用户名: 密码: 验证码:
水解酸化—颗粒填料复合式膜生物反应器处理涤纶碱减量废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涤纶碱减量废水中高浓度的对苯二甲酸和难降解的聚酯低聚物及各种助剂等使得碱减量废水成为纺织印染行业污染重、处理难度大的新型纺织印染废水。本文研究了水解酸化一颗粒填料复合式膜生物反应器(HMBR)组合工艺处理碱减量废水的技术,并对膜污染的控制和HMBR长期运行特性进行了探讨。得出了以下主要结果:
     从废水处理工艺的角度,研究了对苯二甲酸(TA)在好氧和缺氧条件下的生物降解规律以及乙二醇(EG)对TA生物降解性的影响。TA的好氧降解不存在明显的抑制浓度,TA不会对微生物起毒害作用;微生物以TA、EG作为唯一的碳源均需要一定的驯化时间,EG的驯化时间比TA长,一旦微生物被驯化,EG、TA开始快速降解。在有氧条件下,EG不会抑制TA的初级生物降解,但会抑制TA的最终生物降解;在缺氧条件下,EG对TA的降解有抑制作用,一旦EG完全去除,TA又恢复降解。TA易好氧生物降解、几乎不能缺氧生物降解,EG既能好氧生物降解,又能缺氧生物降解。因此,这为碱减量废水分兼氧和好氧两段处理提供了理论依据。
     活性污泥吸附、解吸等温线符合Freundlieh等温方程,好氧、兼氧污泥对TA的等温吸附方程分别为:q=8.6170C_e~(0.4207),q=4.0764C_e~(0.5405);好氧、兼氧污泥对TA的等温解吸方程分别为:q=9.4723C_e~(0.3271),q=4.2353C_e~(0.3688)。好氧、兼氧污泥的饱和吸附量分别为:39.06、31.45mgTA.gSS~(-1),TA的去除机制主要是生物降解作用,污泥吸附占TA总去除量的比例很小。
     采用水解酸化一颗粒填料复合式膜生物反应器组合工艺处理实际碱减量废水是可行的。系统对有机污染物保持着很高的去除率,HRT为(9.0+7.2)h时,系统出水平均COD为55.9mg/L,COD平均去除率达到96%,TA去除率大于99%。水解酸化池的ηCOD<10%,ηTA<5%。HMBR的ηCOD>94%,ηTA>98%。水解酸化过程可以显著提高碱减量废水的可生化性。水解酸化系统受进水容积负荷Uv的影响很小;HMBR受进水容积负荷Uv的影响较大,进水容积负荷Uv小于6 gCOD.L~(-1).d~(-1)时,膜出水COD保持在80mpJL以下,ηCOD保持在95%左右。
     HMBR在流体力学、微生物学、水处理工艺学、亚微观动力学等方面具有优越于普通MBR的特点。膜通量(J)、污泥浓度(X)、颗粒填料的体积含量(C)对膜过滤阻力上升速率(K)影响的次序为:CNow the polyester fabric alkali-peeling process wastewater (PAP-wastewater) is one kind of the popular textile industrial wastewater in China due to the high concentration of terephthalic acid (TA) and the poorly biodegradable polyester oligomer and chemical promoters. The treatment of PAP-wastewater by hydrolysis-acidification/ hybrid membrane bioreactor (HMBR), as well as the membrane fouling control and operational performance of HMBR, was investigated in this dissertation. The following results have been obtained:The biodegradation of TA on aerobic and anoxic condition, as well as the impact of ethylene glycol (EG) on the biodegradation of TA, was researched. It was found that TA was not toxic to the TA degrading cultures on the aerobic condition, whether the concentration of TA was high or low. There was a lag phase prior to degradation of TA and EG when TA and EG were fed as sole carbon source. Furthermore, the lag period of EG was longer than TA. However, once the cultures were acclimated, TA and EG started to be degraded rapidly. Although EG didn't inhibit the aerobic primary biodegradation of TA, it inhibited the aerobic ultimate biodegradation of TA. EG inhibited the anoxic biodegradation of TA, but TA was consumed at the same rate as in the experiments performed with TA as sole carbon source after complete consumption of EG It can be concluded that TA is easily degradable on aerobic condition and more difficult to be degraded on anaerobic condition and hardly degradable on anoxic condition, while EG is easily degraded on aerobic, anoxic and anaerobic condition.The result showed that the biosorption and desorption of TA by unadapted aerobic and facultative sludge could be characterized by Freundlich isotherm. Two Freundlich equations, q=8.6170C_e~(0.4207) and q=4.0764C_e~(0.5405), were established to describe the biosorption of TA by unadapted aerobic and facultative sludge, respectively. So q=
    9.4723Ce03271 and q= 4.2353 Ce03688 for desorption of aerobic and facultative sludge, respectively. The maximum biosorptive uptakes of TA by aerobic and facultative sludge were 39.06, 31.45mgTA.gSS"1, respectively. The difference between biosortion and desortion Freudlich constants suggested that biosorption of TA was an partly irreversible process. In bioreactor the removal of TA by activated sludge was due to biodegradation rather than biosorption.The experiment demonstrated that the hydrolysis-acidification/ HMBR process was an economically attractive alternative for the treatment of PAP-wastewater. The effluent COD average 55.9mg/L and the following results were obtained at HRT =(9.0+7.2)h: t)Cod=96% and tita>99% for the total system, r|CoD<10% and TyrA<5% for hydrolysis-acidification bioreactor, t|cod>94% and t|Ta>98% for HMBR. The hydrolysis-acidification pretreatment improved the biodegradability