用户名: 密码: 验证码:
贵州喀斯特山区黄壤水分动态及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何提高降雨的资源化水平,用好有限的水资源,降低农业生产的需水量和耗水量已成为一个国际性的课题。土壤水分是作物生长、植被恢复以及生态环境建设的主要限制性因素。近年来,随着各种新方法、新技术的应用,农业生态系统水分运移模型,农田水分优化管理与调控技术等方面取得了大量的研究成果。但是,这些研究成果主要集中在半干旱、半湿润气候带的华北平原和黄土高原,而在南方季节性干旱地区,尤其是西南喀斯特地区此类的系统研究工作较少。地处西南地区的贵州,碳酸盐类岩石分布面积大、范围广,是我国水土流失最严重的地区之一,季节性干旱问题突出,严重制约了农业生产的可持续发展。黄壤是贵州主要的农业土壤类型,占贵州国土面积的41.9%,占全国黄壤面积的25.3%,在全国具有典型代表性。为此,本研究选择具有喀斯特山区典型代表性的修文县久长镇为试验区,以黄壤为供试土壤,开展喀斯特山区坡地水分动态及其影响因素的研究,为贵州山区开展集雨抗旱技术示范与推广提供了科学依据。
     试验研究以为贵州喀斯特山区季节性干旱问题的解决提供科学依据为出发点,围绕坡地黄壤水分时空变异规律,在6.5度、9.5度和16度坡耕地上,按10.0m×4.0m的规格设置试验小区,以裸地为对照,设置了玉米—小麦套作、蔬菜—蔬菜连作两种作物种植方式,于2001年6月~2003年7月期间,采集坡地径流数据66次、共594个,每10天采取0~10cm、10~20cm、20~40cm、40~60cm土层土样,每20天采取60~80cm、80~100cm土层土壤样品进行含水量测定,获得76批次、共3420个土壤水分数据。按照不同坡度、不同作物种植方式分别对径流与土壤水分数据进行分类整理,采用常规数据统计和互谱相关分析、小波分析等方法对黄壤水分的空间变异进行了探讨,完成了贵州喀斯特山区黄壤的持水性能、降水转化、水分动态及其影响因素等相关内容的探讨。主要研究成果如下:
     (1)黄壤质地粘重,持水力强,比水容量小,有效水范围极窄,易于发生干旱。
     黄壤剖面中粒径<0.01mm的物理性粘粒含量691.7~880.5g·kg~(-1),粒径<0.001mm的细粘粒占物理性粘粒的44%以上,为重粘土。黄壤20~40cm土层的粘粒含量最高,不利于降雨入渗。黄壤粘粒含量与田间持水量、凋萎系数和有效水分含量显著正相关;砂粒、粉粒、容重与田间持水量、凋萎系数和有效水分含量呈显著负相关。
     当土水势由-2.5~-10kPa段降至-10~-30kPa段,再降至-100~-300kPa段时,黄壤比水容量由10~(-1)数量级降至10~(-2)数量级,再降至10~(-3)数量级。当土壤水吸力S小于100kPa时,土壤含水率下降很快,土壤水分释放快,量大;当吸力S大于100kPa时,土壤水分释放缓慢,量小。黄壤0~20cm土层田间持水量高至282.2g·kg~(-1),凋萎系数也高达250.0g·kg~(-1)以上,有效水范围仅30~50g·kg~(-1),是黄壤易于干旱的主要原因。
     0~100cm土体黄壤总库容为5515.3 m~3·hm~(-2);贮水库容达4094.1 m~3·hm~(-2),占总库容的74.23%;通透库容仅1421.26 m~3·hm~(-2),占总库容的25.77%,不利于土壤水分的上、下运行;有效水库容只287.1m~3·hm~(-2),占贮水库容的比例仅9.69%,易于发生干旱;无效水库容占贮水库容的比例高达90.31%,对作物供水价值不大。
     (2)常规种植方式下黄壤地表径流量大,降雨资源化效率低。
     贵州喀斯特山区黄壤径流与降雨在时间上同步,5~8月径流高峰期,频率高,变幅大;3~4月和9~11月平缓,频率低,变幅小。对降雨的接纳始于3月,3~4月中旬的降雨接纳较少;4月下旬~6月降雨接纳频率高,数量大;7月降雨接纳频率低,单次接纳量较大;8月降雨较多,接纳量不大;9月降雨接纳偏少;10月降雨接纳频率高,接纳量小;11月~次年2月,基本没有降雨接纳。4~10月是坡地黄壤增加深层土壤降雨入渗和提高降雨资源化水平的关键时期。
     黄壤坡地径流(R_s)和“土壤—植物”系统对降雨(P)的接纳(P_e)表现为P=P_e+R_s的数量关系,径流量随降雨量的增大而加速增加,表现为R_s=-a+bP-cP~2+dP~3的函数关系;降雨接纳量在初期随降雨增大而升高,当降雨到达一定量时,降雨接纳数量逐步降低,表现为P_e=a+bP+cP~2-dP~3的函数关系。6.5度、9.5度和16度黄壤坡地年产流降雨占年降雨量的72%。裸地的年径流量占年产流降雨量的42.4%,“土壤—植物”系统对产流降雨的58.6%;常规种植方式下的径流系数为31.8%,降雨接纳系数为68.2%,作物种植一定程度上提高了“土壤—植物”系统对降雨的接纳比例。
     (3)黄壤水分的季节分配及在剖面上的分布差异大。
     黄壤水分随时间变化而呈有节律的周期性摇荡,周期30~60d。黄壤水分的季节性分配不协调,春季为土壤水分强烈上升蒸发期,土壤水分分布层下移现象明显,水分贮量处于负相位,不利于浅根系作物的水分供应;夏、秋季为土壤水分恢复补充期,降水补充较多,土壤水分分布层明显上移,水分贮量处于正相位;冬季为土壤水分缓慢蒸发补充期,土壤水分蒸发散失较缓慢,土壤水分分布层仍有下移的现象,水分贮量在正、负相位间交替变化。由于黄壤有效水范围极窄,在夏、秋季也常常受到干旱的影响。
     黄壤剖面相邻层次间具有相似的变点分布及周期性特点,层次间水分的上、下运行因果关系明晰。20cm深度是黄壤水分垂直变异的“拐点”,黄壤含水量在20~40cm土层急剧增高,40~100cm土层水分贮量处于一个较高且稳定的状态。黄壤水分变异系数cv随土层(h)加深而减小,表现为cv=0.5197h~(0.4894)的函数关系。因此,根据水分变异系数cv可将黄壤剖面划分为:0~20cm为水分活跃层(cv>0.0876)、20~60cm土层为水分次活跃层(0.0876≥cv≥0.0665)、60~100cm土层为水分相对稳定层(cv<0.0665)。其中:活跃层是土壤与大气进行水分转化的通道与界面,次活跃层是相对稳定层和活跃层之间的水分传输通道,相对稳定层是土、气界面水分转化的库,三个层次间的水分差异较大,具有较强的水势梯度。黄壤水分活跃层含水率250~400g·kg~(-1),次活跃层含水率400~500g·kg~(-1),相对稳定层的含水率在500g·kg~(-1)以上,维持较稳定的土壤水分正梯度剖面构型,水分活跃层水分含量相对较低。
     (4)坡度和作物种植是黄壤坡地降雨转化及水分保蓄的重要影响因素。
     在贵州喀斯特山区,随坡度增大,黄壤地表径流量增加,产流降雨量的资源化水平降低。坡度是黄壤水分剖面垂直变异的主要因素,除水分活跃层外,20~100cm土层内的各土层水分含量表现出9.5度>16度>6.5度的趋势。菜—菜和裸地方式下水分活跃层的水分含量表现出9.5度>6.5度>16度的趋势,6.5度与16度间的水分差异达到了0.01的极显著水平,在玉—麦种植方式下这种差异又消失了。6.5度坡地黄壤粘粒含量过高,严重地制约了6.5度坡地上黄壤的降水入渗。排除土壤粘粒过高所带来黄壤水分异常的6.5度坡耕地后,9.5度坡地黄壤较一致地保持着高于16度坡耕地的水分含量。黄壤水分的时间动态变异主要受制于降水,0~40cm土层尤为明显。
     玉—麦、菜—菜种植方式对降雨的转化效率随季节更替而相互交替变化。与裸地相比,作物种植增加了坡地黄壤的降雨转化效率。不同作物种植方式下,黄壤水分时间动态与降水保持着较一致的规律性,0~100cm土体,特别是0~20cm土层,其水分与降水在时间上的演变节点基本保持在相同或相近的位置。作物种植在增加降雨入渗的同时,也加大了对土壤水分的蒸腾损耗,一定程度上增加了黄壤水分的变异程度与频率,这种影响随土壤深度的增加而衰减,使相对稳定层的水分含量能够维持在较高含量水平。在高含水量时,玉—麦方式对活跃层黄壤水分变异的效应大于菜—菜方式;裸地方式的水分消耗低,土壤水分含量高。
     总之,贵州山区坡地黄壤质地极粘重,持水能力强,比水容量小,有效水范围极窄,水分上、下运行困难,耕层水分含量有限,是黄壤易于发生季节性干旱的根本原因。黄壤坡地常规农耕系统的径流系数高,降雨接纳与转化量低,春季是水分贮量的低值时段,黄壤水库的周年均衡供水能力差。坡度对径流具有正效应,对降雨资源化和土壤水分含量都具有负效应;降雨时作物种植增加了降雨接纳量,其余时间则加大了对土壤水分的消耗,一定程度上作物种植加剧了土壤水分的数量变异。因此,在贵州山区坡地黄壤上实施集雨工程建设,大力推行工程、农艺、生物、化控等措施相结合的集雨增效旱作农业技术,提高降雨转化效率,增强土壤水库在农田水分调蓄上的作用是十分必要的。
It has become an international topic how to improve the utilization of rainfall and limited water resources, to reduce the water requirement and consumption by agriculture. Soil moisture is a vital factor for crop growth, vegetation recovery and ecological construction. Recently, with the application of new technologies and methods, researchers in China have made great achievements in the fields of modeling water transport in agro-ecosystem, optimizing and regulating field water in agriculture and so on. However, most of the research was carried out in north China plain and the loess plateau, the semiarid zone of China. They are seldom applied in the areas of southern China with seasonal drought, especially in the karst region of southwestern China. Located in the southwest, Guizhou karst mountain area is one of the areas with most serious soil erosion and water shortage, In this region, seasonal drought is frequent, and seriously limits the sustainable development of agriculture. Yellow soil (Xanthozem), which accounts for 41.9% of the total land area of Guizhou and 25.3% of the total yellow soil of China, is a major soil type for agriculture in Guizhou. In this research, a typical karst mountain area of Jiuchang Town, XiuWen County is selected as an experimental area, where the yellow soil is used to analyze the soil moisture dynamics and their environmental factors. The research provides a scientific basis for demonstrating and spreading of anti-drought technologies.
