用户名: 密码: 验证码:
Ndc80复合物可塑性及动态组装分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染色体的不稳定性或异常分离被广泛认为是癌症发生的标志性事件,细胞有丝分裂过程中染色体的正确运动与分离是由纺锤体微管和动点的相互作用来协调实现的。我们早期的研究发现,中心体激酶Nek2A在有丝分裂时期中有新颖的动点定位,敲除Nek2A将导致染色体的不稳定性,然而Nek2A如何参与纺锤体检验点信号途径还不甚清楚。Hec1是动点-微管核心衔接点Ndc80复合物的主要组分,但Hec1在癌症细胞中高表达的原因一直未能攻克。我们最新的研究发现,Nek2A通过磷酸化Hec1调控其与动点内层结构蛋白质CENP-H之间的相互作用,我们拟从Hec1在有丝分裂过程中的地位和精细调控入手,来揭示其与癌症发生的关联以及Nek2A介导的新颖的动点组装途径。我们证实了Spc24-Spc25亚复合物直接结合CENP-H的N端1-105 aa,Hec1通过C端超卷曲螺旋和亮氨酸富集区(461-642 aa)结合在CENP-H的中心包含超卷曲螺旋的106-148 aa区域,合理分配了CENP-H提供的装配平台。Nek2A在有丝分裂过程中能磷酸化Hec1的Ser~(165)位点并借此调控Hec1和CENP-H之间的相互作用。颇有意思的是,Nek2A介导的磷酸化调控并不决定Hec1的动点定位。然而,在过表达模拟Hec1非磷酸化突变体的中期细胞中出现部分富集极区的滞后染色体和大量syntelic错误连接,进一步观察发现,后期个别染色体不能完全分离,姐妹染色单体之间保持桥联。我们把所有的表型归结为Nek2A的动态磷酸化影响Hec1的微管亲和力差异,并通过体外微管共沉淀实验得以验证。综上所述我们提出了新颖的分子模型,我们认为Nek2A介导的磷酸化引起Hec1的N端球状区域发生取向改变,一方面通过Hec1-CENP-H相互作用驱使Ndc80复合物收敛承接臂,促进动点紧凑和应力传承,另一方面上调Hec1的微管亲和力和结合数量,迅速建立动点.微管双极连接,从而将动点组装、微管连接和纺锤体检验点信号通路有机整合。为了进一步揭示有丝分裂过程中Ndc80复合物的过渡型结构特性及其验证我们提出的“时序组装”假设,我们应用了新颖的SNAP实时标记技术,并发现体内Spc24-Spc25拥有两个具差异动态性和功能性的储备库,其中核仁储备库侧重于在Hec1-Nuf2之前快速锚定动点,胞浆储备库则侧重于保障动点定位的饱和度。Ndc80的时序组装模型很好地诠释了其复合过渡型的功能特征,并将动点内层结构的缜密性衔接和外层空间的微管捕获特性高效地耦合。
Loss or gain of whole chromosome,the form of chromosome instability commonly associated with cancers is thought to arise from aberrant chromosome segregation during cell division.Chromosome segregation in mitosis is orchestrated by the interaction of the kinetochore with spindle microtubules.Our recent study shows that Nek2A locates at the kinetochore in mitosis and possibly functions as a novel integrator of the spindle checkpoint signaling.Hecl is highlighted as a key component of Ndc80 complex as well as overexpressional hallmark of colorectal cancer.However,it remains unknown how Nek2A plays a role in kinetochore assembly and what triggers Hecl's overexpression in cancer.Here,we reported that Nek2A-mediated phosphorylation of Hecl modulates the interaction of Hecl with CENP-H,an inner kinetochore component,in vitro and in vivo.We demonstrated that Spc24-Spc25 subcomplex attaches directly to CENP-H's 1-105 aa,while Hec1 binds to CENP-H's 106-148 aa via its C-terminal coiled coil and leucine zip rich region. Nek2A phosphorylates Hecl at Ser~(165) during mitosis while such phosphorylation regulates Hec1-CENP-H interaction in vitro and in vivo.Interestingly,phosphory -lation of Ser~(165) is not essential for the assembly of Hecl to kinetochore.However, there was a significant increase in syntelic attachments together with lagging chromosomes in Hec1~(S165A)-overexpressing cells,as well as chromosome bridge phenotype in anaphase.These findings revealed a key role for the Nek2A-mediated phosphor-regulation of Hec1 in microtubule affinity,as we validated by in vitro microtubule cosedimentaion assay.Taken together,we suggested a novel model based on Nek2A-mediated orientational change of Hec1's globular domain,to trigger its interaction with CENP-H and enhance the affinity to microtubules simultaneously,by which Nek2A integrates KT-MT attachments into spindle checkpoint signaling.By SNAP-labeling,a novel approach for real time chasing,we made our latest progression on Ndc80 in vivo.We illustrated two pools of Spc24-Spc25 in nucleoli and cytoplasm portioned for primary targeting and saturating onto kinetochore prior to Hec1-Nuf2,respectively,and elucidated the scheduling assembly of Ndc80 as an optimized integration of kinetochore consolidation with microtubule association.