of PAP-wastewater. The impact of volumetric loading rate (Uv) was slightly on the performance of hydrolysis-acidification bioreactor, but largely on HMBR. The effluent COD was below 80 mg/L and ticod averaged 95% for HMBR when Uv of HMBR was below egCOD.I/'.d"1.The observations revealed that suspended carriers played an important role in governing the filtration conditions and decreasing fouling resistance. The results indicated that the cake resistance of HMBR decreased by 86%, the critical flux increased by about 20% and the rate of membrane fouling decreased by 70% in comparison with MBR. The effects of the membrane flux (J), sludge concentration (X) and carriers volume (C) on the increasing rate of the transmembrane pressure were in decreasing order: C    HMBR stabilized at about 14gMLSS/L. No obvious trend of MLVSS/MLSS was observed, but it was found that the particle size of sludge floes decreased with operation time. Filtration resistance of mixed liquor of MBR increased slower than HMBR with operation time. The results revealed that the colloids in the supernatant were the main contributors to the rapid increasing of filtration resistance of mixed liquor. The soluble microbial products (SMP) could accumulate in bioreactor, but also its components could change. The sludge dehydrogenase activity was measured in the long-term running and it was found that it decreased with operation time.On the condition of no sludge wasted, the theoretical yield factors (Y) and the biomass decay constants (Kj) for bioreactor in MBR and HMBR were below that in the traditional activated sludge process: Y(MBR)= 0.315, Y(HMBR)= 0.301mgVSS/mgCOD, Kd(MBR)= 0.03 Id"1, Kd(HMBR)= 0.035 d"1. On the condition of SRT=50d, Y and Kd for bioreactor in MBR and HMBR corresponded to that in the traditional activated sludge process: Y(MBR)= 0.375, Y(HMBR)= 0.353mgVSS/mgCOD, Kd(MBR)= 0.071 d"1, Kd(HMBR)= 0.067 d"1. The substrate degradation rate constant (K) of TA artificial wastewater, (TA+EG) artificial wastewater and PAP-wastewater were 0.001, 0.00078 and 0.00072d"\ respectively. Compared with K (0.004-0.03) in the traditional activated sludge process, the K value in HMBR (or MBR) was very low.The acid precipitation pretreatment was adopted before the biodegradation of PAP-wastewater in terms of the resource reclaim and reuse of wasted resource. The parameters of acid precipitation process were obtained as follows: pH3.5-4.0, normal temperature, stirring at reaction for 1-2 minutes with 300rpm and at flocculation for 10 minutes with 60-100rpm, sedimentation for 12h. The particle size of TA floes reclaimed by acid precipitation averaged 11.56um. The recovery rate of TA was 77% and the removal rate of COD arrived at 50.5%. The B/C value of PAP-wastewater before and after acid precipitation were 0.37 — 0.40 and 0.27-0.31 respectively, which indicated that TA improved the biodegradability of PAP-wastewater. There was 78% effluent COD below 50mg/L and the following results were obtained: ticod=97% and t|ta>99% for the total system. It should be noted that the relative contributions of hydrolysis-acidification
    bioreactor and HMBR to the total removal rate were 29.8*^ 67%.
引文
[1] 朱善长.涤纶织物渗透碱减量工艺的探讨[J].印染,1997,23(4):15—17.
    [2] 戴日成,张统,郭茜等.印染废水水质特征及处理技术综述[J].给水排水,2000,26(10):33—37.
    [3] 官宝红.碱减量印染废水的处理技术研究:[博士学位论文].杭州,浙江大学环境工程系,2002.
    [4] 郭茂新,周慧华.碱减量废水处理技术试验研究[J].工业用水与废水,2000 31(2),23—25.
    [5] 寿越穗,王近近,周小东.化纤织物碱减量碱液的回用技术[J].环境污染与防治,1996,18(2):32—33.
    [6] 许灵群,吴顺志,陆文忠.利用印染厂碱减量废水脱除烟气中SO_2模拟试验研究[J].环境污染与防治,1998,20(5):28—31.
    [7] 许灵群,陆文忠,施松微,张青.利用印染厂碱减量废水脱硫试验及其应用研究[J].煤矿环境保护,2001,15(3):31—35.
    [8] 全国红,林红卫,鲁玉龙.印染废水的处理和综合利用技术[J].给水排水,2000,26(2):40—43.
    [9] 李燕立,金玉顺,张大省.聚酯水解产物的回收与应用[J].聚酯工业,1998,1:7—19.
    [10] Method of recovery of terephthalic acid and ethylene glycol frompoly/ethylene terephthalate/wastes[P]. 美国专利: US6239310, 2001-3-9.
    [11] Process for the recovery of terephthalic acid ethylene glycolfrom poly (ethylene terephthalate)[P]. 美国专利: US5413681, 1995—3—9.