     The study focused on providing scientific basis for solving the seasonal drought problem in karst area of Guizhou. According to the spatio-temporal variation of soil moisture in yellow soil, three patterns of land utilization were considered involving corn-wheat intercropping pattern, vegetable-vegetable successive cropping pattern and bared land (check) on three slopes of 6.5°, 9.5°and 16°in the investigation. The experimental plot is 10.0m in length and 4.0 m in width. 594 data for runoff in 66 times and 3420 data for soil moisture in 76 times were collected from June, 2001 to July, 2003. The soil moisture in layers of 0-10cm, 10-20cm, 20-40cm, 40-60cm was measured at an interval of 10 days, and those from layers of 60-80cm, 80-100cm with an interval of 20 days, respectively. All the data were categorized by cropping patterns and gradients and analyzed by methods of the traditional statistics, cross-spectral analysis and wavelet analysis to investigate the spatio-temporal variation of yellow soil moisture. The water holding capacity of yellow soil, precipitation transport on sloping land, soil moisture dynamics and its affecting factors had been discussed in this paper. The main achievements of this study are as follows:
     1. Yellow soil is easily attacked by seasonal drought due to its heavy texture, high water holding capacity, low specific water capacity, and narrow range of the available soil moisture.
     In yellow soil, the physical clay particle (<0.01mm) totals up to 691.7-880.5g·kg~(-1), of which the extremely clayey particle (<0.001mm) accounts for more than 44%. The clay content is the highest in the layer of 20-40 cm of yellow soil profile, which goes against infiltration. The water-holding capacity of yellow soil is related to contents of clay fractions with the size <0.001mm and <0.01mm in yellow soil profile. There is a significant positive correlation between clay content and field capacity, wilting coefficient and available soil moisture, a negative correlation between sand content, silt content, bulk density and field capacity, wilting coefficient, the content of available soil moisture.
     The specific water capacity decreases to the scale of 10~(-2) from 10~(-1), and to scale of 10~(-3) from 10~(-2) when the water potential decreases from -2.5~-10kPa to -10~-30kPa, and then to -100~-300kPa. The yellow soil water content decreases very quickly and the soil water discharges rapidly with a large amount when the suction is less than 100kPa. As the suction exceeds 100kPa, soil water releases slowly with a less amount. In 0-20cm layer of yellow soil the field water holding capacity is as high as 282.2g·kg~(-1), with a wilting coefficient more than 250.0 g·kg~(-1) and the range of the available soil moisture is only 3-5 g·kg~(-1). This is the reason that yellow soil is frequently influenced by seasonal droughts.
     The total soil reservoir capacities in 0-100cm layer of yellow soil is 5515.3 m~3·hm~(-2), in which 4094.1 m3·hm~(-2) is the water-storage capacity and 1421.26 m~3·hm~(-2) is the transmission volumetric capacity, making up 74.23% and 25.77% of the total volumetric capacities, respectively. The available water capacity is only 287.1m~3·hm~(-2), accounting for 9.69% of the water-storage volumetric capacity and therefore it is the reason that yellow soil is easily attacked by seasonal drought. The unavailable water volumetric capacity of yellow soil takes up 90.31% of the water-storage volumetric capacity, which is useless for crops.
     2. High surface runoff leads to low utilization of rainfall on yellow soil slopes under traditional cropping patterns in karst mountain areas of Guizhou.
     The surface runoff on yellow soil slopes coincides with the rainfall reception of soil-plant system. Surface runoff appears frequently and changes dramatically from May to August of the runoff peak time; then gently from March to April and also from September to November. The rainfall reception of soil-plant system on yellow soil slopes begins from March, having a low volume from the middle 10 days of March to the middle 10 days of April, and then a great amount of rainfall reception from the last ten days of April to June. The frequency of rain reception is low in July and amount of reception is considerable. It rains frequently in August, and the rainfall reception is limited. It rains infrequently in September. It rains frequently and the rainfall reception is a bit less in October. It seldom rains from November to February of the coming year and there is hardly any rain to infiltrate. It is the key period from April to October to increase deep soil infiltration and improve the rainfall utilization.
     The relationship of surface runoff (R_s), the rainfall (P) and the rainfall reception (P_e) on yellow soil slopes could be determined as P = P_e + R_s in quantity. The surface runoff increases rapidly with an acceleration as the rainfall increases. Therefore, the formula for surface runoff with rainfall could be simulated as R_s=-a+bP-cP~2+dP~3. The rainfall reception increases with the increasing rainfall at the very beginning, later it increases with declining speed, and then decline as the rainfall reaches 70-80 mm. Thus, the equation for the rainfall reception with rainfall could be simulated as P_e=a+a.+bP+cP~2-dP~3. The rainfall, which causes surface runoff, takes up as high as 72% of the annual precipitation. The runoff from bare land, accounts for 42.4% of the annual rainfall, while the other 58.6% is taken up by soil-plant system. The surface runoff accounts for 31.8% of the rainfall and this leads to a rainfall reception coefficient of no more than 68.2% on yellow soil slopes under traditional cropping patterns. Although the runoff on yellow soil slopes under traditional cropping patterns is smaller than that on the bared land, the runoff coefficient is still high and the utilization of rainfall on yellow soil slopes under traditional cropping patterns needs to be improved, In addition, there is a positive correlation between gradient and runoff and negative correlation between gradient and rainfall reception.
     3. There is large difference of yellow soil moisture within seasonal distribution and vertical profile.
     The variation of yellow soil moisture with time tends to be an oscillation of wave with a rhythm of 30-60 days. The water content of yellow soil varies from season to season. Spring is the season with high evaporation leading to soil moisture moving downward clearly, and the soil moisture is at the negative phase, which is disadvantageous to shallow root crops. Summer and Autumn are the accumulation stage of soil moisture from infiltration of rainfall and the soil water moving downward, at this stage the soil water content is at positive phase. Winter is the low evaporation and accumulation stage of soil moisture and the soil water content alternates between positive and negative phases. Due to its narrow available soil water, yellow soil is likely disturbed by seasonal drought in spite of a much high value of soil moisture in summer and autumn, however.
     There is a similar distribution of inflexion and periodical characteristics between the adjacent layers in yellow soil profile. The causality between layers is obvious. The Variance coefficient (cv) of soil moisture, which is related to depth (h) of yellow soil, could be simulated as cv=0.5197h~(-0.4894). The 0-20cm depth is the water active layer with a water content of 250-400 g·kg~(-1), which is the channel and interface for water transmission between soil and atmosphere. The 20-60cm depth is the water sub-active layer with a water content of 400-500 g·kg~(-1), a transition zone between water active layer and the relatively steady layer and also a channel for water transportation. The 60-100cm depth is the relatively steady layer with a water content of more than 550 g·kg~(-1), where the soil water is relatively stabilized, which is the water storage bank for water transformation between soil and atmosphere.
     4. Slope and cropping are important factors in utilization of rainfall and maintenance of yellow soil moisture.
     In karst mountainous areas of Guizhou, the surface runoff on yellow soil slopes increases with the increasing gradient, which reduces the utilization of rainfall by soil-plant system. The gradient is also a key factor to vertical variation water content in the profile of yellow soil on the sloping land. Except of the water active layer from 0 to 20cm in profile of yellow soil, water content of the layers within 20-100cm shows the same trend: 9.5°> 16°> 6.5°. Since the physical clay content of yellow soil on 6.5°slope is 100g·kg~(-1), much higher than that on 9.5°and 16°slopes, the infiltration and transformation of rainfall by soil-plant system on the 6.5°slope is seriously limited. It is the main reason that the soil water content on 6.5°is less than that on 16°.To the exclusion of the abnormality that occurs on the 6.5°slope, the yellow soil on the 9.5°slope always has a priority in soil moisture maintenance compared with the yellow soil on 16°slope. The variation of yellow soil moisture is up to the rain event in temporal dimension, especially 0-40cm layer.
