用户名: 密码: 验证码:
55mL/r十一柱塞斜盘式轴向柱塞泵的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代液压传动中,轴向柱塞泵因其具有体积小、传递功率大、效率高、变量控制方便、寿命长等优点,被广泛应用于各种机械装备中,而目前广泛应用的九柱塞斜盘式柱塞泵其发展研究已达到一定水平,为了满足液压系统越来越高的使用要求,十一柱塞斜盘式轴向柱塞泵将逐渐得到广泛而深入的研究。文章以某公司生产的BK系列斜盘式轴向柱塞泵为研究对象,利用仿真分析平台在现有成熟产品基础之上进行优化设计,通过分析设计、理论与实践相结合设计出排量为55mL/r的十一柱塞斜盘式轴向柱塞泵。在设计的过程中主要完成以下内容:
     (1)熟悉课题研究背景,学习整理文献资料,重点研究柱塞泵特性相关理论,在此基础上明确了论文研究的内容和目的;同时对BK55型斜盘式轴向柱塞泵的工作原理和运行特点进行详细的分析,以此为基础,综合考虑国内外已经成熟使用的性能较好的55mL/r斜盘式轴向柱塞泵的设计理念,对十一柱塞斜盘式轴向柱塞泵的主要结构参数进行初步设计,为下一步的仿真分析计算打下基础。
     (2)通过理论论证了八、九、十、十一柱塞泵的输出油液脉动特性,利用AMESim软件平台对柱塞泵系统进行仿真,以BK55型柱塞泵为基础对比分析八、九、十、十一柱塞泵的输出油液脉动特性以及柱塞泵结构参数对输出油液脉动特性的影响,总结得出:柱塞泵输出油液脉动特性与其排量和负载压力有一定关系;为了保证输出油液的稳定性,在柱塞泵泵体尺寸允许范围内,要综合考虑油液粘度和阻尼孔参数。
     (3)通过Pro/e进行三维建模,然后利用ANSYS Workbench分析软件平台建立十一柱塞柱塞泵滑靴挡板、柱塞和油缸体的结构模型,对最初论文设计的柱塞泵结构进行分析验证,经验证得出:综合考虑载荷、约束、材料属性等条件,按照理论公式进行计算,分析应力应变结果,最初设计出的柱塞泵部件结构基本可以满足设计要求。
     (4)利用Pro/e的三维建模功能和ANSYS ICEM CFD和ANSYS CFX等软件平台的流场分析功能建立十一柱塞柱塞泵的吸、排油配流流场模型,在考虑油液可压缩性的基础上,对流场模型进行仿真运算,对比分析不同三角槽深度角配流盘的仿真结果,总结得出:三角槽深度角是研究柱塞泵吸、排油配流流场特性的重要参数,直接关系到柱塞泵吸、排油配流流场的稳定性;十一柱塞柱塞泵设定7°的三角槽深度角,可以有效减少吸、排油配流过程中的空蚀破坏,可以很好的保证柱塞泵吸、排油配流流场的稳定性。
     最后对全篇论文主要研究工作进行了总结,给出了十一柱塞斜盘式轴向柱塞泵主要的研究结论,为相关的的研究以及应用工作提供一定的参考。
In the modern hydraulic transmission, the axial piston pump is widely used in kinds of machinery because it has many advantages which include small size、great transmission power、high efficiency、easy to control variable and long life. With the axial piston pump turn towards the development of high-pressure、high-speed and large flow, we ask higher performance and environmental requirements. Swash plate pump with9pistons which is widely used don't have much room for improvement, and its characteristics can't greatly improve any more. In order to meet hydraulic system's higher and higher requirements, swash plate pump with11pistons will be used more and more widely.In this thesis, based on BK55swash plate pump, use emulated analyse software to establish swash plate pump's system model, structural model and flow field model, comparatively analyse swash plate pump's plus characteristics, its structure's influence to its plus characteristics and triangle groove depth's influence to its flow field characteristics, combine theory and simulations, design an swash plate pump with11pistons, which can output55mL/r.
     The main content is as follows:
     (1)In the first chapter, it has introduced the research background, and surveyed the research situation of axial piston pump in main research institute at home and abroad. And then cleared the content and purpose of the thesis based on this; Based on analysing BK55swash plate pump's working principle and characteristics, combine maturity theory and references, study all the swash plate pumps with55mL/r output volume domestic and oversea, preliminarily design swash plate pump's structure with11pistons, make preparations for the following simulations.
     (2) According to the theories, it proof and analyse swash plate pump's plus characteristics and its structure's influence to its plus characteristics, based on BK55swash plate pump finally summarize the conclusion:swash plate pump's output volume and load pressure are relevant to its plus characteristics; in order to guarantee it stable, swash plate pump's oil and damping hole should be as reasonable as possible.