    [12] 许坤,徐良才等.絮凝沉淀法处理碱性对苯二甲酸废水的研究[J].环境化学,1987,6(2):33—38
    [13] 乌锡康.有机化工废水治理技术[M].1999,化学工业出版社,北京,122
    [14] 解谷生.碱减量加工废液中对苯二甲酸的利用[J].辽宁丝绸,2001,2:38—40
    [15] 从碱减量污水中回收对苯二甲酸的工艺方法[P].中国专利:CN1257064,2000—6—21.
    [16] 碱减量废水处理方法[P].中国专利:CN1033176,1998—3—18.
    [17] 石龙宝等.PCM对涤纶碱减量废水预处理的研究[J].青岛大学学报,1997,12(3):10—13.
    [18] 刘晓林.碱减量-印染混合污水的处理[J].工业用水与废水,2000,31(2):19—22.
    [19] 王淦.印染厂碱减量废水处理工艺探讨[J].中国给水排水,2000,16(8):21—22.
    [20] 沈东升等.印染碱减量废水处理[J].中国给水排水,1997,13(5):32—34.
    [21] 陈杭飞,史惠祥等.杭州拱宸桥纺织联片污水治理工程[J].环境工程,1997,17(2):13-15
    [22] 王国庆,金月祥;沈寅松.仿真丝绸生产中碱减量及染整废水的治理[J].环境保护,1988,2:21-23.
    [23] 周海峰,詹伯君.兼氧生物膜法SBR工艺在碱减量废水处理中的应用[J].环境工程,1999,17(6):18-20.
    [24] 马汉译,谢可蓉等.涤纶仿真丝印染废水治理技术的研究及其应用[J].环境工程,1999,17(2):22—24.
    [25] Moo Hwan Cho.. Biological treatment of ethylene glycol in polyester weight-loss wastewater using jet-loop reactor[J]. Korean J. Biotechnol. Bioeng., 1999,14(1): 119-123.
    [26] Moo Hwan Cho.. A study on physicochemical treatment of terephthalic acid in polyester weight-loss wastewater[J]. Journal of Korean Society of Environmental Engineers, 1998, 20(7): 927-936
    [27] Moo Hwan Cho.. Treatment of polyester weight-loss wastewater using agar-acrylamide microbial immobilization[J]. Environmental Research, 1995, 15(1): 83-92.
    [28] 陈筛林,丁富新,杨海光,江田民.环流反应器中对苯二甲酸废水的生物降解[J].清华大学学报:自然科学版,2003,43(6):746—749.
    [29] 姚宏伟,王心如,施爱民等.对苯二甲酸、乙二醇、联苯—联苯醚长期低剂量接触对工人健康的影响[J].中国公共卫生,1999,15(11):1006—1007.
    [30] 姚宏伟,王心如,施爱民等。对苯二甲酸和乙二醇及联苯—联苯醚对职业人群肝肾损伤的研究[J].中华劳动卫生职业病杂志,2002,20(1):5—9.
    [31] 陈锡涛,周仁珍.对苯二甲酸和烷基苯对金鱼和草鱼的急性毒理研究[J].见:徐晓百等编.有毒有机物环境行为和生态毒理论文集[M].1990,中国科技出版社,北京,310-312.
    [32] Ziogou K., Kirk P. W. W., Lester J. N.. Behavior of phthalic acid esters during batch anaerobic digestion of sludge[J]. Water Research, 1989, 23 (6):743-748.
    [33] Gibson D. T.. Microbial degradation of organic compounds[M]. New York: Marcel Dekker, 1984.
    [34] Ribbons D. W., Evans W. C.. Oxidative metabolism of phthalic acid by soil pseudomonads[J]. Journal of Biochemistry, 1960, 6: 310-318.
    [35] Engelhardt G., Wallnofer P. R., Rast H. G., et al. Metabolism of O-phthalic acid by different gram-negative and gram-positive soil bacteria[J]. Arch. Microbiology, 1976, 109: 109-114.
    [36] Aftring R. P., Chalker B. E., Taylor B. F.. Degradation of phthalic acids by denitrifying, mixed cultures of bacteria[J]. Applied of Environmental Microbiology, 1981, 41 (5): 1177-1183.
    [37] 邹惠仙,马文漪.微生物降解对苯二甲酸的研究[J].中国环境科学,1982,2(5):43—46
    [38] 邹惠仙.微生物降解对苯二甲酸的动力学研究[J].科学通报,1983,28(22):1374-1377
    [39] 林稚兰,熊小燕,钱存柔.应用生物降解处理石油化工废水[J].环境化学,1986,5(4):7—13.
    [40] 万登榜,马文漪.微生物降解邻苯二甲酸(O-PA)的动力学[J].环境科学,1987,8(5):2—5.
    [41] 万登榜,彭建国等.微生物降解对苯二甲酸的动力学研究——分批培养研究.见:徐晓百等编.有毒有机物环境行为和生态毒理论文集[M].1990,中国科技出版社,北京,164-171.
    [42] 齐雯钰.精对苯二甲酸生产废水厌氧处理微生物特性的研究[J].中国沼气,1992,10(4):5-10
    [43] Fajardo C., Guyot J P., Macarie H and Monroy O.. Inhibition of anaerobic digestion by terephthalic acid and its aromatic by products[J]. Water Science and Technology, 1997, 36 (6-7): 83-90.