     With the seasonal changes, the efficiency for rainfall utilization by soil-plant system alters between corn-wheat and vegetable-vegetable cropping patterns. The crop plantation enhanced the rainfall utilization in comparison with the bare land pattern. The inflexions of yellow soil water variations from 0 to 100 cm depths, especially within the layer of 0-20cm, are nearly in the same location or close to in the temporal dimension. The evapo-transpiration of soil-plant system is enhanced while the infiltration is improved by crops growing. Thus, the frequency and extent of yellow soil moisture variation accelerates considerably by crops growing. However, the influence by crops growing attenuates with the depth, which enables a stable and high content of soil water in the relatively steady layer. When soil contains much water, the moisture variation in 0-20 cm depth of yellow soil under the corn-wheat pattern is much greater than that under the vegetable-vegetable pattern. The bared land holds quite a high soil water content in the 0-100 depth because of limited influence by vegetation evapotranspiration, etc..
     In summary, it can be seen from all above that the yellow soil in karst mountain areas of Guizhou has an extremely clayey texture, which leads to a strong water-holding capacity, a limited specific water capacity, an extremely narrow range of available soil moisture, an obstacle for water movement upward and downward and a limitation of available soil water in top soil. It is the reason that the yellow soil in karst mountain areas of Guizhou is easily to be attacked by seasonal drought. The runoff coefficient of yellow soil slopes is high under the traditional cropping patterns and the rainfall utilization rate needs to be enhanced. The limited water storage of yellow soil in Spring unbalanced the supply of soil water through a year. Gradient has a positive effect on runoff, and a negative effect on utilization of rainfall and soil moisture content. Crop plantation increases the reception of rainfall during raining period, while increases the soil moisture consumption during the non-raining period. At a certain extent, crop plantation increases the variation of soil water content. Therefore, it is necessary to take an action to start the engineering construction for available rainfall collection and extend the drying farming technologies combined with agricultural, biological measure as well as the measures for soil and water conversation as to maximize the utilization of rainfall and optimize the effect of soil reservoir on the field water supply.
引文
蔡秋,陈梅琳.贵州喀斯特山区环境特征与生态系统的恢复和重建.农业系统科学与综合研究.2001,17(1):49-53.
    蔡强国,吴淑安.紫色土坡地不同土地利用对水土流失过程的影响.水土保持通报.1998,18(2):1-8.
    曹星平,易东云,吴翊.基于神经网络的时间序列预测方法进展.电脑与信息技术.1999,(6):1-3.
    陈浩,蔡强国.坡度对坡面径流、入渗量影响的试验研究.晋西黄土高原土壤侵蚀规律实验研究.北京:水利电力出版社.1990:17-25.
    陈洪松,邵明安,王克林.土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响.农业工程学报.2006,22(1):44-47.
    陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展.水科学进展.2003,14(14):513-520.
    陈奇伯,费希亮.土壤侵蚀预报研究的新进展.中国水土保持.1996,(2):20-23.
    陈晓霖,方天堃.中国农业水资源利用管理现状分析.农业与农村发展.2006,4:39-40.
    陈效民,黄德安,吴华山.太湖地区主要水稻土的大孔隙特征及其影响因素研究.2006,43(3):509-512.
    陈旭晖,夏园,等.黄壤旱地土壤水分动态观测总结.贵州农业科学.1990,(3):1-7.
    陈云明,刘国彬,杨勤科.黄土高原人工林土壤水分效应的地带性特征.自然资源学报.2004,19(2):195-200.
    程琴娟,蔡强国,李家永.表土结皮发育过程及其侵蚀响应研究进展.地理科学进展.2005,24(4):114~122.
    程云生,姚贤良.土壤及土壤物理性质测定法.北京:科学出版社,1965.
    崔德祥,李桂莲,王谋强,等.贵州蔬菜产业发展的规划与布局.贵州农业科学.2005,33(增刊):34-36.
    崔灵周,李占斌,丁文峰.四川中部丘陵地区不同种植模式下旱地土壤水分变化规律.干旱地区农业研究.2001,19(1):87-92.
    戴洪刚,梁虹,黄法苏.喀斯特枯水、干旱、灾害初探.贵州师范大学学报(自然科学版).2005,23(4):28-33.
    丁裕红,江志红.基于Bayes准则的时间序列判别预报模式.气象学报.1993,51(1):98-101.
    董方红.山西省旱地小麦土壤水分变化规律与封闭性栽培技术的研究.山西太谷:山西农业大学2000届硕士学位论文.
    杜兵,廖植樨,邓健,等.小麦地保护性耕作措施和压实对水分保护的影响.中国农业大学学报.1997,2(6):43-48.
    段建南,李旭霖,王改兰.黄土高原土壤变化及其过程模拟.北京:中国农业出版社.2001:75~83.
    范恩普,孟平红.贵州的早菜效应及未来发展的设想.贵州农业科学.1994,(6):42-45.
    冯广龙,刘昌明.人工控制土壤水分剖面调控根系分布的研究.地理学报.1997,52(5):461-469.
    高华瑞.贵州岩溶地区地质条件对水土流失的影响.山地农业生物学报.2003.22(1):20-22.
    贵州省水利资源利用区划编写组.贵州省水利资源利用区划.贵阳:贵州省人民出版社.1990:1-77.
    贵州省土壤普查办公室.贵州省土壤.贵阳:贵州科技出版社.1994:163-190.
    郭 焱,熊泽海,胡荣贵.亚热带红壤丘岗区土壤水分动态的定位研究.土壤.1996,(1):42-45.
    郭继志.关于坡度与径流量和冲刷量的探讨.黄河建设.1958,4(3):9-11.
    郭庆荣,李玉山.土壤—植物—大气连续体中能量变化和分布规律.水土保持学报.1994,8(3):81-86。
    郭庆荣,钟继洪,谭 军,等.南亚热带丘陵赤红壤水分问题探讨.农业现代化研究.2004,25(4):302-320.
    郭志强,何英豪,肖庆元.湘北红壤丘岗区旱地土壤水分性质与变化规律的研究.湖南农业科学.1995,(5):31-33.
    韩洪云,JeffBenneR.21世纪中国农业水资源利用.农业与农村发展.2002,11:4-7.
    韩仕峰,李玉山,张孝中,等.提高黄土高原农田土壤水分利用的主要途径.水土保持通报.1990,10(6):39-45.
    何腾兵.贵州喀斯特山区水土流失状况及生态农业建设途径探讨.水土保持学报.2000,14(5):28-34.
    何圆球.红壤农业生态系统水分循环、平衡及其调控研究.土壤.1998,(1):20-26.
    侯光炯,谢德体.土壤肥力学概要.1984;土壤肥力的实质.1984.农业土壤学—侯光炯在宜宾应用研究17年论文选集(宜宾自然免耕研究所整理).乌鲁木齐:新疆科技卫生出版社;成都:四川科技出版社.2000:103-137;138-142.
    侯喜禄,白岗栓,曹清玉.刺槐、柠条、沙棘林土壤入渗及抗冲性对比试验.水土保持学报.1995,9(3):90-95.
    侯喜禄.实验区土壤水分动态与树种布设.水土保持通报.1985,(4):9-12.
    华孟,王坚,著.土壤物理学.北京:北京农业大学出版社.1993.
    黄昌勇.土壤学.北京:中国农业出版社.2000:98-110.
    黄冠华,詹卫华,杨建国.应用分形理论模拟和预测土壤水分特征曲线.土壤物理与生态环境建设研究.邵明安编.陕西科学技术出版社.2002a:240-245.
    黄冠华,詹卫华.土壤水分特征曲线的分形模拟.水科学进展.2002b.13(1):55-60.
    黄明斌,李玉山,康绍忠.坡地单元降雨产流分析及平均入渗率计算.土壤侵蚀与水土保持学报.1999,5(1):64-68.
    黄兴法.坡面降雨径流的一种数值模拟方法.中国农业大学学报.1997,(2):45-50.
    贾志军,王贵平,李俊义,等.土壤含水率对坡耕地产流入渗影响的研究.中国水土保持.1987,(9):25-27.
    贾志清,宋桂萍,李清河,等.宁南山区典型流域土壤水分动态变化规律研究.北京林业大学学报.1997,19(3):15-20.
    江忠善.黄土地区天然降雨雨滴特性研究.中国水土保持.1983,2(3):32-36.
    蒋定生,黄国俊.黄土高原土壤入渗速率的研究.土壤学报.1986,23(4):299-304.
    蒋定生.黄土高原水土流失与治理模式.北京:中国水利水电出版社.1997,198-206.
    蒋定生.黄土高原土壤入渗速率的研究.土壤学报.1986,23(4):23-32.
