:866-871.
    160.Wu E,Traμger SA,Pache L,et al.Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoc onjunctivitis.J.Virol.2004.78:3897-3905.
    161.Anthony HCC,Ralph WP,Patrick WKL,et al.Reovirus binds to multiple plasma membrane proteins of mouse L fibroblasts.Virology.1990.178:316-320.
    162.Nieper H,Muller H.Susceptibility of chicken lymphoid cells to infectious bursal disease virus does not correlate with the presence of specific binding sites.J.Gen.Virol.1996.77:1229-1237.
    163.郭爱珍,陆承平.犬瘟热病毒细胞膜受体的鉴定.病毒学报.2000.16:155-157.
    164.尹崇,余健秀,等.斜纹夜蛾多角体病毒包埋型病毒受体的鉴定.中国病毒学.2002.17:66-68.
    165.Kim TY,Choi Y,Cheong HS,et al.Identification of a cell surface 30kDa protein as a candidate receptor for hantaan virus.J.Gen.Virol.2002.83:767-773.
    166.Fields BN.et al.Fundamental Virology.2nd,New York:Raven Press.1990.87-95.
    167.Gastka M,Horvath J,Lentz TL.Rabies virus binding to the microtinic acetylcholine receptor alpha subunit demonst rated by virus overlay protein binding assay.J.Gen.Virol.1996.77:2437-2440.
    168.Maisner A,Schneider-Schanlies J,Liszewski MK.et al.Binding of measles virus to membrane (CD46):Importance of disulfide bonds and N-glycans for the receptor function.J.Virol.1994.68:6299-6304.
    169.Wang KS,Schmaljohn AL,Kuhn RJ,et al.Anti-idiotypic antibodies as probes for the Sindbis virus receptor.Virology.1991.181:694-702.
    170.Hanham CA,Zhao FS,Tignor GH.Evidence from the anti-idiotypic network that the acetylcholine receptor is a rabies virus receptor.J.Virol.1993.67:530-542.
    171.Griffiths AD,Williams SC,Hartley O,et al.Isolation of high affinity human antibodies directly from large synthetic repertoires.EMBO.J.1994.13:3245-3260.
    172.Hong SS,Karayan L,Tournier J,et al.Adenovirus type 5 fiber knob binds to MHC class Ⅰ α2domain at the surface of human epithelial and B lymphoblastoid cells.EMBO.J.1997.16:2294-2306.
    173.Paul P,Kathleen MM,et al.Display cloning:fuctional identification of natural product receptors using cDNA-phage display.Chemistry &Biology.1999.6:707-716.
    174.董倩,施双双,等.cDNA文库噬菌体展示法的建立及乙型肝炎病毒前S1蛋白结合蛋白筛检.解放军医学杂志.2002.4:321-322.
    175.Sirena D,Lilienfeld B,Eisenhut M,et al.The human membrane cofactor CD46 is a receptor for the species B adenovirus serotype 3.J.Virol.2004.78:4454-4462.
    176.Yu F,Christopher CB,Paul EK,et al.HIV-1 entry cofactor:functional cDNA cloning of a seven transmembrane,G protein-coupled receptor.Science.1996.272:872-877.
    177.Rebecca IM,Morgyn SW,Brain JL,et al.Herpes simplex virus-1 entry into cells mediated by a novel member of the TNFPNGF receptor family.Cell.1996.87:427-436.
    178.Lorraine MA,Lena T,David S,et al.A putative murine ecotropic retrovirus receptor gene encodes s multiple membrane spanning protein and confers susceptibility to virus infection.Cell.1989.57:659-666.
    179.Jeffrey MG,Gary D,Ann MM,et al.The major human rhinovirus receptor is ICAM-1.Cell.1989.56:839-847.
    180.Pileri P,Uematsu Y,Campagnoli S,et al.Binding of hepatitis C Virus to CD81.Science.1998.282:338-341.
    181.White MA.The yeast two-hybrid system:forward and reverse.Proc.Natl.Acad.Sci.USA.1996.93:10001-10003.
    182.Field S,Song O.A novel genetic system to detect protein-protein interaction.Nature.1989.340.245-246.
    183.Li LY,Liu X,Zhang P,et al.Cloning and functional identification of measles virus receptor on marmoset cells.Chin.Sci.Bull.2002.47:1217-1225.
    184.Schweneker M,Bachmann AS,Moelling K.The HIV-1 co-receptor CCR5 binds to alpha-catenin,a component of the cellular cytoskeleton.Biochem.Biophys.Res.Commun.2004.325:751-757.
    185.Gaggar A,Shayakhmetov DM,Lieber A.CD46 is a cellular receptor for group B adenoviruses.Nat.Med.2003.9:1408-1412.
    186.Traμger SA,Wu E,Bark SJ.et al.The identification of an adenovirus receptor by using affinity capture and mass spectrometry.Chem.biochem.2004.5:1095-1099.
    187. Jindadamrongwech S, Thepparit C, Smith DR. Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch. Virol. 2004. 149: 915-927.
    188. Thepparit C, Smith DR. Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J. Virol. 2004.78:12647-12656.
    189. Tio PH, Jong WW, Cardosa MJ. Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1,2 and 3. Virology. 2005.2: 25-36.