    [44] Lefevre C., Mathieu C., Tidjani A., et al. Comparative degradation by microorganisms of terephthalic acid, 2, 6-naphthalene dicarboxylic acid, their esters and polyesters [J]. Polymer Degradation and Stability, 1999, 64(1): 9-16.
    [45] 佟宏,白毓谦.对苯二甲酸的微生物降解[J].环境科学学报,1990,10(4):464-470.
    [46] Keyser P., Pujar B. G., Eaton R. W., et al. Biodegradation of the phthalates and their esters by bacteria[J]. Environment Health Perspective, 1976, 18:159-166
    [47] 何星海,张忠祥,马世豪.对苯二甲酸(TA)的可生物降解性的研究[J].环境科学,1992,13(3):18—25.
    [48] Chakrabanty A. M.. Biodegradation and detoxification of environmental pollutants[M]. Boca. Ratom. Florida: CRC Press Inc., 1982:110.
    [49] 李刚,申立贤.精对苯二甲酸生产废水处理技术[J].中国沼气,1995,13(4):1-6.
    [50] Chidambara Raj C. B., Ramkumar N.. Biodegradation of acetic, benzoic, isophthalic, toluic and terephthalic acids using a mixed culture: effluents of PTA production[J]. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers[C]. Part B, 1997, 75(4): 245-256.
    [51] 匡欣,王菊思.对苯二甲酸厌氧生物降解性研究[J].环境化学,1993,12(3):179—186.
    [52] 李小明,陈坚,伦世仪.含对苯二甲酸有机废水厌氧降解动力学[J].中国环境科学,2000,20(1):27—30.
    [53] Andrew J. F.. The Monod Equation: a revisit and a generalization to substrate inhibition situation[J]. Bictechnology and Bioengineering, 1968, 10: 707-711.
    [54] 彭建国,丘昌强.对苯二甲酸在水环境中的归势研究.见:徐晓百编.有毒有机物环境行为和生态毒理论文集[M].1990,中国科技出版社,北京,158-163.
    [55] 包志成,王相明等.向阳污水厂COD超标问题研究[J].环境化学,1985(专辑):88—95.
    [56] 郑荣泉.美国AMOCO公司对苯二甲酸废水处理技术浅析[J].化工环保,1991,11(3):152-156.
    [57] 刘念曾,齐慧敏,林大泉.精对苯二甲酸生产工艺的废水处理[J].石油炼制与化工,1999,30(7):49—53.
    [58] 蔡则成,周芬芬.生物接触氧化法处理涤纶废水[J].合成纤维,1989,6(6):29—32.
    [59] Martin Alexander M., L ustigman B. K.. Effect of chemical structure on microbial degradation of substituted benzenes[J]. Journal of Agriculture and Food Chemistry, 1966, 14 (4): 410-413.
    [60] Cheng Sheng-Shung, HO Chiou-Yuan and WU Jer-homg. Pilot study of UASB process treating PTA manufacturing wastewater[J]. Water Science and Technology, 1997, 36 (6-7): 75-82.
    [61] Macarie H., Noyola A., Guyot J. P.. Anaerobic treatment of a petrochemical wastewater from a terephthalic acid plant[J]. Water Science and Technology, 1992, 25 (7): 223-235.
    [62] 陈玉香,辛亮明.厌氧复合床处理精对苯二甲酸生产废水的研究[J].抚顺石油化工研究院院报,1991,2:85—91.
    [63] 韩洪军,刘立凡,衣春敏,孙卫东.UASB-AFB处理高浓度涤纶聚酯废水的试验研究[J].中国沼气,1999,17(3):13—16.
    [64] Noyola A., Macarie H., Varela E, Landrieu S., Marcelo R., Rosas M. A.. Upgrade of a petrochemical wastewater treatment plant by an upflow anaerobic pond[J]. Water Science and Technology, 2000, 42 (5-6): 269-276.
    [65] Kleerebezem R., Ivalo M., Hulshoff Pol, L. W. and Lettinga G.. High rate treatment of terephthalate in anaerobic hydrid reactors[J]. Biotechnology Progress, 1999, 15 (3): 347-357.
    [66] Xin L. M., chen Y. X., Zeng X. D.. The anaerobic biological treatment of high strength petrochemical wastewater by hybrid reactor[A]. Proc. Int. Cong. Pet. [C]. Beijing: Refine Petrochemical Process, 1991: 120-126.
    [67] Kleerebezem R., Hulshoff Poi, L. W., Lettinga G., The role of benzoate in anaerobic degradation ofterephthalate[J]. Applied and Environmental Microbiology, 1999, 65 (3):1161-1167.
    [68] Kleerebezem R., Lettinga G.. High-rate anaerobic treatment of purified terephthalie acid wastewater[J]. Water Science and Technology, 2000, 42 (5-6): 259-268.
    [69] Young J. C., Kim I. S., Page I. C., Wilson D. R., Brown G. J. and Cocci A. A.. Two-stage anaerobic treatment of purified terephthalie acid production wastewater[J]. Water Science and Technology, 2000, 42 (5-6): 277-282.