    蒋太明,刘海隆,刘洪斌,等.黄壤坡地土壤水分入渗垂直变异特征分析.农业工程学报.2004a,18(3):49-56.
    蒋太明,刘远坤,肖厚军,等.从全国论贵州水资源特点与农业利用潜力.水问题论坛.2003a,38(1):18-23.
    蒋太明,魏朝富,谢德体,等.贵州中部喀斯特地区黄壤持水性能的研究.水土保持学报.2006,20(6):25-29.
    蒋太明,肖厚军,邓 英,等.黔中地区旱地黄壤抗干旱能力研究.灌溉排水学报.2005a,24(4):51-54.
    蒋太明,肖厚军,夏锦慧,等.修文县久长试区主要旱地黄壤理化性质与农业利用对策.贵州农业科学.2004b,32(1):35-38.
    蒋太明,肖厚军,夏锦慧.贵州喀斯特山区农田水利发展新思路.水土保持研究.2003b,10(5):98-100.
    蒋太明,谢德体,魏朝富.贵州农业资源与现代农业生产需求下的耕地保护性利用原则.香港社区伙伴,贵州省农业科学院.山区生态农业国际研讨会论文集.贵阳.2005b:51-56
    蒋太明.降水人渗与土壤水分动态模型研究进展.贵州农业科学.2005c,33(增刊):83-88.
    焦树林,梁虹.喀斯特地区流域地貌与岩性的统计关系探讨一以贵州省为例.中国岩溶.2002,21(2):95-100.
    靳长兴.论坡面侵蚀的临界坡度.地理学报.1995,50(3):234-239.
    靳长兴.坡度在坡面侵蚀中的作用.地理研究.1996,15(3):37-43.
    景可,王万忠,郑粉莉.中国土壤侵蚀与环境.北京:科学出版社.2005:130-138.
    康绍忠,刘晓明,高新科,等.土壤—植物—大气连续体水分传输的计算机模拟.水利学报.1992,(3):1-12.
    康绍忠,张书函.内蒙古敖包小流域入渗分布规律的研究.土壤侵蚀与水土保持学报.1996,2(2):38-46.
    康绍忠.土壤水分动态的随机模拟研究.土壤学报.1990,27(1):17-24.
    寇志强,王其昌.内蒙古西部黄土丘陵区土壤水分动态初探.水土保持通报.1992,12(6):60-77.
    来剑斌,王全九.土壤水分特征曲线模型比较分析.水土保持学报.2003,17(1):137-140.
    雷志栋,胡和平,杨诗秀,等.土壤水研究进展与评述.水科学进展.1999,10(3):312-318.
    雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社.1988:1-407.
    雷志栋,杨诗秀.土壤空间变异性初步研究.水利学报.1985,(9):10-21.
    李元.时间序列中变点的小波分析及非线性小波估计.北京:中国统计出版社.2002.
    李凤,张如良.坡耕地实行保土耕作的效益试验分析.水土保持研究.2000,7(3):184-186.
    李毅,邵明安.雨强对黄土坡面土壤水分入渗及再分布的影响.应用生态学报.2006,17(12):2271-2276.
    李保国,龚元石,左强,等.农田土壤水的动态模型及应用.北京:科学出版社.2000:1-211.
    李保国.分形理论在土壤科学中的应用及其展望.土壤学进展.1994,22(1):1-10.
    李鼎新,陈国良.早熟马铃薯农田土壤水分动态和地膜水分效应.水土保持通报.1996,16(6):36-42.
    李广贺,刘兆昌,张旭.水资源利用工程与管理.北京:清华大学出版社.1998:27-42.
    李洪建,王孟本,柴宝峰.黄土高原土壤水分变化的时空特征分析.应用生态学报.2003,14(4):515-519.
    李鸿杰,黄冠.坡耕地蓄水保土耕作法及其效益分析.水土保持通报.1992,12(6):71-77.
    李鸿生,杜历.盐入渗变异特性及其相互关系的空间序列分析.土壤学报.1993,30(1):60-68.
    李开元.黄土高原旱地土壤水资源管理.水土保持通报.1995,15(6):34-38.
    李庆逵.中国红壤.北京:科学出版社.1985:108.
    李庆逵.中国土壤(第二版).北京:科学出版社.1987:61-64.
    李瑞雪,罗长寿,魏朝富.时序模型在四川盆地土壤水分动态预报中的应用.西南农业大学学报.2002,24(5):464-466.
    李生秀.中国旱地农业.北京:中国农业出版社.2004:1-323.
    李叔南,漆玉邦,伍钧.西南红黄壤粘粒组成与生产特性.土壤农化通报.1995,10(4):23-26.
    李水根,吴纪套.分形与小波.北京:科学出版社.2002.
    李文庆.红壤的水分状况及其与物理性质的关系.水土保持研究.1995,2(1):15-17.
    李晓玲,成自勇,刘普海.不同灌溉技术下玉米的节水性试验研究.甘肃水利水电技术.2006,42(1):39-44.
    李艳梅,王克勤,刘芝芹,等.云南干热河谷不同坡面整地方式对土壤水分环境的影响.水土保持学报.2006,20(1):15-49.
    李玉山,喻宝萍.土壤深层储水对小麦的增产效应的研究.土壤学报.1980,17(1):43-54.
    李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响.生态学报.1983,3(2):97-101.
    李裕元,邵明安,张兴昌.模拟降雨条件下侵蚀坡地土壤水分与有效磷的空间分布特征.水土保持学报.2001,15(2):41-44.
    李裕元,邵明安.降雨条件下坡地水分转化特征实验研究.水利学报.2004,(4):48-53.
    李裕元,邵明安.土壤翻耕对坡地水分转化与产流产沙特征的影响.农业工程学报.2003,19(1):46-50.
    李子忠.不同尺度下农田土壤水分和无机氮的空间变异性.北京.中国农业大学博士论文.2000.
    梁春祥,姚贤良.华中丘陵红壤物理性质空间变异性的研究.土壤学报.1993,30(1):69-77.
    廖植樨,邓健.机械化保护耕作体系抗土壤侵蚀效能研究.农业机械学报.1997,28(3):139-143.
    刘昌明,窦清晨.土壤—植被—大气连续体模型中的蒸散发计算.水科学进展.1992,3(4):256-263.
    刘昌明,于沪宁.土壤—植物—大气系统水分运行实验研究.北京:气象出版社.1997a:1-195.
    刘昌明.土壤—植物—大气系统水分运行的界面过程研究.地理学报.1997b.52(4):366-373.
    刘春利,邵明安,张兴昌,等.神木水蚀风蚀交错带退耕坡地土壤含水率空间变异性研究.水土保持学报.2005,19(1):132-135.
    刘海隆,蒋太明,刘洪斌,等.不同土地利用方式对岩溶山区早坡地土壤水分时空分异的影响.土壤学报.2005,42(3):428-432.
    刘洪斌,武伟,魏朝富.基于神经网络的土壤水分预测建模研究.水土保持学报.2003,17(5):59-62.
    刘建立,徐绍辉,刘慧.估计土壤水分特征曲线的间接方法研究进展.水利学报.2004,(2):68-76.
    刘建立,徐绍辉.根据颗粒大小分布估计土壤水分特征曲线:分形模型的应用.土壤学报.2003,40(1):46-52.
    刘莉丽,张建军,聂小妮,等.坡耕地土壤流失规律研究.西北林学院学报.2005,20(4):101-103.
    刘立光,吴伯志.不同耕种方式对水土流失及产量的影响.耕作与栽培.1993,4:12-14.
    刘荣乐,张马祥.湘南丘陵红壤持水特征及水分状况的研究.中国农业科学.1992,32(2):235-240.
    刘贤赵,康绍忠.黄土区考虑滞后作用的坡地水量转化模型.土壤学报.2000,37(1):16-23.
    刘贤赵,康绍忠.陕西王东沟小流域野外土壤入渗试验研究.人民黄河.1998,20(2):14-17.
    刘晓英.滴灌条件下土壤水分运动规律的研究.水利学报.1990,(1):11-12.
    刘雪梅,宋国强,程平顺.贵州省夏旱特征及分区研究.高原气象.1997,16(3):292-299.
    柳云龙,卢升高,韩小非.红壤地区土壤母质发育程度对红壤持水特性的影响.上海交通大学学报(农业科学版).2003,21(4):340-344.
    柳云龙,吕军,王人潮.低丘红壤作物易旱与土壤持水供水特性的关系.浙江大学学报(农业与生命科学版).2002,28(1):42-46,
    吕殿青,邵明安.非饱和土壤水力参数的模型及确定方法.应用生态学报.2004,15(1):163-166
    吕殿青.变容重土壤的水分动力学研究.陕西杨陵:西北农林科技大学2003届博士研究生学位论文.2003:1-105.
    吕军杰,姚宇卿,王育红,等.不同耕作方式对坡耕地土壤水分及水分生产效率的影响.土壤通报. 2003,34(1):74-76.
    罗 宁,许炳南,文继芬,等.贵州大气降水的时空分布规律研究.贵州气象.2006,30(4):3-7.
    罗伟祥.不同覆盖度林地和草地的径流量和冲刷量.水土保持学报.1990,4(1):29-36.
