用户名: 密码: 验证码:
RIG-I样受体在登革病毒诱导的I型干扰素反应中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
登革病毒(Dengue virus,DEN)为单股正链RNA病毒,基因组长约11 kb,为黄病毒科黄病毒属重要成员。自然界中存在4个血清型登革病毒,感染人类后均可导致登革热、登革出血热和登革休克综合征等一系列严重疾病,对热带亚热带地区的公共卫生安全造成重要威胁。目前,登革病毒的致病机理仍不十分清楚,临床上也没有疫苗和特效治疗药物。
     登革病毒感染人类细胞后,可迅速激活宿主的天然免疫反应,在感染早期限制病毒的复制和传播。Toll样受体(Toll-like receptor,TLR)和RIG-I样受体(RIG-I-like receptor,RLR)能够侦测和识别入侵的病毒,诱导I型干扰素和促炎症细胞因子产生,在机体的抗病毒天然免疫反应中具有重要作用。TLRs主要表达于免疫细胞和内含体表面,主要在类浆树突细胞等免疫细胞中发挥作用。RLR是一类新发现的模式识别受体,一般在非免疫细胞中识别细胞质中的病毒RNA,诱导I型干扰素的产生。登革病毒主要通过蚊媒叮咬传播,包括朗格汉斯细胞等上皮细胞等被认为是可能的初级靶细胞。在登革病毒感染的人类上皮细胞中,RLR能否以及如何发挥其生物学功能目前并不清楚。本研究以人肺上皮细胞A549作为模型,首先观察了登革病毒诱导的I型干扰素反应,然后进一步通过RNAi和过表达的方法对RIG-I、MDA5等信号分子在病毒诱导的I型干扰素反应中的作用进行了分析,并初步探讨了RIG-I抑制登革病毒的作用机制。主要实验结果包括以下三个部分:
     一、登革病毒感染可激活RIG-I信号通路,诱导I型干扰素的产生
     我们首先观察了登革病毒感染A549细胞后诱导IFN-β产生的能力,结果发现登革病毒感染细胞12 h后即可诱导IFN-β的产生,而热灭活病毒不具备诱导IFN-β产生的能力。同时,利用复制子系统进行研究发现,转染登革病毒复制子后同样能够诱导IFN-β的产生,说明病毒基因组的复制是诱导IFN-β的产生的前提条件。进一步通过RT-PCR和Western blotting的方法对RIG-I及其接头蛋白IPS-1的表达水平进行检测,结果发现登革病毒感染后细胞中RIG-I和IPS-1的表达水平均明显上调。在此基础上,我们利用IRF-3和IFN-β启动子控制的CAT报告质粒(PRDIII-I)-CAT和(-110-IFNβ)-CAT定量分析了病毒感染对RIG-I下游信号分子的激活作用,结果发现登革病毒感染可显著增强IRF-3和IFN-β启动子的转录活性。同时,我们分别使用不同血清型和同一血清型不同分离株登革病毒感染A549细胞,结果发现其诱导IFN-β产生的能力未存在显著差异。此外,西尼罗病毒感染A549细胞后,同样能够激活RIG-I分子,诱导IFN-β的产生。
     上述结果表明,登革病毒在A549细胞中的复制能够激活RIG-I信号通路,并通过一系列级联信号反应诱导I型干扰素的产生;而且,病毒血清型和毒力对病毒诱导的I型干扰素反应并无显著影响。
     二、MDA5和RIG-I共同参与登革病毒诱导的IFN-β反应
     为了进一步明确RIG-I在登革病毒感染过程中的作用,我们首先在A549细胞中瞬时表达RIG-I,结果发现全长RIG-I的过表达可显著上调登革病毒诱导的IFN-β反应,而作为显负性突变体的RIG-IC能够下调IFN-β反应。进一步通过siRNA的方法敲除A549细胞中RIG-I基因,结果发现登革病毒感染上述细胞后,IFN-β启动子转录活性仍可被激活,上清中仍可检测到IFN-β的大量产生。这说明,登革病毒感染后I型干扰素反应可能不仅仅由RIG-I信号通路决定。进一步研究发现,登革病毒感染同样可上调MDA5的表达,MDA5在A549细胞中的过表达同样能够激活IFN-β启动子,诱导IFN-β的产生,并呈剂量依赖性。然而MDA5的过表达对登革病毒诱导IFN-β反应并无显著的促进作用,使用siRNA敲除MDA5后发现,登革病毒感染诱导的IFN-β反应并未受MDA5敲除的影响。
     在此基础上,我们利用shRNA表达载体筛选获得了稳定干扰RIG-I的工程细胞系,登革病毒感染上述细胞后,MDA5的表达明显上调,进一步通过siRNA敲除MDA5,结果发现登革病毒诱导IFN-β产生的能力显著降低。上述结果说明,登革病毒感染上皮细胞后,可同时激活RIG-I和MDA5,RIG-I或MDA5可能存在一种功能上的替代机制,共同参与登革病毒诱导的IFN-β反应,其中RIG-I信号通路可能发挥更主要的作用。
     三、RIG-I对登革病毒和西尼罗病毒的抑制作用
     对构建的稳定干扰RIG-I的工程细胞株进行研究发现,登革病毒感染上述细胞后,致细胞病变效应明显增强,上清中子代病毒的产量明显提高。我们进一步通过过表达的方法观察了RIG-I对登革病毒和西尼罗病毒复制的抑制效果,结果发现RIG-I在A549细胞中的过表达能够显著降低子代病毒的产量,并呈剂量依赖性。为明确RIG-I抑制病毒复制的具体作用机制,我们使用IFN-β抗体阻断JAK-STAT信号通路,结果发现RIG-I的过表达仍然对病毒的产量存在明显的抑制作用,说明IFN-β激活的JAK-STAT通路可能不是RIG-I抑制病毒的主要原因,RIG-I本身可能就具有抗病毒作用。我们进一步在A549细胞中表达RIG-I的不同区段,结果发现RIG-I和RIG-IC的过表达对登革病毒均具有抑制作用,说明RIG-I的抗病毒作用可能主要由其C端解旋酶区决定。在此基础上,通过Western blotting的方法对病毒感染早期的蛋白表达水平进行检测发现,RIG-I和RIG-IC的表达使细胞中登革病毒E蛋白的表达水平明显降低。因此,在登革病毒的感染初期,RIG-I很可能不仅诱导I型干扰素的产生,其C端解旋酶区还可通过某种机制抑制病毒蛋白的合成,限制病毒的复制和传播。
     总之,我们的研究发现,登革病毒感染人类上皮细胞可迅速上调RIG-I和MDA5的表达,RIG-I和MDA5共同参与,并以RIG-I为主诱导IFN-β的产生;此外,RIG-I羧基端能够抑制病毒蛋白的早期合成,对多种蚊媒黄病毒具有抑制作用。这些结果证实了RIG-I/MDA5在病毒感染过程中的重要作用,初步揭示了上皮细胞中登革病毒感染诱导I型干扰素产生的基本过程,为深入探讨病毒-宿主相互作用和抗病毒药物的研制奠定了基础。