    [70] 赵洪波.生物膜A/O法处理PTA废水的试验研究[J].环境科学,1994,15(6):47-50.
    [71] Yamamoto K., Hiasa M., Mahmood T. and Matsuo T.. Direct solid-liquid separation using hollow membrane in a activated sludge aeration tank[J]. Water Science and Technology, 1989, 21: 43-54.
    [72] Brockmann M. and Seyfried C. F.. Sludge activity under the conditions of crossflow microfiltration[J]. Water Science and Technology, 1997, 35 (10): 173-181.
    [73] 常颖,王宝贞,高欣.复合式膜生物反应器的小区污水回用试验研究[J].哈尔滨工业大学学报,2003,35(2):152~156.
    [74] Chiemchaisri C. and Yamamoto K.. Performance of membrane separation bioreactor at various temperatures for domestic wastewater treatment[J]. J. Mem. Sci., 1994, 87:119-129.
    [75] Wang B. Z.. A study on simultaneous organic and nitrogen removal by extended aeration submerged biofilm processs[J]. Water Science and Technology, 1991, 24 (5): 197-214.
    [76] Low E. W., Chase H. A.. Reducing production of excess biomass during wastewater treatment[J]. Water Research, 1999, 33 (5): 1119-1132.
    [77] Koros W. J., Ma Y. H., Shimizu T.. Terminology for membranes and membrane processes--IUPAC recommendations 1996[J]. J. Mem. Sci., 1996, 120: 149-159.
    [78] Roorda J. H., J H J M van der Graaf. New parameter for monitoring fouling during ultrafiltration of WWTPefffluent[J]. Wat.Sci. Tech., 2001, 43 (10): 241—248.
    [79] Tomas H., Jodd S., Murrer J.. Fouling characteristics of membrane filtration in membrane bioreactors[J]. Membrane Technology, 2001, 122:10-13.
    [80] Defrane L., Jaffrin M. Y., Gupta B., et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling[J]. Bioresource Technology, 2000, 73:105-112.
    [81] Bouhabila E. H., Aim R. B., Buisson H.. Fouling characterization in membrane bioreactors[J]. Separation and Purification Technology, 2001, 22-23:123-132.
    [82] Wisniewski C., Grasmick A.. Floe size distribution in a membrane bioreactor and consequences for membrane fouling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138:403-411.
    [83] Chang I. S., Kim J. S., Lee C. H.. The effects of EPS on membrane fouling in a MBR process[C]. Cranfield University, UK, 2001: 19-28.
    [84] 何义亮,顾国维.刘杰.膜生物反应器生物降解与膜分离共同作用特性研究[J].环境污染与防治,1998,20(6):18—20.
    [85] 刘锐,黄霞,陈吕军.一体式膜生物反应器处理洗浴污水[J].中国给水排水,2001,17(1):5—8.
    [86] Howard. Handbook of environmental degradation rates[M], vol. Ⅱ. Lewis Publishers, Chelsea, MI.1991.
    [87] Dwyer D. F. and Tiedje J. M.. Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia[J]. Appl. Environ. Micro., 1983, 45 (7): 185-190.
    [88] Kameya T., Murayama T., Urano K. and Kitano M.. Biodegradatioon ranks of priority organic compounds under anaerobic conditions[J]. Sci. Tot. Environ., 1995, 170:43-51.
    [89] 尹洪忠.兼氧—好氧法处理乙二醇生产废水[J].金山油化纤,2003,4:23-27.
    [90] 张春青,温海涛,孙力平,侯红娟.聚酯工艺中乙二醇废水的SBR法试验研究[J].天津城市建设学院学报,2002,8(2):115-117.
    [91] 朱蓉芬,刘必彦.低药耗费通试剂氧化乙二醇废水的实验研究[J].上海环境科学,1996,15(1):18-20.
    [92] [德] W.Fresenius,K.E.Quentin等编著,张曼平等译.水质分析——水的物理化学、化学及微生物检验和质量控制实用指南[M].1991,北京大学出版社,北京.
    [93] 高廷耀,顾国维.水污染控制工程[M],下册.1999(第二版),高等教育出版社,北京,178.
    [94] 金志刚,张彤,朱怀兰.污染物生物降解[M].1997,华东理工大学出版社,上海,7.
    [95] [日]须藤隆一著,俞辉群,全浩编译.水环境净化与废水处理微生物学[M].1988,中国建筑工业出版社,北京,104.
    [96] 杨浩,王春婷,吴玉梅,李靖雯,鞠躬.细胞特性状态及细胞数与OD值的关系探讨[J].动物医学进展,2002,23(5):49—51.
    [97] Waggy G. T., Conway R. A., Hansen J. L., Blessing R. L.. Comparison of 20-d BOD and OECD closed-bottle biodegradation tests[J]. Environ. Toxicol. Chem., 1994, 13:1277-1280.
    [98] Gaston L. W. and Stadtman E. R.. Fermentation of ethylene glycol by Clostridium Glycolicum SP. N[J].. Journal of Bacteriology, 1963, 85: 356-362.