    骆伯胜,张秉刚,钟继红,等.南亚热带丘陵土壤水分循环及其有效性的研究Ⅲ.降雨入渗与地表径流.热带亚热带土壤科学.1998,7(2):116-120.
    马海艳,龚家栋,王根绪,等.干旱区不同荒漠植被土壤水分的时空变化特征分析.水土保持研究.2005,12(6):231-234.
    马履一.国内外土壤水分研究现状与进展.世界林业研究.1997,(5):26-32
    马文瀚.贵州喀斯特脆弱生态环境的可持续发展.贵州师范大学学报(自然科学版).2003,21(2):75-79.
    马耀光,张保军,罗志成,等.旱地农业节水技术.北京:化学工业出版社.2004:21-45.
    闵安成,张一平,任小川.几种农作措施对早地土壤水分状况的影响.西北农业学报.2001,10(4):85-89.
    牛健植,余新晓.优先流问题研究及其科学意义.中国水土保持科学.2005,3(3):110-116.
    彭娜,谢小立,王开峰,等.红壤坡地降雨入渗、产流及土壤水分分配规律研究.水土保持学报.2006,20(3):17-20.
    彭琴,林昌虎,何腾兵.贵州喀斯特山区水土流失特征与水土保持研究进展.贵州科学.2006.24(3):66-80.
    钱正英.中国水资源战略研究中几个问题的认识.河海大学学报.2001,29(3):1-7.
    秦耀东,任 理,王 济.土壤中大孔隙流研究进展与现状.水科学进展.2000,11(12):203-206.
    邱扬,傅伯杰,王军,等.土壤水分时空变异及其与环境因子的关系.生态学杂志.2007,26(1):100-107.
    邱扬,傅伯杰,王军.黄土丘陵小流域土壤水分时空分异与环境关系的数量分析.生态学报,2000,20(5):742-747.
    区美美,王建武.土壤空间变异研究进展.土壤.2003,(1):30-33.
    全 斌,陈健飞.福建赤红壤、红壤早地土壤水库容状况及水分问题研究.土壤通报.2002,33(2):96-99.
    全国土壤普查办公室.中国土壤.北京:中国农业出版社.1998:618-687.
    任 理,李春友,李韵珠.层状粘性土壤水分动态新模型的应用.中国农业大学学报.1998,3(1):57-62.
    邵爱军,张爱昌.野外条件下作物根系吸水模型的建立.水利学报.1997,(2):68-72.
    邵明安,陈志雄.SPAC中的水分运动.中国科学院/水利部西北水土保持研究所集刊.1991a,13:3-12
    邵明安,黄明斌.土根系统水动力学.西安:陕西科学技术出版社.2000:1-155.
    邵明安,上宫周平,康绍忠.坡地水分养分动力学研究的基本思路.邵明安主编:黄土高原土壤侵蚀与旱地农业。西安:陕西科学技术出版社.1999:1-9.
    邵明安,杨文治,李玉山.植物根系吸收土壤水分的数学模型.土壤学报.1987,24(4):295-305.
    邵明安.植物根系吸收土壤水分的一个简化模式Ⅰ模式.中国科学院/水利部西北水土保持研究所集刊.1991b,13:33-37.
    沈冰,王文焰.短历时降雨强度对黄土坡地径流形成影响的试验研究.水利学报.1995,(3):21-27
    沈冰,王文焰.降雨条件下黄土坡地表层土壤水分运动实验与数值模拟的研究.水利学报.1992,(6):29-35
    沈冰.非饱和土壤水运动模型应用实例.西北水资源与水工程.1992,3(2):80-83
    沈晋,王文焰,沈冰.动力水文实验研究.西安:陕西科学技术出版社.1991:14-97.
    水建国,柴锡周.红壤坡地不同生态模式水土流失规律的研究.水土保持学报.2001,15(2):33-36.
    水建国,陈喜靖.旱季红壤剖面中不同层次水分消长及其对深层水利用的研究.浙江农业学报.1995,7(5):364-368.
    苏以荣,黄 宇,王克林.新垦红壤坡地土壤水分有效性研究.应用生态学报.2003,14(4):507-511.
    孙景华,何建明.辽北低山丘陵区坡耕地水土流失规律研究.水土保持研究.1997,4(4):65-74.
    唐启义,冯明光.实用统计分析及其DPS数据处理系统(第一版).北京:科学出版社.2002:1-463.
    唐小娟,吴普特,高建恩.不同坡面径流调控措施的筛选试验研究—第四次全国雨水利用技术研讨会论文(中国雨水网:http://www.crwhu.com/)
    田积莹.黄土地区土壤的物理性质与黄土成因的关系.中国科学院西北水保所集刊.1987,(5):1-12.
    汪懋华.“精细农业”发展与工程技术创新.农业工程学报.1999,15(1):1~8.
    王 风,韩晓增,李海波,等.不同黑土生态系统的土壤水分物理性质研究.水土保持学报.2006,20(6):67-70.
    王军,傅伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响.地理学报.2000,55(1):84-91.
    王军,傅伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响.地理学报.2001,55(1):84-91.
    王燕.黄土表土结皮对降雨溅蚀和片蚀影响的试验研究.中科院水利部西北水土保持研究所1992届硕士学位论文.陕西.
    王百田,王斌瑞.黄土坡面地表处理与产流过程研究.水土保持学报.1994,8(2):18-24.
    王殿武,周大迈.太行山区旱作农田土壤水分动态及水肥产量效应研究.干旱地区农业研究.1998,12(6):32-40.
    王广成,刘海明,杨根栾.中值滤波方法在遥测数据处理中的应用.遥测遥控.2002,23(1):26-31.
    王焕之,吕 军.红壤地区三种不同母质发育土壤的水分特性差异.水土保持学报.2001,15(2):68-71.
    王经民,韩冰,戴夏燕.MATLAB及其在黄土丘陵区土壤水分研究中的应用.水土保持通报.2000,20(3):44-46.
    王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究.生态学报.1995,15(2):178-184.
    王孟本,李洪建.柠条林蒸腾状况与土壤水分动态研究.水土保持通报.1990.10(6):86-90.
    王明珠.我国南方季节性干旱研究.农村生态环境.1997,13(2):6-10.
    王绍辉,任理,张福墁.日光温室黄瓜栽培条件下土壤水分动态的数值模拟.农业工程学报.2000,16(4):110-114.
    王天生,冉亚明,王瑶,等.贵州种植业结构调整的问题探讨.贵州农业科学.2003,31(1):61-63.
    王天文,李桂莲,文林宏,等.贵州夏秋反季节蔬菜种植模式研究Ⅰ.粮油菜种植模式.贵州农业科学.2004,32(3):67-69.
    王晓燕,陈洪松,王克林,等.不同利用方式下红壤坡地土壤水分时空动态变化规律研究.2006,20(2):110-173.
    王晓燕.用人工降雨研究保护性耕作下的地表径流与水分入渗.水土保持通报.2000,20(3):23-25.
    王新平,肖洪浪,张景光,等.荒漠地区生物土壤结皮的水文物理特征分析.水科学进展.2006,17(5):592-597.
    王玉宽.黄土高原坡地降雨产流过程的试验分析.水土保持学报.1991,5(2):25-29.
    王云强,张兴昌,从伟,等.黄土区不同土地利用方式坡面土壤含水率的空间变异性研究.农业工程学报.2006,22(12):65-71.
    魏义长,刘作新,康玲玲,等。土壤持水曲线van Genuchten模型求参的Matlab实现.土壤学报.2004,41(13):380-386.
    温全来,霍秀芳,朱智宏,等.黄土坡地土壤水分与降雨量植被之间关系的分析.内蒙古水利.2001,82(1):26-42.
    吴发启,赵西宁,佘雕.坡耕地土壤水分入渗影响因素分析.水土保持通报.2003,23(1):16-22.
    吴发启,赵晓光,刘秉正.缓坡耕地降雨、入渗对产流的影响分析.水土保持研究.2000,7(1):12~37.
    吴发启,赵晓光.黄土高原坡耕地土壤侵蚀预报.土壤侵蚀与水土保持学报.1998,4(2):72-76.
    吴俊铭,帅世殊.论贵州气候资源与农业结构调整.贵州农业科学.2004,32(2):67-69.
    吴林祖.一种城市径流量的计算方法—径流曲线数值方程(CNE).上海环境科学.1987,6(12):48-52.
    吴希媛,张丽萍.降水再分配受雨强、坡度、覆盖度影响的机理研究.水土保持学报.2006,20(4):28-30.
    武海霞,刘永朝,栾清华.同质异性土壤水分特征曲线的特性试验研究.海河水利.2006,(2):61-68.
    谢家雍.西南石漠化与生态重建.贵阳:贵州民族出版社.2001:1-98.
    谢小立,王凯荣.湘北红壤坡地雨水过程的水土流失及其影响.山地学报.2003,21(4):466-472.
    谢小立.红壤丘岗缓坡地水资源状况与管理.山地学报.2000,18(4):336-340.
    徐瑶.贵州喀斯特地区生态经济类型划分及可持续发展评价研究,贵阳:贵州师范大学2001届硕士研究生论文.贵州师范大学:1-8.