Dengue viruses (DENV) type 1-4, together with West Nile virus (WNV), Japanese Encephalitis virus (JEV), etc, belong to the genus Flavivirus family Flavivirida, containing single-stranded, positive-sense genome RNAs of approximately 11 kb in length. DENV infections can result in mild dengue fever (DF), severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). In terms of the morbidity and mortality rates, DENV is becoming one of the most important publich health problems in tropical and subtropical countries. The pathogenesis from DF to DHF/DSS has not yet been elucidated, and no vaccine or antiviral drugs are currently available.
     At the initial stage of virus infection, host pattern recognition recepotors (PRR), including Toll-like receptor (TLRs) and RIG-I-like receptors (RLRs), are responsible for sensing viral RNA and initiates innate antiviral responses, including the activation of proinflammatory cytokines and type I interferon (IFN). Toll-like receptors are abundant on monocytes/macrophages and DCs, and play a key role in regulating the inflammatory response against infectious viruses. RLRs, including RIG-I and MDA5, are supposed to sense cytoplasmic viral RNA mainly in non-immune cells. DENV is transmintted by mosquitoes feed, skin epithelial cells have been supposed to be one of the primary target cells. However, the role of RLRs in human epithelial cells during the induction of IFN by DENV is still unknown. In this study, human lung epithelial cell lines A549 were chosen to observe the IFN response to DENV infection, and then the role of RIG-I and MDA5 during DENV-induced IFN response were analyzed by RNAi and over-expression assays. What’s more, the antiviral effects and mechanism of RIG-I against DENV and West Nlie virus were determined. The main results are described as following in three parts:
     1. DENV induced the expression of RIG-I and IFN-βin A549 cells.
     Firstly, to study the IFN response to DENV infection in human epithelial cells, A549 cells were infected with DENV and heat-inactivated DENV, respectively, and IFN-βwere found secreted in culture supertants since 12 h post-infection by a commercial human IFN-βELISA kit, while no IFN-βwas detected in A549 cells treated with heat-inactivated virus. Also, transfection of a DENV replicon was found to be able to induce the secretion of IFN-βin A549 cells. These results suggested that the production of IFN-βwere due to virtual virus infection or viral RNA replication. Further, RT-PCR and Western blotting resuluts showed that the expression of RIG-I and it’s adaptor, IPS-1, were upregulated upon DENV infection in A549 cells. CAT reportor plasmids that waer under the control of the IRF-3 and IFN-βpromoter were used to analyze the effects of DENV infection, and the results indicated that IRF-3 and IFN-βpromoter were activated 24 hrs post infection.