    [99] Todini O. and Hulshoff Pol L. W.. Anaerobic degradation of benzaldehyde in methanogenic granular sludge: the influence of additional substrates. Appl. Microbiol. Biotechnol., 1992, 38: 417-420.
    [100] Hwang P. C. and Cheng S. S.. The influence of glucose supplement on the degradation ofcatechol. Water Science and Technology, 1991, 23 (7-9): 1201-1209.
    [101] Pereboom J. H. F., Man D. G. and Su I. T.. Start-up of full scale UASB-reactor for the treatment of terephthalic acid wastewater. 7th International Symposium on Anaerobic Digestion. Cape Town, South Africa. 1993:307-312.
    [102] Guan B. H., Wu Z. B., Wu Z. C., XU G. L. and Tan T. E.. Biodegradability of terephthalic acid in terylene artificial silk printing and dyeing wastewater. Journal of Environmental Sciences (in Chinese), 2003, 15 (3): 296-301.
    [103] Kleerebezem R., Mortier J., Hulshoff Pol L. W. and Lettinga G.. Anaerobic pre-treatment of petrochemical effluents: terephthalic acid wastewater. Water Science and Technology, 1997, 36 (2-3): 237-248.
    [104] Hovious J. C., Conway R. A., Ganze C. W.. Anaerobic lagoon pretreatment of petrochemical wastes[J]. Journal of the Water Pollution Control Federation, 1973, 45 (1): 71-84.
    [105] Andreas D., Andreadakis. Physical and chemical properties of activated sludge floe[J]. Water Research, 1993, 27 (12): 1707-1714.
    [106] 郝丽芳,周岳溪,张寒霜.厌氧颗粒污泥对五氯酚(PCP)的吸附、解吸及生物降解[J].中国环境科学,1999,19(1):5-8.
    [107] Chiou C. T., Mcgroddy S. E., Kile D. E.. Partition characteristics of polycyelie aromatic hydrocarbons on soils and sediments[J]: Environmental Science and Technology, 1998, 32 (2): 264-269.
    [108] Tsezos M., Bell J. P.. A mechanistic study on the fate of Malathion following interaction with microbial biomass[J]. Water Research, 1991, 25 (9): 1039-1046.
    [109] Bell J. P., Tsezcs M.. The selectivity of biosorption of hazardous organics by microbial biomass[J]. Water Research, 1988, 22:1245-1251.
    [110] 贺延龄.废水的厌氧生物处理[M].1998,中国轻工业出版社,北京,17-27.
    [111] 奚旦立,陈季华,刘振鸿.兼氧技术——有机废水处理的新方法[J].中国纺织大学学报,1997,23(4):52—58.
    [112] 夏北成.环境污染物生物降解[M].2001,化学工业出版社,北京,102—108.
    [113] 马放,李环,任南琪.生物相分离技术处理染料废水的研究[J].给水排水,2002,28(8):34—37.
    [114] 郑元景,沈永明,沈光范.污水厌氧生物处理[M].1988,中国建筑工业出版社,北京, 301-302.
    [115] 王凯军.低浓度污水厌氧(水解)处理[M].1991,中国环境科学出版社,北京.
    [116] Chiemchaisri C., yamamoto K. and Vigneswaran S.. Household membrane bioreactor for domestic wastewater treatment[J]. War. Sci. Tech., 1993, 27 (1): 171-178.
    [117] Brindle K. and Stephenson T.. Application of membrane biological reactors for the treatment of wastewaters[J]. Biotech. Bioeng., 1996, 49 (6): 601-610.
    [118] Ognier S., Wisniewski C. and Grasmick A.. Characterisation and modeling of fouling in membrane bioreactors[J]. Desalination, 2002, 146:141-147.
    [119] Jiang T., Kennedy M. D., Walter G. J. van der Meer, Vanrolleghem P. A., Schippers J. C.. The role of blocking and cake filtration in MBR fouling[J]. Desalination, 2003, 157: 235-343.
    [120] Tardien E., Grasmick A., Geaugey V.. Hydrodynamic control of biopartiele deposition in a MBR applied to wastewater treatment[J]. J. Memb. Sci., 1998, 147: 1-12.
    [121] Defrance L., Jaffrin M. Y., Gupta B., Paullier P., Geaugey V.. Contribution of various constituents of activated sludge to membrane bioreactor fouling[J]. Bioresource Technology, 2000, 73: 105-112.
    [122] Lee W., Kang S. and Shin H.. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J]. J. Mem. Sci., 2003, 216:217-227.
    [123] Chang I. S. and Lee C. H.. Membrane filtration characteristics in membrane coupled activated sludge system h the effect of physiological states of activated sludge on membrane fouling[J]. Desalination, 1998, 120: 221-233.
    [124] Chudacek M. W., and Fane A. G.. The dynamics of polarization in unstirred and stirred ultrafiitration[J]. J. Memb. Sci., 1984, 21: 145-160.
    [125] Park H., Choo K H. and Lee C. H.. Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor[J]. Sep. Sci. Tech., 1999, 34 (14): 2781-2792.
    [126] Pilly V. L. and Buckley C. A.. Cake formation in cross-flow microfiltration system[J]. War. Sci. Tech., 1992, 25 (1): 149-158.