    徐绍辉,张佳宝,刘建立.表征土壤水分特征曲线的几种模型的适应性研究.土壤学报.2002,39(4):498-504.
    许月卿,周巧富,李双成.贵州省降雨侵蚀力时空分布规律分析.水土保持通报.2005,25(4):11~14.
    杨弘,李忠,裴铁瑶,等.长白山北坡阔叶红松林和暗针叶林的土壤水分物理性质.应用生态学报.2007,18(2):272-276.
    杨贵羽,陈亚新.土壤水分、盐分空间序列初步研究.灌溉排水.2002,21(3):32-35.
    杨金玲,张甘霖,赵玉国,等.城市土壤压实对土壤水分特征的影响——以南京市为例.土壤学报.2006,43(1):34-38.
    杨开宝,刘国彬,李景林,等.双料沟垄组合覆盖对土壤水分时空分布的影响.干旱地区农业研究.2004,22(4):92-117.
    杨明义,田均良.坡面侵蚀过程定量研究进展.地球科学进展.2000,15(6):649-653.
    杨叔子,吴雅.时间序列分析的工程应用(上).武汉:华中理工大学出版社.1991:1-395.
    杨文治,邵明安.黄土高原土壤水分研究.北京:科学出版社.2000:152-190.
    杨文治.黄土高原土壤水分状况分区与造林问题.水土保持通报.1981,(2):13-19.
    杨永辉,赵世伟,雷廷武,等.耕作对土壤入渗性能的影响.生态学报.2006,26(5):1624-1630.
    姚德良,邱克俭,冀伟,等.在植物耗水条件下土壤水分动态的数值模拟.土壤学报.1993,30(1):111-116.
    姚建民,殷海善.降水资源有效化与旱地农业.资源科学.1999,21(4):47-50.
    姚贤良,程云生等编著.土壤物理学(第一版).北京:农业出版社.1986.
    姚贤良.红壤的库容及其对抗旱性能的影响.红壤生态系统研究第二集.南昌:江西科技出版社.1993:264-268.
    姚贤良.红壤水问题及其管理.土壤学报.1996a,33(1):13-20.
    姚贤良.华中丘陵红壤的水分问题Ⅰ.低丘坡地红壤的水分状况.土壤学报.1996b,33(3):249-256.
    姚贤良.华中丘陵红壤的水分问题Ⅱ.旱地红壤的水分状况.土壤学报.1998,35(1):16-24.
    姚贤良.土壤物理学的研究动态及展望.土壤.1985,17(6):281-289.
    余新晓.降雨入渗及产流问题的研究进展和评述.北京林业大学学报.1991,13(4):88-94.
    余新晓.土壤动力水文学问题的研究及其在防护林体系建设中的应用.世界林业研究.1995,(3):27-33.
    余优森,林日暖,邓振镛,等.人工草地土壤水分周年变化规律的研究.土壤学报.1992,29(2): 175一182.
    袁东海,陈明亮.鄂东南红壤水分特性的研究.华中农业大学学报.1994,13(3):254-26.
    袁东海,陈明亮.鄂东南红壤水分运动参数与红壤性质的相关性.华中农业大学学报.1995,14(1):53-57.
    袁东海,陈明亮.粘土矿物及其性质对土壤持水性能的影响.安徽农业大学学报.1997,24(2):165-170.
    张斌,张桃林.不同耕作制度下红壤缓坡地水土流失及土壤水分研究.红壤生态系统研究(第三集).南昌:江西科学出版社.1995.121-129.
    张航,徐明岗,张富仓,等. 陕西农业土壤持水性能及其与土壤性质的关系.干旱地区农业研究.1994,12(2):33-37.
    张宇,吕世华.陆面过程模式对不同土壤物理性质的敏感性研究.冰川冻土.2001,23(3):270-275.
    张大弟,周建平,陈佩青.上海市郊4种地表径流深度的测算.上海环境科学.1997,16(9):1-3.
    张仁陟,李小刚,胡华.甘肃黄土地区农田土壤水分变异规律研究.土壤侵蚀与水土保持学报.1998,4(4):53-59.
    张仁陟,李小刚,李焕峰.土壤水分变异规律研究Ⅰ.土壤水分空间变异的研究.西北农业学报.1993,2(1):21-26.
    张书函,康绍忠,蔡焕杰,等.天然降雨条件下坡地水量转化的动力学模式及其应用.水利学报,1998,(4):55-62.
    张思聪,惠士博,雷杨栋,等.水平非饱和水二维运动的准解析解.水利学报.1986,17(3):54-60.
    张信宝,安芷生.黄土高原地区森林与黄土厚度的关系.水土保持通报.1994,14(6):194-197.
    赵成义,黄俊梅,王玉潮,等.植物根系吸水特性研究.干旱区地理.1999,22(2):88-95.
    赵成义.作物根系吸水特性研究进展.2004,25(2):39-46.
    赵西宁,吴发启,王万忠.黄土高原沟壑区坡耕地土壤入渗规律研究.干旱区资源与环境.2004,18(4):109-112.
    中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社.1978.
    中国南方岩溶区生态环境建设对策研究调查组.中国南方岩溶区生态环境建设对策研究.中国水土保持.2004,(2):6-8;2004(3):1-3.
    周维博.降雨入渗和蒸发条件下野外层状土壤水分运动的数值模拟.水利学报.1991,(9):32-36.
    周尧治.亚热带红壤水分动态初探.作物研究.2002,(5):266-268.
    周运超,周习会,周 玮.贵州岩溶土壤形成及其可持续利用.山地农业生物学报.2005,24(5):419-425.
    朱德兰,吴发启.不同地形部位土壤水分的年变化分析.水土保持科学.2003,1(4):28-30.
    朱红霞,姚贤良.红壤丘陵区桔园土壤的水分特点及其管理.红壤生态系统研究第二集.南昌:江西 科技出版社.1993:277-282.
    朱显谟.黄土高原水蚀的主要类型及有关因素(四).水土保持通报.1982,2(3):12-15.
    朱祖祥.土壤水分的能量概念及其意义.土壤学进展.1979,(1):1-2.
    庄季屏.四十年来的中国土壤水分研究.土壤学报.1989,(3):241-248.
    左强,王数,陈研.反求根系吸水速率的方法探讨.农业工程学报.2001,17(4):17-21.
    Talha M.,Aziz M.A.,Tong M.E.,等.巴哈利亚绿洲土壤水分与物理性质间的关系.原载于“Remote Sensing and Tropical Land Management:1986,223-233.”(肖洪浪译)
    Abrahamsen P., Hansen S.. Daisy: An open soil-crop-atmosphere system model. Environmental Modelling & Software. 2000, (15): 313-330.
    Aken A. O., Yen B. C.. Effect of rainfall intensity on infiltration and surface runoff rates. J. of Hydraulic Research. 1984, 21(2): 324-331.
    Allaire-Leung S. E., Gupta S. C., Moncrief J. F.. Water and solute movement in soil as influenced by macropore characteristics: 2. Macropore tortuosity. Journal of Contaminant Hydrology, 2000, 41(3-4): 303-315.
    Amsalu A., Stroosnijder L., Graaff J.. Long-term dynamics in land resource use and the driving forces in the Beressa watershed, highlands of Ethiopia. Journal of Environmental Management, 2007, 83(4): 448-459.
    Anamosa P. R., Kizza P. N., William G., et al.. Water movement through an aggregated, gravelly oxisol from Cameroon. Geoderma, 1990, 46(1-3): 263-281.
    Andraski B. J., Lowery B.. Erosion effects on soil water storage, plant water uptake and corn growth. Soil Science Society of America Journal, 1992, 56: 1911-1919.
    Arya L. M., Paris J. F.. A physical empirical model to predict the soil moisture retention characteristic from particle size distribution and bulk density data. Soil Science Soc AM J. 1981, 45:1023-1030
    Asbjornsen H., Mora G., Helmers M. J.. Variation in water uptake dynamics among contrasting agricultural and native plant communities in the Midwestern U.S. Agriculture, Ecosystems and Environment. 2007, (121): 343-356.
    Baunhards R. L.. Modeling infiltration into sealing soil. Water Resour. Res. 1990, 26(1): 2497-2505.
    Bennie A. T. P., Hensley M.. Maximizing precipitation utilization in dryland agriculture in South Africa—a review. Journal of Hydrology. 2001, (241): 124-139.
    Bφrgesen C. D., Jacobsen O. H., Hansen S., et al.. Soil hydraulic properties near saturation, an improved conductivity model. Journal of Hydrology, 2006, 324(1-4): 40-50.
    Bouma J.. Using soil survey data for quantitative land evaluation. Advances in Soil Science, 1989, 9: 177-233.
    Bronstert, Axel. Capabilities and limitations of detailed hill slope hydrological modelling. Hydraulical Processes, 1999, 13: 21-48.
    Brooks R. H., Corey A. T.. Hydraulic properties of porous media. Hydrology Paper 3.27pp. Colorado state univ., Fort Collins, CO. 1964.
    Brown L. R.. Water deficits growing in many countries. Appropriate Technology. 2002, 29(3): 36.