     Then, different isolates of DENV that differed in serotypes and virulence clearly were used to infect A549 cells, and IFN-βlevels were compared and assayed. While no significant difference was found among those isolates. What’s more, similar RIG-I activation and IFN-βproduction were observed in A549 cells infected with WNV. Together, these results suggested that DENV infection can activate the IRG-I signal pathway molecules, including RIG-I, IPS-1 and IRF-3, finally induce the expression of IFN-βin human epithelial cells. Serotype and virulence of DENV have no effect on the IFN-βresponse to DENV infection in A549 cells.
     2. RIG-I and MDA5 are both involved in IFN-βresponse to DENV infection.
     In order to demonstrate the role of RIG-I in the IFN-βresponse to DENV infection, full-length RIG-I and its dominant negative muatant, RIG-IC, were transiently expressed in A549 cells followed by DENV infection. ELISA and CAT assays results showed that IFN-βlevel and promoter activity was induced by RIG-I and further enhanced by DENV infection, and that RIG-IC caused a reduction in IFN-βlevel and promoter activity. Further, siRNAs were used to knockdown the endogenous expression of RIG-I in A549 cells, while no significant difference was found between the DENV-induced IFN-βresponse in RIG-I-konckout cells and control cells. Next, the role of MDA5 in the IFN-βresponse to DENV infection was analyzed by RNAi and over-expression. The expression of MDA5 was up-regulated upon DENV infection, and over-expression of MDA5 in A549 cells also induced the secretion of IFN-β. While MDA5 knockout and over-expression had no significant effects on the IFN-βresponse to DENV infection in A549 cells.
     Furthermore, stable knockdown cell lines of human RIG-I were developed and MDA5 were subsequently knocked out by siRNA. The IFN-βresponse to DENV infection was almost blocked in this cell line. Together, these results suggest that both RIG-I and MDA5 are involved, and either of the two is essential for the induction of IFN-βresponse to DENV infection, and RIG-I plays a principle role in the IFN-βresponse to DENV infection.
     3. Antivial effects and mechanism of RIG-I against DENV and WNV.
     Previous experiments based on the stable RIG-I-knockout cells showed that RIG-I knockout enhanced the cytopathic effects, and increased the yield of progeny DENV, suggesting a potential antiviral effects of RIG-I. To test whether RIG-I? can inhibit replication of DENV and WNV, RIG-I was transiently over-expressed in A549 cells followed by infection with DENV or WNV, and the progeny virus yield decreased sharply in a dose-dependent manner. Further, treatment of A549 cells with human IFN-βantibodies had no effects on the antiviral activity, demonstrating that the IFN-β-provoked JAK-STAT pathways are not essential for the antiviral effect of RIG-I. Next, over-expression of RIG-I and RIG-IC, not RIG-IN, showed similar antiviral effects, suggesting the C-terminal of RIG-I was responsible for the antiviral activity. What’s more, the DENV E protein level decreased in RIG-I and RIG-IC expressing A549 cells compared with that in RIG-IN expressing and control cells. So at the early stage of DENV infection, the activated RIG-I not only induces IFN-β, but also inhibits the synthesis of viral protein through its C-terminal region.
     In conclusion, our results demonstrate that DENV infection can activate both RIG-I and MDA5, and either of the two is essential for the induction of IFN-βresponse to DENV infection. In addition, the C teiminal region of RIG-I can inhibit the synthsis of viral protein, possessing antiviral activity against multiple flaviviruses. Our findings indicat the critical role of RIG-I and MDA5 during DENV infection, and describe the possible process of type I interferon production in DENV-infected human lung cells for the first time, provide insights for the understanding of virus-host interaction and development of intervention strategy for viral infections.
引文
[1] Cullen BR. Viral RNAs: lessons form the enemy. Cell, 2009, 136:592-8
    [2] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124: 783-801
    [3] Takeuchi O, Akira S. Recognition of viruses by innate immunity. Immunol Rev, 2007, 220: 214
    [4] Akira S. Toll-like Receptor Signaling. J Biol Chem, 2003, 40: 38105-8
    [5] Boehme KW, Compton T. Innate sensing of viruses by Toll-Like receptors. J Virol, 2004, 15: 7867-73
    [6] Thompson AJ, Locarnini SA. Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol Cell Biol, 2007, 85: 435-45
    [7] Liu TX, Zhang JW, Tao J, et al. Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood, 2000, 96(4): 1496~1504
    [8] Gee P, Chua PK, Gevorkyan J, et al. Essential role of the N-terminal domain in the regulation of RIG-I ATPase activity. J Biol Chem, 2008, 283: 9488-96
    [9] Sumpter R Jr, Loo YM, Foy E, et al. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase RIG-I. J Virol, 2005, 79: 2689-99
    [10] Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441: 101-5.