     (3) Use Pro/e and ANSYS Workbench to establish swash plate pump's structural model, prove theoretical design, finally summarize the conclusion:considering various factors, structural design which is based on theoretical formula, is reliable, and can meet devise requirement.
     (4) Before considering the compressibility of hydraulic fluid, use Pro/e to establish three-dimensional, and use ANSYS ICEM CFD and ANSYS CFX to establish swash plate pump's flow field model, comparatively analyse triangle groove depth's influence to swash plate pump's flow field characteristics, finally summarize the conclusion:triangle groove depth is a very important parameter, it's relevant to swash plate pump's stability; triangle groove with7°'s depth can reduce cavitation damage effectively, and can guarantee swash plate pump stable.
     At last, it gave a summary on total research, got the main conclusion and provided the help for he future development.
引文
[1]刘晓红.液压泵阀空蚀特性的研究[D].西南交通大学,2007
    [2]姚新.液压泵压力脉动分析及衰减措施[J].《机床与液压》2004.No.8
    [3]俞继印,俞继印,金松等.轴向柱塞泵流量脉动的分析[J].《机床与液压》2005.No.9
    [4]武永红,段锁林,王明智.转速可调斜盘式轴向柱塞泵实际流量特性分析[J].太原科技大学学报2005.No.3
    [5]李和言,路华鹏,马彪.排量控制阻尼孔对轴向柱塞泵动态响应特性的影响分析[J].机床与液压2005.No.8
    [6]冀宏,傅新,杨华勇等.柱塞泵阻尼槽噪声特性研究[J].浙江大学学报第39卷第5期
    [7]赵弘,那焱青,那成烈.液压泵阻尼结构形式的改进[J].机床与液压2000.no5
    [8]蔡廷文.斜盘式变量泵的动态模型研究[J].机电工程技术2001年第1期
    [9]徐绳武.新型节能变量轴向柱塞泵[J].液压气动与密封2004年第6期
    [10]那成烈.三角槽节流口面积的计算[J].甘肃工业大学学报,1993(6);第19卷第2期:45-48
    [11]那成烈,尹文波,那焱青.可压缩流体工作介质情况下轴向柱塞泵配流盘设计[J].甘肃工业大学学报,2002,第28卷第4期:65-67
    [12]刘晓红,于兰英,刘桓龙,柯坚.液压轴向柱塞泵配流盘气蚀机理[J].机械工程学报,2008(10),第44卷第11期:203-208
    [13]王国志,邓斌,吴文海,柯坚.控制柱塞结构对变量柱塞泵动态特性的影响研究[J].机床与液压,2010,第17期:41-44
    [14]王国志,刘桓龙,吴文海,柯坚.配流盘负遮盖结构对配流特性的影响研究[J].机床与液压.2010,第38卷第19期:25-27
    [15]王国志,吴文海,刘桓龙,柯坚.斜盘支撑形式对变量柱塞泵动态性能的影响研究[J].机床与液压,2011,第7期:44-46
    [16]王勇,李磊,贾旭,张新.柱塞倾角对球面配流副轴向斜柱塞泵流体特性的影响.液压气动与密封.2011,第1期:20-23
    [17]刘良臣.2001年上海PTC展览会技术报告会论文。我国工程机械液压件的现状及发展展望2001年10月
    [18]杨华勇,张斌,徐兵.轴向柱塞泵马达技术的发展演变机械工程学报2008年10月第十期
    [19]张力,项辉宇,赵罘,袁柳樱.斜盘式轴向柱塞泵摩擦副分析[J].机床与液压,2007(6), 第35卷第6期:120-121
    [20]陈卓如,唐群国,金朝铭等.滑靴副结构参数对抗倾能力的影响[J].机床与液压,2009,第5期:49-50
    [21]李小宁,毕诸明,陆建萍.轴向柱塞泵平面配流副的优化设计模型研究[J].机械设计,1997,第7期:16-46
    [22]许贤良,赵连春,王传金.轴向柱塞泵的流量脉动[J].中国矿业大学学报,1992(12),第21卷第4期:72-82
    [23]王国志. 电液比例轴向变量柱塞泵的特性研究[D].西南交通大学机械工程学院.2006.6
    [24]小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004.6
    [25]Joskoeur. Modeling and Analysis of Longitudinal Tire Dynamics Based on the Lugre Friction Model[J]. Advancesin Automotive Contro,1 Karlsruhe, Germany,2001
    [26]王文,寇子明,程仰瑞.HD2系列轴向柱塞泵的维修与调试[J].煤矿机械,2007
    [27]Olsson H., Astrom K.J., Canudas de W.. Friction Models and Friction Compensation [J]. European Journal
    [28]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.9
    [29]张光函,田淑君.流体传动与控制[M].成都:成都科技大学出版社,1999
    [30]肖龙,陆立颖,赵东江等.液压传动技术[M].北京:冶金工业出版社,2001
    [31]B.E.Launder, D.B.Spalding. Lectures in Mathematical Modes of Turbulence[R]. London: Academic Press,1975