    Brussaard L., Ruiter P. C., Brown G. G. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment. 2007, 121(3): 233-244.
    Brutsaert W.. Some methods of calculating unsaturated permeability. Trans ASAE. 1967, 10: 400-404
    Burdine N. T.. Relative permeability calculations from size distribution data. Petrol Trans., AIME. 1953, 198: 71-78.
    Camomni G., Castellarin A., Brath A.. Effects of land-use changes on the hydrologic response of reclamation systems. Physics and Chemistry of the Earth. 2005, (30): 561-574.
    Campell G. S.. A simple method for determining unsaturated hydraulic conductivity from moisture retention data. Soil Sci. 1974, 117: 311-314.
    Cannell G. H., Dregne H. E.. Regional Setting, In H. E. Dregne and W. O. Wills, Dryland Agriculture. American Society of Agronomy, Inc., Crop Science. Society of America, Inc., Soil Science Society of America, Inc., Publishers. Madison, Wisconsin, USA. 1983: 6-17.
    Chammn F., Gessler P. E., Chadwick O. A.. Spatially explicit treatment of soil-water dynamics along a semiarid catena. Soil Science Society of America Journal. 2002, 66(5): 1571, 13 pgs.
    Chen Y.. Scanning electron microscope observations on soil crusts and their formation. Soil Science. 1980, 130(1): 49-55.
    Comegna V., Damiani P., Sommella A.. Use of a fractal model for determining soil water retention curves. Geoderma, 1998, 85: 307-323.
    Crave A., Gascuel O. C.. The influence of topography on the time and space distribution of soil surface water content. Hydrological Processes, 1997, 11: 203-210.
    Crawford J. W., Matsui N., Young I. M.. The relation between the moisture release curve and the sturcture of soil. European Journal of Soil Science. 1995, 46: 369-375.
    Daba S.. Note on effects of soil surface crust on the grain yield of sorghum (Sorghum bicolor)in the Sabel. Field Crops Research. 1999, 61: 193-199.
    Deng X. P., Shan L., Zhang H. P., et al.. Improving agricultural water use efficiency in arid and semiarid areas of China. Agricultural Water Management. 2006, 80(1-3): 23-40.
    Eigle J. D., Moore I. D.. Effect of rainfall energy on infiltration into a bare land. JRANS of ASAE. 1983, 26(6): 189-199.
    Esteves M., Paucher X., Galle S., et al.. Overland flow and infiltration modeling for small plots during unsteady rain: numerical results vesusus observed values. Journal of Hydrology, 2000, 228: 265-282.
    Fagerlund F. F., Niemi A., Oden M.. Comparison of relative permeability-fluid saturation-capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated, layered media. Advances in Water Resources. 2006, 29 (11): 1705-1730.
    Famiglietti J. S., Rudnicki J. W., Rodell M.. Variability in surface moisture content along a hillslope transect: Rattle-snake Hill, Texas. Journal of Hydrology. 1998, 210:259-281.
    Farrell D. A., Larson W. E.. Modeling of the pore structure of porous media. Water Resource Research. 1972, 8:148-153.
    Faucette L. B., Risse L. M., Nearing M. A., et al.. Runoff, erosion, and nutrient losses from compost and mulch blankets under simulated rainfall. Journal of Soil and Water Conservation. 2004, 59(4): 154, 7 pgs.
    Feng C. G.. To strengthen the basic research of new technology and raise the utilization ratio of precipitation resources. Science and Technology Review. 1998, 10: 40-41.
    Feng S., Li L. X., Duan Z. G.,et al.. Assessing the impacts of South-to-North Water Transfer Project with decision support systems. Decision Support Systems, 2007, 42(4): 1989-2003.
    Fok Y. S.. Progress of International Conference on Rain Water Cistern Systems. Proc. of the 5th International Rainwater Cistern Systems Conference, Taiwan, China. 1991.
    Fox D. M., Bissonnais Y. L., Quetin P.. The implication of spatial variability in surface seal hydraulic resistance for infiltration in a mound and depression microtopography. Catena. 1998, 32:101-114.
    Fox P., Rockstr(?)m J.. Supplemental irrigation for dry-spell mitigation of rainfed agriculture in the Sahel. Agricultural Water Management. 2003, 61: 29-50.
    Gilley J. E., Doran J. W., Karlen D. L., et al.. Runoff, erosion, and soil quality characteristics of a former conservation reserve program site. Journal of Soil and Water Conservation, 1997, 52: 189-193.
    Gimenez D., Perfect E., Rawls W. J., et al.. Fractal models for predicting soil hydraulic properties: A review. Engineering Geology. 1997, 48: 161-183.
    Green W. H., Ampt G. A.. Studies on soil physics, flow of air and water through soils. J. Agr. Sci., 1911, 76(4): 1-24.
    Gupta S. C., Larson W. E.. Estimating soil water retention characteristics from particle size distribution, organic matter percent and bulk density. Water Resources Research. 1979, 15: 1633-1635.
    Hawley M. E., Jackson T. J., McCuen R. H.. Surface soil moisture on a small agricultural watershed. Journal of Hydrology. 1983, 62: 179-200.
    Helalia A. M.. The relation between soil infiltration and effective porosity in different soils. Agricultural Water Management. 1993, 24(8): 39-47.
    Henninger D. L., Petersen G W., Engman E. T.. Surface soil moisture within a watershed: Variations, factors influencing, and relationship to surface runoff. Soil Science Society of America Journal. 1976, 40: 773-776.
    Hillel D.. Environmental Soil Physics. San Diego: Academic Press. 1998.
    Horton R. E.. An approach to ward a physical interpretation of infiltration2capacity. Soil Science, Soc. AM. J. 1940, 5(3): 399-417.
    Hu J. L., Wang S. C., Yeh F. Y.. Total-factor water efficiency of regions in China. Resource Policy (in press). 2007: 14 pgs.
    Hulson J. T., Cass A.. A retentivity function for use in soil-water simulation models. J. Soil Sci. 1987, 38: 105-113.
    Humberto B. C., Gantzer C. J., Anderson S. H., et al.. Tillage and crop influences on physical properties for an Epiaqualf. Soil Science Society of America Journal. 2004, 68(2): 567, 10 pgs.
    Ippisch, H. J. Vogel, P. Bastian. Validity limits for the van Genuchten-Mualem model and implications for parameter estimation and numerical simulation. Advances in Water Resources, 2006, 29(12): 1780-1789.
    Jasper K., Calanca P., Fuhrer J.. Changes in summertime soil water patterns in complex terrain due to climatic change. Journal of Hydrology. 2006, Science@Direct, journal homepage: www.elsevier.com/locate/jhydrol.
    Jimenez C. C., Tejedor M., Morillas D., et al.. Infiltration rate in andisols: Effect of changes of vegetation cover(Tenerife, Spain). Journal of Soil and Water Conservation. 2006, 61(3): 153-158.
    Juan P. F., Markus F.. Hydraulic properties in a silt loam soil under natural prairie, conventional till, and no-til. Soil Sci. Soc. of American J. 2004, 68(5): 1679-1689
    Khare D., Jat M. K., Ediwahyunan. Assessment of counjunctive use planning options: A case study of Sapon irrigation command area of Indonesia. Journal of Hydrology. 2006, 328(3-4): 764-777.
    King L. G. Description of soil characteristics for partially saturated flow. Soil Science Soc Am Proc. 1965, 29: 359-362.
    Kostiakov A. N.. On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. Soil Sci., 1932, 97(1): 17-21.
    Kravchenko A., Zhang R. D.. Estimating the soil water retention from particle-size distributions: A fractal approach. Soil Science, 1998, 163: 171-179.
    Lai C. T., Katul G. The dynamic role of root-water uptake in coupling potential to actual transpiration. Advances in Water Resources. 2000, 23: 427-439.
    Laliberte G. E.. A mathematical function for describing capillary pressure-desaturation date. Le. Colloque 'Transfers on milieux poreux non satures'. 1969. Grenoble, France: 27-28.
    Leij F. J., Russel W. B., Resch S. M.. Closed-form expressions for water retention and conductivity data. Ground water. 1997, 35(5): 348-358.
    Lipiec J., Kus J., Jurkiewicz A. S., et al.. Soil porosity and water infiltration as influenced by tillage methods. Soil and Tillage Research. 2006, 89(2): 210-220.
    Loaiciga H. A.. Drought, tree rings, and reservoir design. Joumal of the American Water Resources Association. 2005, 41(4): 949-958.
    Lyon D. J., Stroup W. W., Brown R. E.. Crop production and soil water storage in long-term inter wheat-fallow tillage experiments. Soil & Tillage Research. 1998, 49: 19-27.
    Mair A., Fares A., E1-Kadi A.. Effects of rainfall and ground-water pumping on stramflow in Makaha, O'AHU, Hawai'i Journal of the American Water Resources Association, 2007, 43(1): 148-159.
    Mandelbrot B. B.. The fractal geometry of nature. 1983. San Francisco: W H Freeman.
    Mayr T., Jarvis N. J.. Pedotransfer functions to estimate soil water retention parameters for a modified Brooks-Corey type model. Geoderma. 1999, 91(1-2): 1-9.