    [11] Gitlin L, BarchetW, Gilfillan S, et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci USA, 2006, 103: 8459-64
    [12] Hornung V, Ellegast J, Kim S, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science, 2006, 314: 994-7
    [13] Pichlmair A, Schulz O, Tan C, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science, 2006, 314: 997-1001
    [14] Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I and Mda5-mediated type I interferon induction, Nat Immunol, 2005, 6: 981-8
    [15] Seth RB, Sun L, Ea CK, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF-3. Cell, 2005, 122: 669-82
    [16] Xu LG, Wang YY, Han KJ, et al. VISA is an adapter protein required for virus-triggered ifn-beta signaling. Mol Cell, 2005, 9: 727-40
    [17] Meylan E, Curran J, Hofmann K, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 2005, 437: 1167-72
    [18] Potter JA, Randall RE, Taylor GL. Crystal structure of human IPS-1/MAVS/VISA/Caedif caspase activation recruitment domain. BMC Struct Biol, 2008, 8: 11
    [19] Sen GC, Sarkar SN. Hitching RIG to action. Nature Immunol, 2005, 6: 1074-7
    [20] Saha SK, Pietras EM, He JQ, et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J, 2006, 25: 3257-63
    [21] Loo YM, Gal M Jr. Viral regulation and evasion of the host response. Curr Top Microbol Immunol, 2007, 316: 295-313
    [22] Malmgaard L. Induction and regulation of IFNs during viral infection. J Interferon Cytokine Res, 2004, 24: 439-54
    [23] Takaoka A, Yanai H. Interferon signaling network in innate defence. Cell Microbiol, 2006, 8: 907-22
    [24] Maher SG, Romero-Weaver AL, Scarzello AJ, et al. Interferon: cellular executioner or white knight? Curr Med Chem, 2007, 14: 1279-89
    [25] Samuel CE. Antiviral actions of interferon. Clin Microbiol Rev, 2001,14: 778-809
    [26] Halstead SB. Dengue. Lancet, 2007, 370: 1644-52
    [27] Vasilakis N, Weaver SC. The history and evolution of human dengue emergence. Adv Virus Res, 2008, 72: 1-76
    [28] Gould EA, Solomon T. Pathogenic flaviviruses. Lancet, 2008, 371: 500-9
    [29] Bartenschlager R, Miller S. Molecular aspects of dengue virus replication. Future Microbiol, 2008, 3: 155-65
    [30] Ray D, Shi PY. Recent advances in flavivirus antiviral drug discovery and vaccine development. Recent Pat Antiinfect Drug Discov, 2006, 1: 45-55
    [31] Santantonio T, Fasano M. Therapy of acute hepatitis C: a review of literature. Curr Pharm Des, 2008, 14: 1686-9
    [32] Gambarin-Gelwan M, Jacobson IM. Optimal dose of peginterferon and ribavirin for treatment of chronic hepatitis C. J Viral Hepat, 2008, 15: 623-33
    [33] Liu CJ, Kao JH. Pegylated interferons for the treatment of chronic hepatitis B. Recent Pat Antiinfect Drug Discov, 2006, 1: 85-94
    [34] Chevaliez S, Pawlotsky JM. Interferons and their use in persistent viral infection. Handb Exp Pharmacol, 2009,189: 203-41
    [35] Crance JM, Scaramozzino N, Jouan A, et al. Interferon, ribavirin, 6-azauridine: antiviral compounds active against pathogenic flavivirus. Antiviral Res, 2003, 58: 73-9
    [36] Diamond MS, Harris E. Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PLR-independent mechanism. Virology, 2001, 75: 297-311
    [37] Ajaryakhajorn C, Mammen MP Jr, Endy TP, et al. Randomized, placebo-controlled trial of nonpegylated and pegylated forms of recombinant human alpha interferon 2a for suppression of dengue virus viremia in rhesus monkey. Antimicrob Agents Chemother, 2005, 49: 4508-14
    [38] Kurane I, Innis B, Nimmannitya S, et al. High levels of interferon alpha in the sera of children with dengue virus infection. Am J Trop Med Hyg, 1993, 48: 222-9
    [39] Restrepo BN, Ramirez RE, Arboleda M, et al. Serum levels of cytokines in two ethnic groups with dengue virus infection. Am J Trop Med Hyg, 2008, 79: 673-7
    [40] Gagnon SJ, Mori M, Kurane I, et al. Cytokine gene expression and protein production in peripheral blood mononuclear cells of children with acute dengue virus infections. J Med Virol, 2002, 67: 41-6
    [41] Chareonsirisuthigul T, Kalayanarooj S, Ubol S. Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and proinflammatory cytokine production, in THP-1 cells. J Gen Virol, 2007, 88: 365-75