    [32]刘晓红.液压泵阀空蚀特性的研究[D].西南交通大学,2007
    [33]Kunimoto E, Ogawara T. Cavitation Detection in the Oil Hydraulic Equipments [J]. Proceedings of the Third JHPS International Symposium on Fluid Power, Yokohama,1996:461-466
    [34]刘晓红,于兰英,刘桓龙,柯坚.液压轴向柱塞泵配流盘气蚀机理[J].机械工程学报,2008(11),第44卷第11期:203-207
    [35]王国志.电液比例轴向变量柱塞泵的特性研究[D].西南交通大学,2009
    [36]付永领,祁晓野AMESim系统建模和仿真:从入门到精通[M].北京:北京航空航天大学出版社,2006.6
    [37]段飞蛟,曹克强,李永林等.基于AMESim的恒压力轴向柱塞泵动态特性仿真[J].机床与液压,2008(11),第36卷第11期:160-166
    [38]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.1
    [39]A.M.Harrison, K.A.Edge. Reduction of Axial Piston Pump Pressure Ripple. Proc Instn Mech Engrs,Vol.214,2000
    [40]刘锦剑,罗红霞.基于AMESim的轴向柱塞泵仿真[J].上海海事大学学报.2010(3): 81-86
    [41]付永领,祁晓野AMESim系统建模和仿真:从入门到精通[M].北京:北京航空航天大学出版社.2006.6
    [42]段飞蛟,曹克强,李永林等.基于AMESim的恒压力轴向柱塞泵动态特性仿真[J].机床与液压.2008(11):160-166
    [43]杨智炜.轴向柱塞泵虚拟样机仿真技术研究[D].浙江大学机械与能源工程学院.2006.5
    [44]陆敏恂,李万莉.流体力学与液压传动[M].上海:同济大学出版社,2006
    [45]许福玲,陈尧明.液压与气压传动[M].北京:机械工业出版社,2001
    [46]李静.基于CFD的轴向柱塞泵配流特性研究[D].浙江大学,2008
    [47]那成烈.从A4V看现代轴向柱塞泵抗噪声型配流盘的发展趋势[J].甘肃工业大学学报,1988(3):21-29
    [48]安高成,吕翠萍,王明亮等.柱塞泵配流副三角槽的分析设计[J].太原重型机械学院学报,2004(4):246-249
    [49]杨华勇,马吉恩,徐兵.轴向柱塞泵流体噪声的研究现状[J].机械工程学报,2009(8):25-31
    [50]尹文波.可压缩流体工作介质轴向柱塞泵配流及瞬时流量仿真研究[D].兰州理工大学,2003
    [51]林静,孙明智.轴向柱塞泵配流盘结构对泵流量脉动的影响[J].液压与气动,2007(2):32-35
    [52]刘仙洲,于兰英,李磊.基于AMESim的斜盘斜柱塞泵特性仿真[J].液压气动与密封,2009(6),第6期:23-26
    [53]杨智炜.轴向柱塞泵虚拟样机仿真技术研究[D].浙江大学,2006
    [54]曾祥荣.液压噪声控制[M].哈尔滨:哈尔滨工业大学出版社,1988
    [55]马吉恩.轴向柱塞泵流量脉动及配流盘优化设计研究[D].浙江大学,2009
    [56]张红伟.基于现代设计方法的轴向柱塞变量泵柱塞的研究[D].重庆大学,2003
    [57]陆敏恂,李万莉.流体力学与液压传动[M].上海:同济大学出版社,2006
    [58]许福玲,陈尧明.液压与气压传动[M].北京:机械工业出版社,2001
    [59]李静.基于CFD的轴向柱塞泵配流特性研究[D].浙江大学,2008
    [60]那成烈.从A4V看现代轴向柱塞泵抗噪声型配流盘的发展趋势[J].甘肃工业大学学报,1988(3):21-29
    [61]安高成,吕翠萍,王明亮等.柱塞泵配流副三角槽的分析设计[J].太原重型机械学院 学报,2004(4):246-249
    [62]杨华勇,马吉恩,徐兵.轴向柱塞泵流体噪声的研究现状[J].机械工程学报,2009(8):25-31
    [63]尹文波.可压缩流体工作介质轴向柱塞泵配流及瞬时流量仿真研究[D].兰州理工大学,2003
    [64]林静,孙明智.轴向柱塞泵配流盘结构对泵流量脉动的影响[J].液压与气动,2007(2):32-35
    [65]诸葛辉.轴向柱塞泵侧向流道的研究[D].西南交通大学,2007
    [66]孙明智.轴向柱塞泵轴向流道的研究[D].西南交通大学,2007
    [67]张建寿,谢咏絮.机械和液压噪声及其控制[M].上海:上海科学技术出版社,1987
    [68]冀宏.液压阀芯节流槽气穴噪声特性的研究[D].浙江大学,2004
    [68]许贤良,赵连春,王传金.轴向柱塞泵的流量脉动[J].中国矿业大学学报,1992
    [69]Pettersson M, Weddfelt K, Palmberg J.O. Methods of reducing flow ripple from fluid power piston pumps-A theoretical approach. SAE Transactions,1991,100(2):158-167
    [70]A.M.Harrison, K.A.Edge. Reduction of Axial Piston Pump Pressure Ripple. Proc Instn Mech Engrs,2000, vol.214
    [71]J.M.Bergada, J.Watton, S.Kumar. Pressure, Flow, Force and Torque Between the Barrel and Port Plate in an Axial Piston Pump[J]. Journal of Dynamic System, Measurement and Control,2008, vol.130
    [72]Edge K.A, Darling J. The Pumping Dynamics of Swash Plate Piston Pumps[J]. Journal of Dynamic System,Measurement and Control,1989, vol.111