引文
Acquaviva C, Herzog F, Kraft C, Pines J. (2004). The anaphase promoting complex/cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nat. Cell Biol. 6, 892-898.
    Afshar K, Barton NR, Hawley RS, Goldstein LS. (1995). DNA binding and meiotic chromosomal localization of the Drosophila nod kinesin-like protein. Cell 81,129-138.
    Andrews PD, Ovechkina Y, Morrice N, Wagenbach M, Duncan K, Wordeman L,Swedlow JR. (2004). Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6,253-268.
    Asakawa H, Hayashi A, Haraguchi T, Hiraoka Y. (2005). Dissociation of the Nuf2-Ndc80 complex releases centromeres from the spindle-pole body during meiotic prophase in fission yeast. Mol. Biol. Cell. 16, 2325-38.
    Asbury CL, Gestaut DR, Powers AF, Franck AD, Davis TN. (2006). The Daml kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl. Acad.Sci. USA. 103, 9873-9878.
    Basto R, Scaerou F, Mische S, Wojcik E, Lefebvre C, Gomes R, Hays T, Karess R. (2004). In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis. Curr. Biol. 14,56-61.
    Bharadwaj R, Qi W, Yu H. (2004). Identification of two novel components of the human NDC80 kinetochore complex. J. Biol. Chem. 279,13076-13085.
    Blower MD, Karpen GH. (2001). The role of Drosophila CID in kinetochore formation,cell-cycle progression and heterochromatin interactions. Nat. Cell Biol. 3, 730-739.
    Blower MD, Sullivan BA, Karpen GH. (2002). Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319-330.
    Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. (2007). The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574-585.
    Bouck DC, Bloom K. (2007). Pericentric chromatin is an elastic component of the mitotic spindle. Curr. Biol. 17, 741-8.
    Brenner S, Pepper D, Berns MW, Tan E, Brinkley BR. (1981). Kinetochore structure,duplication and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J. Cell Biol. 91, 95-102.
    Brinkley BR, Stubblefield E. (1966). The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19,28-43.
    Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A. (2006). The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983-997.
    Cheeseman IM, Desai A. (2008). Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9, 33-46.
    Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR 3rd, Oegema K, Desai A. (2004).A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18,2255-2268.
    Chen ES, Saitoh S, Yanagida M, Takahashi K. (2003). A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol. Cell 11, 175-187.
    Chen RH. (2002). BubRl is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad]. J. cell Biol. 158, 487-496.