    [42] Wang WK, Chao DY, Kao CL, et al. High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology, 2003, 305: 330-8
    [43] Kurane I, Ennis FA. Production of interferon alpha by dengue virus-infected human monocytes. J Gen Virol, 1988,69: 445-9
    [44] Kwan WH, Helt AM, Maranon C, et al. Dendritic cell precursors are permissive to dengue virus and human immunodeficiency virus infection. J Virol, 2005, 79: 7291-9
    [45] Jessie K, Fong MY, Devi S, et al. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis, 2004, 189: 1411-8
    [46] Wu SJ, Grouard-Vogel G, Sun W, et al. Human skin Langerhans cells are targets of dengue virus infection. Nature Med, 2000, 6: 816-20
    [47] Suksanpaisan L, Cabrera-Hernandez A, Smith DR. Infection of human primary hepatocytes with dengue serotype 2. J Med Virol, 2007, 79:300-9
    [48] Lin YL, Liu CC, Lei HY, et al. Infection of five human liver cell lines by dengue-2 virus. J Med Virol, 2000, 60: 425-31
    [49] Warke RV, Xhaja K, Martin KJ, et al. Dengue virus induce novel changes in gene expression of human umbilical vein endothelial cells. J Virol, 2003, 77: 11822-32
    [50] Limon-Flores AY, Perez-Tapia M, Estrada-Garcia I, et al. Dengue virus inoculation to human skin explants: an effective approach to assess in situ the earyly infection and the effects on cutaneous dendritic cells. Int J Exp Path, 2005, 86: 323-34
    [51] Warke RV, Becerra A, Zawadzka A, et al. Efficient dengue virus (DENV) infection of human muscle satellite cells upregulates type I interferon response genes and differentially modulates MHC I expression on bystander and DEN-infected cells. J Gen Virol, 2008, 89: 1605-15
    [52] Lee YR, Su CY, Chow NH, et al. Dengue virus can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES. Virus Res, 2007, 126: 216-25
    [53] Guzman MG, Alvarez M, Rodriguez R, et al. Fatal dengue hemorrhagic fever in Cuba, 1997. Int J Infect Dis, 1999, 3: 130-5
    [54] Liam CK, Yap BH, Lam SK. Dengue fever complicated by pulmonary haemorrhage manifesting as haemoptysis. J Trop Med Hyg, 1993, 96:197-200
    [55] Chan KP, Lau GKF, Doraisingham S, et al. Adult dengue deaths in Singapore. Clin Diagn Virol, 1995, 4: 213-22.
    [56] Kato H, Sato S, Yoneyama M, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity, 2005, 23: 19-28
    [57] Tsai YT, Chang SY, Lee CN, et al Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol, 2009, 11: 604-15
    [58] Wang JP, Liu P, Latz E, et al. Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol, 2006, 177: 7114-21
    [59] Wang Y, Zhang HX, Sun YP, et al. Rig-I -/- mice develop colitis associated with down regulation of G alpha i2. Cell Res, 2007, 17: 858-68
    [60] Zhang NN, Shen SH, Jiang LJ, et al. RIG-I plays a critical role in negatively regulating granulocytic proliferation. Proc Natl Acad USA, 2008, 105: 10553-8
    [61] Su ZZ, Sarkar D, Emdad L, et al. Central role of interferon regulatory factor-1(IRF-1) in controlling retinoic acid inducible gene-1 (RIG-I) expression. J Cell Physiol, 2007, 213: 502-10
    [62] Taweechaisupapong S, Sriurairatana S, Angsubhakorn S, et al. In vivo and vitro studies on the morphological change in the monkey epidermal Langerhans cells following exposure to dengue 2 (16681) virus. Southeast Asian J Trop Med Public Health, 1996, 27: 664-72
    [63]胡志君,杨敬,赵卫等.我国2株登革2型病毒基因组的全序列分析.中国病毒学, 2002, 17: 17-21
    [64]王鹏程,秦鄂德,耿丽卿等.我国登革4型病毒广州株基因组非编码区序列测定及分析.中国人兽共患病杂志, 2001, 17: 6-9
    [65]姜涛,邓永强,范宝昌等.西尼罗病毒Chin-01株基因组编码区序列测定及分析.军事医学科学院院刊, 2003, 27: 401-3
    [66] Thanos D, Maniatis T. Virus induction of human IFN-βgene expression requires the assembly of an enhanceosome. Cell, 1995, 83:1091-1100
    [67]于学东,秦成峰,陈水平等.含有海肾荧光素酶报告基因的登革4型病毒亚基因组复制子的构建.军事医学科学院院刊. 2008, 32: 101-5
    [68] Villordo SM, Gamarnik AV. Genome cyclization as strategy for flavivirus RNA replication. Virus Res, 2009, 139: 230-9
    [69] Morens DM. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis, 1994, 19: 500-12
    [70] Mathew A, Rothman AL. Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol Rev, 2008, 225: 300-13