    [127] Lee J. C., Kim J. S., Kang I. J., Cho M. H., et al. Potential and imitation of alum or zeolite addition to improve the performance of a submerged membrane bioreactor[J]. Wat Sci Tech, 2001, 43 (11): 59-66.
    [128] Lee S. J., Choo K. H., Lee C. H.. Conjunctive use of ultrafiltration with powdered activated carbon adsorption for removal of synthetic and natural organic matter[J]. Journal of Industrial and Engineering Chemistry, 2000, 6 (6): 357-364.
    [129] 李春杰,耿琰,周琪,等.SMSBR中PAC对膜污染的防治作用[J].中国给水排水,2002,18(6):5—9.
    [130] Lee J., Ahn W. H., Lee C. H.. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreaetor[J]. Wat Res, 2000, 35 (10): 2435-2445.
    [131] Ueda T., Hata K., Kikuoka Y., Seino O.. Effects of aeration on suction pressure in a submerged membrane bioreactor[J]. Wat Res, 1997, 31 (3): 489-494.
    [132] Bouhabila E H, Aim R B, Buisson H. Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment)[J]. Desalination, 1998, 118: 315-322.
    [133] Hong S. P., Bae T. H., Tak T. M., Hong S. and Randall A.. Fouling control in activated sludge submerged hollow fiber membrane bioreactors[J]. Desalination, 2002, 143:219-228.
    [134] Chua H. C., Arnot T. C. and Howell J. A.. Controlling fouling in membrane bioreactors operated with a variable throughput[J]. Desalination, 2002, 149: 225-229.
    [135] Kim J. S., Lee C. H. and Chang I. S.. Effect of pump shear on the performance of a crossflow membrane bioreactor[J]. Wat. Res., 2001, 35 (9): 2137-2144.
    [136] Belfort G., et al., The behaviors of suspensions and macromolecule solution in crossflow microfiltration[J], 5. Mem. Sci., 1994, 96: 1-58.
    [137] 王绍文.混凝动力学的涡旋理论探讨[J].中国给水排水,1991,7(1).
    [138] 王绍文.惯性效应在絮凝中的动力学作用[J].中国给水排水,1998;14(2):13-16.
    [139] Magara Y. and Itoh M.. The effect of operational factors on solid/liquid separation by ultramembrane filtration in a biological denitrification system for collected human excreta treatment plants[J]. Water Sci. Technol., 1999, 23: 1583-1590.
    [140] Katayon S., Megat Mohd Noor M. J., Ahmad J., Abdul Ghani L. A., Nagaoka H., Aya H.. Effects of mixed liquor suspended solid concentrations on membrane bioreactor efficiency for treatment of food industry wastewater[J]. Desalination, 2004, 167: 153-158.
    [141] Defrance L. and Jaffrin M. Y., Reversibility of fouling in activated sludge filtration[J]. J. Membr. Sci., 1999, 157: 73-84.
    [142] Field R. W., Wu D., Howell J. A. and Gupta B. B.. Critical flux concept for microfiitration fouling[J]. Journal of Membrane Science, 1995, 100: 259-272.
    [143] Li H., et al.. Direct observation of particle deposition on the membrane surface during crossflow microfiltration[J]. Journal of Membrane Science, 1998, 149: 83-97.
    [144] Kown D. Y., Vigneswaran S., Fane A. G., Ben Aim R.. Experimental determination of critical flux in cross-flow microfitration[J]. Sep. Purif. Technol., 2000, 19: 169-181.
    [145] Le-Clech P., Jefferson B., Judd S. J.. Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor[J]. J. Membr. Sci., 2003, 218: 117-129.
    [146] Fujita K. and Takizawa S.. Study on hydraulics of backwashing and air-scrubbing in hollow fiber filtration[J].. J. Japan Wat. Works. Assoc., 1994, 63 (3): 94-101.
    [147] Byong-Hee Jun, Kazuhiko Miyanaga, Yasunori Tanji, Hajime Unno. Removal of nitrogenous and carbonaceous substances by a porous carrier-membrane hybrid process for wastewater treatment[J]. Biochemical Engineering Journal, 2003, 14: 37-44.
    [148] 王建龙,吴立波,钱易.复合生物反应器处理废水特性的研究[J].中国给水排水,1998,14(2):29—31.
    [149] Wang Jianlong, Shi Hanchang, Qian Yi. Wastewater treatment in a hybrid biological reactor (HBR): effect of organic loading rates[J]. Process Biochemistry, 2000, 36: 297-303.
    [150] Luxmy B. S., et. al. Predator grazing effect on bacterial size distribution and floc size variation in membrane-separation activated sludge[J]. Wat. Sci. Tech., 2000, 42 (3-4): 211-217.
    [151] Nagaoka H., Yamanishi S. and Miya A.. Modeling of biofouiing by extracellular polymers in a membrane separation activated sludge system[J]. Water Sci. Teeh., 1998, 38 (4-5): 497-504
    [152] Nagaoka H., Ueda S. and Miya A.. Influence of bacterial extracellular polymers on the membrane separation activated siudge process[J]. Water Sci. Teeh., 1996, 34 (9): 165-172.
    [153] Muller E. B., Stouthamber A. H., Verseveld H. W. and Eikelboom D. H.. Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by cross-flow filtration[J]. Wat. Res., 1995, 29(4): 1179-1189.