    Miao Z. W., Vicari A., Capri E., et al.. Modeling the effects of tillage management practices on herbicide runoff in northern Italy. Journal of Environmental Quality. 2004, 33(5): 1720, 13 pgs.
    Michaud V., Mortensen A.. On measuring wettability in infiltration processing. Scripta Materialia. 2007, 56(10): 859-862.
    Miller G. R., Baldocchi D. D., Law B. E., et al.. An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites. Advances in Water Resources, 2007, 30(5): 1065-1081.
    Minasny B., McBratney A. B., Bristow K. L. Comparison of different approaches to the development of pedotransfer functions for water2retention curves. Geoderma. 1999, 93: 225-253.
    Mualem Y., Dagan G. Hydraulic conductivity of soils: unified approach to the statistical models. Soil Sci. Soc AM J. 1978, 42: 392-395.
    Mualem Y.. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research. 1976, 12: 513-522.
    Mualem Y. Hydraulic conductivity of unsaturated porous madia: generalized macroscopic approach. Water Resour Res. 1978, 14: 325-334
    Mualem Y.. Modeling the hydraulic conductivity of unsaturated porous media. In: Van Genuchten M. TH., Leiji F. J. eds. Indirect methods for estimating the hydraulic properties of unsaturated soils. California: University of California Press. 1992: 15-36.
    Mvbratney A. B., Pringle M. I. Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture. 1999, 1(2): 25~152.
    Mvungi, Mashauri D., Madulu N. F. Management of water for irrigation agriculture in semi-arid areas: Problems and prospects. Physics and Chemistry of the Earth, Parts A/B/C, 2005, 30(11-16): 809-817.
    Ndiaye B., Molenat J., Hallaire V., et al.. Effects of agricultural practices on hydraulic properties and water movement in soils in Brittany (France). Soil and Tillage Research, 2007, 93(2): 251-263.
    Omuto T. C., Minasny B., McBratney A. B., et al., Nonlinear mixed effect modelling for improved estimation of water retention and infiltration parameters. Journal of Hydrology, 2006, 330(3-4): 748-758.
    Pachepsky Y. A., Rawls W. J., Gimenez D., et al.. Use of soil penetration resistance and group method of data handling to improve soil water retention estimates. Soil and Tillage Research. 1998, 49: 117-128.
    Pachepsky Y. A., Timlin D., Varallyay G. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society of America Journal, 1996, 60: 727-733.
    Pfeifer P., Avnir D.. Chemistry in non integer dimensions between two and three: I. Fractal theory of heterogeneous surfaces. J. Chem. Phys. 1983, 79: 3558-3564.
    Philip J. R.. Hillslope infiltration: divergent and convergent slopes. Water Resour Res, 1991a, 27(6): 1035-1040.
    Philip J. R.. Infiltration and downslope unsaturated flows in concave and convex topographies. Water Resource Research. 1991b, 27(6): 1041-1048.
    Philip J. R.. The theory of infiltration. Soil Sci. 1957-1958, 83: 345-357; 435-448; 84: 163-177; 85: 278-286.
    Qiu Y., Fu B. J., Wang J., et al.. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. Journal of Hydrology, 2001, 240: 243-263.
    Qiu Y., Fu B. J., Wang J., et al.. Spatiotemporal prediction of soil moisture content for an event-based hydrology model in a gully catchment of the Loess Plateau, China. Catena, 2003, 54: 173-196.
    Rawls W. J., Brakensiek D. L., Saxton K. E.. Estimation of soil water properties. Trans. ASAE. 1982, 25: 1316-1320, 1328.
    Richards L. A.. Capillary conduction of liquid sin porous mudiums. Physics, 1931, (1): 30-33.
    Rieu M., Sposito G. Fractal fragmentation, soil porosity, and soil water properties. I. Theory. Soil Science Society of America Journal, 1991, 55: 1231-1238.
    Robert E., Burwell. Long term annual runoff and soil loss from conventional and conservation tillage of corn. Journal of Soil and Water Conservation. 1983: 315-319.
    Rodgers M., Mulqueen J., Healy M. G. Surface clogging in an intermittent stratified sand filter. Soil Science Society of America Journal. 2004, 68(6): 1827, 6 pgs.
    Rogowski A. S.. Estimation of the soil moisture characteristic and hydraulic conductivity: comparison of models. Soil Sci. 1971, 123:423-429
    Rubin J.. Theory of rainfall uptake initially driver than their field capacity and its applications. Water Resour. Res. 1966, 2(4): 739-749.
    Schaap M. G., Bouten W.. Modeling water retention curves of sandy soils using neural networks. Water Resources Research. 1996, 32: 3033-3040.
    Schaap M. G., Leij F.J., van Genuchten M. TH.. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Science Society of Americal Journal, 1998, 62: 847-855.
    Schoeneberger P. J., Wysocki D. A.. Hydrology of soils and deep regolith: A nexus between soil geography, ecosystems and land management. Geoderma. 2005, 126:117-128.
    Sekar, Randhir T. O.. Spatial assessment of conjunctive water harvesting potential in watershed systems. Journal of Hydrology. 2007, 334(1-2): 39-52.
    Sentis I. P.. A soil water balance model for monitoring soil erosion processes and effects on steep lands in the tropics. Soil Technology. 1997, 11: 17-30.
    Silbum D. M.. Evaluations of the CREAMS Model. Ⅲ. Simulation of the Hydrology of Vertisols. Aust. J.Soil Res. 1992, 30: 547-64.
    Singh J. S., Milchunas D. G., Lauenroth W. K.. Soil water dynamics and vegetation patterns in a semiarid grassland. Plant Ecology. 1998, 134: 77-89.
    Smith R. E.. The infiltration envelope results from a theoretical infiltrometer. Journal of Hydrology. 1972, 17(1):1-21.
    Stanley C. D.. Effect of water table depth and irrigation application method on water use for subirrigated fresh market tomato production in Florida. Journal of Soil and Water Conservation. 2004, 59(4): 149, 5 pgs.
    Tan C. S., Drury C. E, Garnor J. D., et al.. Effect of tillage and water table control on evapotranspiration, surface runoff, tile drainage and soil water control under maize on a clay loam soil. Agricultural Water Management. 2002, (54): 173-188.
    Taylor G. S., Luthin J. N.. Computer methods for transient analysis of water table aquifers. Water Resour Res. 1969, 5:141-152
    Tietje O., Tapkenhinrichs M.. Evaluation of pedotransfer functions. Soil Science Society of Americal Journal, 1993, 57: 1088-1095.
    Tomer M. D., Cambardella C. A., James D. E., et al.. Surface-soil properties and water contents across two watersheds with contrasting tillage history. Soil Science Society of America Journal. 2006, 70(2): 620-630.
    Tyler S. W., Wheatcraft S. W.. Application of fractal mathematics to soil water retention estimation. Soil Science Society of America Journal. 1989, 53: 987-996.
    Tyler S. W., Wheatcraft S. W.. Fractal processes in soil water retention. Water Resources Research. 1990, 26: 1047-1056.
    Ungaro F., Calzolari C., Busoni E.. Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano--Veneta region of north Italy: water retention properties. Geoderma. 2005, 124(3-4): 293-317.
    van Genuchten M. TH.. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Soc Am J. 1980, 44: 892-898
    Varado N., Brand I., Ross P. J., et al.. Assessment of an efficient numerical solution of the 1D Richards' equation on bare soil. Journal of Hydrology. 2006, 323(1-4): 244-257.
    Vereecken H., Maes J., Feyen J., et al.. Estimating the soil water moisture retention characteristic from texture, bulk density, and carbon content. Soil Science. 1989, 148: 389-403.
    Vereectcen H.. Deviation and validation of pedotmnfer functions for soil hydraulic properties. In: van Genuchten M. TH., Leiji F. J.eds. Indirect methods for estimating the hydraulic properties of unsaturated soils. Califomia: University of Califomia Press. 1992: 473-488.
    Wang C. Y., Yang Y. J.. Economics of water resources and its application. Beijing: China Water and Hydropower Press. 1999: 1-4.
    Wang X. B., Cai D. X., Hoogmoed W. B., et al.. Developments in conservation tillage in rainfed regions of North China. Soil and Tillage Research. 2007, 93(2): 239-250.
    Wang X., Wang L. B.. Dynamic analysis of a water-soil-pore water coupling system. Computers and Structures ⅹⅹⅹ (2007) ⅹⅹⅹ-ⅹⅹⅹ. Available online at Science@Direct.
    Wosten J. H. M., Pachepsky Y. A., Rawls W. J.. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology. 2001, 251: 123-150.
    Wuest S. B., Williams J. D., Gollany H. T.. Tillage and perennial grass effects on ponded infiltration for seven semi-arid loess soils. Journal of Soil and Water Conservation. 2006, 61(4): 218-223.
    Xu D. H., Li J. H., Fang X. W., et al.. Changes in soil water content in the rhizosphere of Artemisia ordosica: Evidence for hydraulic lift. Journal of Arid Environments. 2007, 69(4): 545-553.
    Zhang Z. B., Shao H. B., Xu P., et al.. On evolution and perspectives of bio-watersaving. Colloids and Surfaces B: Biointerfaces, 2007, 55(1): 1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700