    [71] Chen LC, Yeh TM, Wu HN, et al. Dengue virus infection induce passive release of high mobility group box 1 protein by epithelial cells. J Infect, 2008, 56: 143-50
    [72] Zhao W, Fan BC, Hu ZJ, et al. Study on the determinants of suckling mice neurovirulence of dengue 2 virus. Sci China (Series C), 2003, 45: 95-103
    [73] Li K, Chen Z, Kato N, et al. Distinct poly(I:C) and virus–activated signaling pathways leading to interferon-beta production in hepatocytes. J Biol Chem, 2005, 280: 16739-47
    [74] Fredericksen B, Gale M Jr. West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and–independent pathways without antagonizing host defense signaling. J Virol, 2006, 80: 2913-23
    [75] Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol, 2004, 5: 730-7
    [76] Gitlin L, BarchetW, Gilfillan S, et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci USA, 2006, 103: 8459-64
    [77] Diao F, Li S, Tian Y, et al. Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. Proc Natl Acad Sci USA, 2007, 104: 11706-11
    [78] Haller O, Kochs G, Weber F. The interferon response circuit: induction and suppression by pathogenic viruses. Virology, 2006, 344:119-30
    [79] Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441: 101-5
    [80] Berghall H, Siren J, Sarkar D, et al. The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokines. Microbes Infect, 2006, 8: 2138-44
    [81] Childs K, Stock N, Ross C, et al. mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology, 2007, 359(1): 190~200
    [82] Fredericksen BL, Keller BC, Fornek J, et al. Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol, 2008, 82: 609-16
    [83] Barral PM, Morrison JM, Drahos J, et al. MDA-5 is cleaved in poliovirus-infected cells. J Virol, 2007, 81: 3677-84
    [84] Guo Z, Chen LM, Zeng H, et al. NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am J Respir Cell Mol Biol, 2007, 36: 263-9
    [85] Liu TX, Zhang JW, Tao J, et al. Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood, 2000, 96(4): 1496~1504
    [86] Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2′-5′oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rew, 2007, 18: 351-61
    [87] Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev, 2001, 14: 778-809
    [88] Matsumiya T, Imaizumi T, Yoshida H, et al. The level of retinoic acid-inducible gene I are regulated by heat shock protein 90-alhpa. J Immunol, 2009, 182: 2717-25
    [89] Uzri D, Gehrke L. Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J Virol, 2009, 83: 4174-84
    [90] Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov, 2006, 5: 471-84
    [1] Uematsu S, Akira S. Toll-like receptors and type I interferons. J Biol Chem, 2007, 282(21): 15319~15323
    [2] Thompson AJ, Locarnini SA. Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol Cell Biol, 2007, 85(6): 435~445
    [3] Takeuchi O, Akira S. Recognition of viruses by innate immunity. Immunol Rev, 2007, 220: 214~224
    [4] Liu TX, Zhang JW, Tao J, et al. Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood,2000, 96(4): 1496~1504
    [5] Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses, Nat Immunol, 2004, 5: 730~737
    [6] Saito T, Hirai R, Loo YM, et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. . Proc Natl Acad Sci USA, 2007, 104: 582~587
    [7] Gee P, Chua PK, Gevorkyan J, et al. Essential role of the N-terminal domain in the regulation of RIG-I ATPase activity. J Biol Chem. 2008 Feb 11
    [8] Cui S, Eisen?cher K, Kirchhofer A, et al. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol Cell, 2008, 29(2): 169~179
    [9] Sumpter R Jr, Loo YM, Foy E, et al. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase RIG-I. J Virol, 2005, 79: 2689~2699
    [10] Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441: 101~105.
    [11] Gitlin L, BarchetW, Gilfillan S, et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci USA, 2006, 103: 8459~8464
    [12] Hornung V, Ellegast J, Kim S, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science, 2006, 314(5801): 994~997
    [13] Pichlmair A, Schulz O, Tan C, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science, 2006, 314(5801): 997-1001.