    190. Reyes VJ, Chavez SS, Medina F, et al. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J. Virol. 2005.79: 4557-4567.
    191. Berger et al. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism and disease. A nnual Review of Immunology. 1999. 17: 657-700.
    192. Sidhu SS, Fairbrother WJ, Deshayes K. Exploring protein-protein interactions with phage display. Chem. Biochem. 2003. 4: 14-25.
    193. Zozulya S, Lioubin M, Hill RJ, et al. Mapping signal transduction pathways by phage display. Nat. Biotech, 1999. 17:1193-1198.
    194. Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science. 1990. 249: 386-390.
    195. Haas BJ, Volfovsky N, Town CD, et al. Full-length messenger RNA sequences greatly improve genome annotation. Genome. Biol. 2002. 3: RESEARCH0029.
    196. Wood WI, Capon DJ, Simonsen CC, et al. Expression of active human factor VIII from recombinant DNA clones. Nature. 1984. 312:330-337.
    197. Hunziker W, Spiess M, Semenza G, et al. The sucrase-isomaltase complex: primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell. 1986. 46: 227-34.
    198. Toole JJ, Knopf JL, Wozney JM, et al. Molecular cloning of a cDNA encoding human antihaemophilic factor. Biotechnology. 1992. 24:310-315.
    199. Herz J, Hamann U, Rogne S, et al. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO. J. 1988. 7: 4119-4127.
    200. Young RA, Davis. Efficient isolation of gene by using antibody probes, proc. Natl. Acad. Sci. USA. 1983.80: 1194-1198.
    201. Clare L, Cardon J. A colony bank containing sythetic ColE, hybrid plasmids representative of the entire E.coli genome. Cell. 1976. 9: 91-95.
    202. Chettle N, Stuart JC, Wyeth PJ. Outbreak of vir μLent infectious bursal disease in East Anglia. Vet. Rec. 1989.125:271-272.
    203. Wang XN, Zhang GP, Zhou JY, et al. Identification of neutralizing epitopes on the VP2 protein of infectious bursal disease virus by phage-displayed heptapeptide library screening and synthetic peptide mapping. Viral. Immunol. 2005. 18: 549-557.
    204. Yu L, Li JR, Huang YW, et al. Molecular characteristics of full-length genomic segment A of three infectious bursal disease viruses in China: two attenuated strains and one virulent field strain. Avian. Dis. 2001. 45: 862-874.
    205. Bottcher B, Kiselev NA, Stel'Mashchuk VY, et al. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J. Virol. 1997. 71: 325-330.
    206. Chen HY, Zhou Q, Zhang MF, et al. Sequence analysis of the VP2 hypervariable region of nine infectious bursal disease virus isolates from mainland China. Avian. Dis. 1998. 42:762-769.
    207. Cao YC, Yeung WS, Law M, et al. Molecular characterization of seven Chinese isolates of infectious bursal disease virus: classical, very virulent, and variant strains. Avian. Dis. 1998. 42: 340-351.
    208. Cregg JM, Russell KA. Transformation. In Pichia protocols Edited by:Higgins D, Cregg J. Totawa: Humana Press; 1998:27-39.
    209. Sulga M, Hatakeyama T: High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation. Yeast. 2001. 18: 1015-1021.
    210. Wu S, Letchworth GJ. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetateand dithiothreitol. Bio.Techniques. 2004. 36: 152-154.
    211. Zemanova J, Nosek J, Tomaska L. High-efficiency transformation of the pathogenic yeast Candida parapsilosis. Curr. Genet. 2004. 45: 183-186.
    212. Thomson JE, Register E, Curotto J, et al. An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast. 1998. 14: 565-571.
    213. Young RA, Davis. Efficient isolation of gene by using antibody probes, proc. Natl. Acad. Sci. USA. 1983.80:1194-1198.
    214. Bergelson JM, Chan M, Solomon KR, et al. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement reg uLatory protein, is a receptor for several echoviruses. Proc. Natl. Acad. Sci. U S A. 1995. 91: 6245-6248.
    215. Naniche D, Varior-Krishnan G, Cervoni F, et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 1993. 67: 6025-6032.
    216. Shepley MP, Racaniello VR. A monoclonal antibody that blocks poliovirus attachment recognizes the lymphocyte homing receptor CD44. J. Virol. 1994. 68: 1301-1308.
    217. Kim JK, Fahad AM, Shanmukhappa K, et al. Defining the Cellular Target(s) of Porcine Reproductive and Respiratory Syndrome Virus Blocking Monoclonal Antibody 7G10. J. Virol Immunol. 2006. 80: 689-696.
    218. Merja Roivainen, Noora Alakulppi, et al. A whole cell immunization-derived monoclonal antibody that protects cells from coxsackievirus A9 infection binds to both cell surface and virions. J. Virol. Met. 2005. 130: 108-116.
    219. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annual Review of Immunology. 1999. 17: 657-700.
    220. Colonno RJ, Callahan PL, et al. Isolation of a Monoclonal Antibody That Blocks the Attachment of MajorGroup of Human Rhinoviruses. J. Virol. 1986. 57: 7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700