    [154] Cicek N., Macomber J., Davel J., et al.. Effect of solids retention on the performance and biological characteristics of a membrane bioreactor[J]. Water sci. Teeh., 2001, 43(11): 43-50.
    [155] Witzig R., Manz W., Rosenberger S., et al.. Microbiological aspects of a bioreaetor with submerged membranes for aerobic treatment of municipal wastewater[J]. Wat. Res., 2002, 36: 394-402.
    [156] Cho B. D. and Fane A. G.. Fouling transients in nominally subcritical flux operation of a membrane bioreactor[J]. J. Membr. Sci., 2002, 209: 391-403.
    [157] Baker R. J., Fane A. G., Fell C. J. D. and Yoo B. H.. Factors affecting flux in crossflow filtration[J]. Desalination, 1985, 53: 81-93.
    [158] Wisniewski C., Grasmick A., Cruz A. L.. Critical particle size in membrane bioreactors case of a denitrifying bacterial suspension[J]. J. Membr. Sci., 2000, 178(1-2): 141-150.
    [159] Shimizu Y., Uryu K., Okuno Y. I., Ohtubo S. and Watanabe A.. Effect of particle size distributions of activated sludges on cross-flow microfiltration flux for submerged membranes[J]. J. Ferment. Bioeng., 1997, 83(6): 583-589.
    [160] 黄霞等.膜—活性污泥组合工艺的污水处理特性研究.资源、发展与环境保护[J].第三届海峡两岸环境保护学术研讨会论文集[M].北京:1995,95—102.
    [161] Zhang B. and Yamamoto K,. Floc size distribution and bacterial activities in membrane separation activated sludge processes for small scale wastewater treatment/reclamation[J]. Water Sci. Tech., 1997, 35(6): 37-44.
    [162] 章非娟.水污染控制工程试验[M].1996,高等教育工业出版社,北京,176-185.
    [163] Lee S. A., Fane A. G., Amal R., Waite T. D.. The effect of floe size and structure on specific cake resistance and compressibility in dead-end microfiltration[J]. Separation Science and Technology, 2003, 38 (4): 869-887.
    [164] Jae-Seok Kim, Chung-Hak Lee, In-soung Chang. Effect of pump shear on the performance of a crossflow membrane biorector[J]. Water Res., 2001, 35(9): 2137-2144.
    [165] Namkung E. and Rittmann B. E.. Soluble microbial productions (SMP) formation kinetics by biofiims[J]. Water Res., 1986, 20(6): 795-806.
    [166] Josepha M., Menahem R.. Organic groups and molecular weight distribution in tertiary effluents and renovated waters[J]. Wat. Res., 1982, 116: 399-403.
    [167] 陈卫文,顾平,刘锦霞.MBR对不同分子质量有机物的去除规律[J].中国给水排水,2003,19(2):43—45
    [168] Krasner S. W., Crone J., Buffle J., Perdue E. M.. Three approaches for characterizing NOM[J]. J. Am. Water Works Assoc., 1996, 88(6): 66-79.
    [169] 俞敏馨,吴国庆,孟宪庭.环境工程微生物检验手册[M].1990,中国环境科学出版社,北京,163-165.
    [170] 朱南文,闵航,陈美慈,赵宇华.TTC-脱氢酶测定方法的探讨[J].中国沼气,1996,14(2):3-5.
    [171] Wen Xiang-hua, Xing Chuan-hong, Qian Yi. A kinetic model for the prediction of sludge formation in a membrane bioreactor[J]. Process Biochemistry, 1999, 35: 249-254.
    [172] Low E. W. and Chase H. A.. The effect of maintenance energy requirements on biomass production during wastewater treatment[J]. Wat. Res., 1999, 33 (3): 847—853.
    [173] 刘锐.一体式膜—生物反应器的微生物代谢特性及膜污染控制:[博士学位论文].北京,清华大学环境工程系,2000.
    [174] Lawrence A. W.. Modelling and simulation of slurry biological reactors[J]. In: Mathematical Modelling for Water Pollution Control. Keinath T. and Wanielists M. (eds.), Ann Arbor Science Publisher Inc. Ann Arbor, Mich.
    [175] 桂萍.一体式膜—生物反应器污水处理特性及膜污染机理研究:[博士学位论文].北京:清华大学环境工程系,1999.
    [176] 顾夏声.废水生物处理数学模式(第二版)[M].1993,清华大学出版社,北京,48—51
    [177] 张宝杰.膜生物反应器污水高效处理与回用技术研究:[博士学位论文].哈尔滨:哈尔滨建筑大学市政工程系,1999.
    [178] 曹丽红,姜佩华.碱减量废水碱析法回收对苯二甲酸[J].污染防治技术,2004,17(1):4-6.
    [179] 王连生,韩塑睽.有机污染化学进展[M].1998,化学工业出版社,北京,21-23.
    [180] 许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].2000,高等教育出版社,北京,218—220。
    [181] 黄家董.聚丙烯酰胺类絮凝体在工业废水处理中的应用[J].化工环保,1983,3 (2):67.
    [182] 钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(下卷)[M].2000,中国环境科学出版社,北京,29—31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700