    [14] Pathak HB, Arnold JJ, Wiegand PN, et al. Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex. J Biol Chem, 2007, 282: 16202-16213
    [15] Kato H, Sato S, Yoneyama M, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity, 2005, 23(1): 19~28
    [16] Melchjorsen J, Jensen SB, Malmgaard L, et al. Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in acell-type-specific manner. J Virol 2005, 79: 12944~12951
    [17] Loo YM, Fornek J, Crochet N, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol, 2008, 82(1): 335~345
    [18] Fredericksen BL, Keller BC, Fornek J, et al. Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol, 2008, 82(2): 609~616
    [19] Samanta M, Iwakiri D, Kanda T, et al. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J, 2006, 25: 4207~4214
    [20] Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I and Mda5-mediated type I interferon induction, Nat Immunol, 2005, 6: 981~988
    [21] Seth RB, Sun L, Ea CK, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF-3. Cell, 2005, 122: 669~682
    [22] Xu LG, Wang YY, Han KJ, et al. VISA is an adapter protein required for virus-triggered ifn-beta signaling. Mol Cell, 2005, 9: 727~740
    [23] Meylan E, Curran J, Hofmann K, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 2005, 437: 1167~1172
    [24] Kumar H, Kawai T, Kato H, et al. Essential role of IPS-1 in innate immune responses against RNA viruses. J Exp Med, 2006, 203: 1795~1803
    [25] Sun Q, Sun L, Liu HH, et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity, 2006, 24: 633~642
    [26] Potter JA, Randall RE, Taylor GL. Crystal structure of human IPS-1/MAVS/VISA/Caedif caspase activation recruitment domain. BMC Struct Biol, 2008, 8: 11
    [27] Oganesyan G, Saha SK, Guo B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and independent antiviral response. Nature, 2006, 439: 208~211
    [28] Saha SK, Pietras EM, He JQ, et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J, 2006, 25:3257~3263
    [29] Guo B, Cheng G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem, 2007, 282: 11817~11826
    [30] Sasai M, Oshiumi H, Matsumoto M, et al. Cutting edge: NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J Immunol, 2005, 174: 27~30
    [31] Ryzhakov G, Randow F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J, 2007, 26: 3180~3190
    [32] Tenoever BR, Ng SL, Chua MA, et al. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science, 2007, 315: 1274~1278
    [33] Takahashi K, Kawai T, Kumar H, et al. Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA. J Immunol, 2006, 176: 4520~4524
    [34] Su ZZ, Sarkar D, Emdad L, et al. Central role of interferon regulatory factor-1(IRF-1) in controlling retinoic acid inducible gene-1 (RIG-I) expression. J Cell Physiol, 2007, 213: 502~510
    [35] Yuzawa E, Imaizumi T, Matsumiya T, et al. Retinoic acid-inducible gene-I is induced by interferon-gamma and regulates CXCL11 expression in HeLa cells. Life Sci, 2008, 82(11-12): 670-675
    [36] Hatakeyama M, Imaizumi T, Terasaki F, et al. Interferon-gamma upregulates retinoic acid-inducible gene-I in human pericardial mesothelial cells. Acta Cardiol, 2007, 62(6): 553-557
    [37] Kubota K, Sakaki H, Imaizumi T, et al. Retinoic acid-inducible gene-I is induced in gingival fibroblasts by lipopolysaccharide or poly IC: possible roles in interleukin-1beta, -6 and -8 expression. Oral Microbiol Immunol, 2006, 21(6): 399~406
    [38] Matikainen S, Sirén J, Tissari J, et al. Tumor necrosis factor alpha enhances influenza A virus-induced expression of antiviral cytokines by activating RIG-I gene expression. J Virol, 2006, 80(7): 3515~3522
    [39] Yount JS, Moran TM, López CB. Cytokine-independent upregulation of MDA5 in viral infection. J Virol, 2007, 81(13): 7316~7319
    [40] Venkataraman T, Valdes M, Elsby R, et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol, 2007, 178(10): 6444~6455
    [41] Gack MU, Shin YC, Joo CH, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 2007, 446: 916~920
    [42] Arimoto K, Takahashi H, Hishiki T, et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci USA, 2007, 104: 7500~7505
    [43] Kayagaki N, Phung Q, Chan S, et al. DUBA: A deubiquitinase that regulates Type I interferon production. Science 2007, 318: 1628~1632
    [44] Lin R, Yang L, Nakhaei P, et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem, 2006, 281: 2095~2103
    [45] Lin L, Su Z, Lebedeva IV, et al. Activation of Ras/Raf protects cells form melanoma differentiation-associated gen-5-induced apoptosis. Cell Death Differ, 2006, 13: 1982~1993
    [46] Hiscott J, Lin R, Nakhaei P, et al. MasterCARD: a priceless link to innate immunity. Trends Mol Med, 2006, 12: 53~56