    [73]Edge K.A. Cylinder Pressure Transients in Oil Hydraulic Pump with Sliding Plate Valves[J]. Proc. Institute of Mechanical Engineers,1986, vol.200
    [74]N.D.Manring, Ueno H. Noise Measurement and Numerical Simulation of Oil Flow in Pressure Control Valves[J]. JSME International Journal, Series B,1994, vol.37
    [75]Medhat Khalil. Performance Investigation of the Swash Plate Axial Piston Pumps with Conical Cylinder Blocks[D]. Concordia University Montreal, Quebec, Canada,2003: 21-33
    [76]R.E.Johnson. Modeling and Designing a Variable-Displacement Open-Loop Pump [J]. Journal of Dynamic System,Measurement and Control,1996, vol.118
    [77]Wicke, V.Edge, K.A, Vaughan D. Investigation of the Effects of Swash Plate Angle and Suction Timing on the Noise Generation Potential of an Axial Piston Pump[J]. Fluid Power Systems and Technology, ASME,1998, vol.5
    [78]Martin M.J, Taylor B. Optimised Port Plate Timing for an Axial Piston Pump[J]. Fifth International Fluid Power Symposium, Cranfield, UK, Sep.13-15,1978, Vol. B5
    [79]Manring N.D. Designing a Control and Containment Device for a Cradle-Mounte-d,Axial-Actuated Swash Plates[J]. ASME J, Mech, Des.2002, vol.124
    [80]Bahr M.K, Svoboda J, Bhat R.B. Vibration Analysis of Constant Power Regulated Swash Plate Axial Piston Pumps[J]. J.Sound Vib,2003, vol.259
    [81]Johnston D.N, Drew J.E. Measurement of Positive Displacement Pump Flow Ripple and Impedance[J]. Proc. of the Institution of Mechanical Engineers, Part I:Journal of System and Control Engineering,1996, vol.210
    [82]Noah D.Manring, Zhilin Dong. The Impact of Using a Secondary Swash-Plate Angle Within an Axial Piston Pump[J]. Journal of Dynamic System,Measurement and Control. 2004, vol.126
    [83]Noah D.Manring. Forces on the Swash Plate of an Axial-Piston Pump[J]. Journal of Dynamic System,Measurement and Control,1999, vol.121
    [84]Noah D.Manring. Valve-Plate Design for an Axial Piston Pump Operating at Low Displacements[J]. Journal of Mechanical Design,2003, vol.125
    [85]Noah D.Manring, Fikreadam A.Damtew. The Control Torque on the Swash Plate of an Axial-Piston Pump Utilizing Piston-Bore Springs[J]. Journal of Dynamic System, Measurement and Control,2001, vol.123
    [86]Noah D.Manring, Yihong Zhang. The Improved Volumetric-Efficiency of an Axial-Piston Pump Utilizing a Trapped-Volume Design[J]. Journal of Dynamic System,Measurement and Control,2001, vol.123
    [87]Weixing Yuan, Jilrgen Sauer, Gilnter H.Schnerr. Modeling and computation of unsteady cavitation flows in injection nozzles[J]. Mecanique&Industries,Elsevier Science,2001, vol.2
    [88]Inoue K, Nakasato M. Study of the Operating Moment of a Swash Plate Type Axial Piston Pump. First Report:Effects of Dynamic Characteristics of a Swash Plate Angle Supporting Element on the Operating Moment[J]. J.Fluid Control,1994, vol.22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700