    [47] Jounai N, Takeshita F, Kobiyama K, et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA, 2007, 104(35): 14050~14055
    [48] Diao F, Li S, Tian Y, et al. Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. Proc Natl Acad Sci USA, 2007, 104(28): 11706~11711
    [49] Pothlichet J, Chignard M, Si-Tahar M. Cutting edge: Innate immune response triggered by influenza A virus is negatively regulated by SOCS1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway. J Immunol, 2008, 180(4): 2034~2038
    [50] Gale M Jr, Foy EM. Evasion of intracellular host defense by hepatitis C virus. Nature, 2005, 436 (7053): 939~945
    [51] Li K, Foy E, Ferreon JC, et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci USA, 2005, 102: 2992~2997
    [52] Foy E, Li K, Sumpter Jr R, et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-1 signaling. Proc Natl Acad Sci USA, 2005, 102: 2986~2991
    [53] Lin R, Lacoste J, Nakhaei P, et al. Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J Virol, 2006, 80: 6072~6083
    [54] Dansako H, Ikeda M, Kato N. Limited suppression of the interferon-beta production by hepatitis C virus serine protease in cultured human hepatocytes. FEBS J, 2007, 274(16): 4161~4176
    [55] Loo YM, Owen DM, Li K, et al. Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci USA, 2006, 103: 6001~6006
    [56] Childs K, Stock N, Ross C, et al. mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology, 2007, 359(1): 190~200
    [57] Mibayashi M, Martínez-Sobrido L, Loo YM, et al. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol, 2007, 81(2): 514~524
    [58] Opitz B, Rejaibi A, Dauber B, et al. IFN beta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol, 2007, 9(4): 930~938
    [59] Guo Z, Chen LM, Zeng H, et al. NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am J Respir Cell Mol Biol, 2007, 36(3): 263~269
    [60] Yang Y, Liang Y , Qu L, et al. Disruption of innate immunity due to mitochondria targeting of a picornaviral protease precursor. Proc Natl Acad Sci USA, 2007, 104: 7253~7258.
    [61] Cárdenas WB, Loo YM, Gale M Jr, et al. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced byRIG-I signaling. J Virol, 2006, 80(11): 5168~5178
    [62] Chen Z, Benureau Y, Rijnbrand R, et al. GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS. J Virol. 2007, 81(2): 964~976
    [63] Malathi K, Dong B, Gale M Jr, et al. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature, 2007, 448(7155): 816~819
    [64] Marques JT, Devosse T, Wang D, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nature Biotech, 2006, 24: 559~565
    [65] Wang Y, Zhang HX, Sun YP, et al. Rig-I ?/? mice develop colitis associated with down regulation of G alpha i2. Cell Res, 2007, 17: 858~868
    [66] Tabara H, Yigit E, Siomi H, et al. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell, 2002, 109: 861~871
    [67]张彩,田志刚。天然免疫识别机制及天然免疫受体的相互调节。生物化学与生物物理进展,2008, 35(2): 124~128
    [68] de Jone MD, Simmons CP, Thanh TT, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 2006, 12: 1203~1207
    [69] Reiser M, Hinrichsen H, Benhamou Y, et al. Antiviral efficacy of NS3-serine protease inhibitor BILN-2061 in patients with chronic genotype 2 and 3 hepatitis C. Hepatology, 2005, 41: 832~835
    [70] Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov, 2006, 5: 471~484
    [1] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4):783
    [2] Takeuchi O, Akira S. Recognition of viruses by innate immunity. Immunol Rev, 2007, 220(1): 214
    [3] Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol, 2004, 5(7): 730
    [4]秦成峰,秦鄂德. RIG-I样受体与RNA病毒识别.微生物学报. 2008,48(10): 1418
    [5] Opitz B, Rejaibi A, Dauber B, et al. IFN beta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol, 2007, 9(4): 930
    [6] Foy E, Li K, Sumpter Jr R, et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-1 signaling. Proc Natl Acad Sci USA, 2005, 102(8): 2986
    [7] Loo YM, Fornek J, Crochet N, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol, 2008, 82(1): 335
    [8]李晓峰,姜涛,陈水平,等.西尼罗病毒Chin-01株基因组非编码区的序列测定及分析.解放军医学杂志, 2008,33(7):829
    [9]赵慧,邓永强,陈水平,等.日本脑炎病毒的非结构蛋白NS5对IFN-α介导的信号转导通路的抑制作用.解放军医学杂志,2008, 33(7):811
    [10] Gubler DJ. The continuing spread of West Nile virus in the western hemisphere. Clin Infect Dis, 2007, 45(8):1039
    [11] Wang T, Town T, Alexopoulou L, et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med, 2004, 10(12):1366
    [12] Anderson JF, Rahal JJ. Efficacy of interferon alpha-2b and ribavirin against West Nile virus in virtro. Emerg Infect Dis, 2002, 8(1): 107 ??

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700