    Ciferri C, DeLuca J, Monzani S, Ferrari KJ, Ristic D, Wyman C, Stark H, Kilmartin J, Salmon ED, Musacchio A. (2005). Architecture of the human ndc80-hecl complex, a critical constituent of the outer kinetochore. J. Biol. Chem. 280, 29088-29095..
    Ciferri C, Pasqualato S, Screpanti E, Varetti G, Santaguida S, Reis GD, Maiolica A, Polka J, De Luca JG, Wulf PD, Salek M, Rappsilber J, Moores C, Salmon ED, Musacchio A. (2008).Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133,427-439.
    Cimini D, Moree B, Canman JC, Salmon ED. (2003). Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms. J. Cell Sci. 116,4213-4225.
    Comings DE, Okada TA. (1971). Fine structure of kinetochore in Indian muntjac. Exp. Cell Res.67,97-110.
    De Antoni A, Pearson CG, Cimini D, Canman JC, Sala V, Nezi L, Mapelli M, Sironi L, Faretta M, Salmon ED. (2005). The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr. Biol. 15, 214-225.
    DeLuca JG, Gall WE, Ciferri C, Cimini D, Musacchio A, Salmon ED. (2006). Kinetochore microtubule dynamics and attachment stability are regulated by Hecl. Cell 127, 969-982.
    DeLuca JG, Howell BJ, Canman JC, Hickey JM, Fang G, Salmon ED. (2003). Nuf2 and Hecl are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr.Biol 13,2103-2109.
    DeLuca JG, Moree B, Hickey JM, Kilmartin JV, Salmon ED. (2002). hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J.Cell Biol. 159,549-555.
    Desai A, Mitchison TJ. (1997). Microtubule polymerization dynamics. Annu. Rev. Cell Dev.Biol. 13,83-117.
    Desai A, Rybina S, Muller-Reichert T, Shevchenko A, Hyman A, Oegema K. (2003). KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev. 17,2421-2435.
    Du J, Cai X, Yao J, Ding X, Wu Q, Pei S, Jiang K, Zhang Y, Wang W, Shi Y, Lai Y, Shen J,Teng M, Huang H, Fei Q, Reddy ES, Zhu J, Jin C, Yao X. (2008). The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability. Oncogene 27,4107-4114.
    Emanuele MJ, Stukenberg PT. (2007). Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment. Cell 130, 893-905.
    Fang G. (2002). The checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol. Biol. Cell 13, 755-766.
    Fang G, Yu H, Kirschner MW. (1998). The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871-1883.
    Faragher AJ, Fry AM. (2004). Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol. Biol. Cell 14, 2876-2889.
    Feng J, Huang H, Yen TJ. (2006). CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay.Chromosoma 115,320-329.
    Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C,Wiegant J, Giles RH. (2001). Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat. Cell Biol. 3,433-438.
    Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW. (2006). The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. S, 458-469.
    Franck AD, Powers AF, Gestaut DR, Gonen T, Davis TN, Asbury CL. (2007). Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nat. Cell Biol. 9, 832-837.
    Fry AM. (2002). The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21,6184-6194.
    Fu G, Ding X, Yuan K, Aikhionbare F, Yao J, Cai X, Jiang K, Yao X. (2007). Phosphorylation of human Sgol by NEK2A is essential for chromosome congression in mitosis. Cell Res. 17,608-618.
    Fukagawa T, Mikami Y, Nishihashi A, Regnier V, Haraguchi T, Hiraoka Y, Sugata N, Todokoro K, Brown W, Ikemura T. (2001). CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J. 20,4603-4617.
    Gardner MK, Odde DJ. (2006). Modeling of chromosome motility during mitosis. Curr. Opin.Cell Biol. 18,639-647.
    Glotzer M, Murray AW, Kirschner MW. (1991). Cyclin is degraded by the ubiquitin pathway.Nature 349, 132-138.
    Gmachl M, Gieffers C, Podtelejnikov AV, Mann M, Peters JM. (2000). The R1NG-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc. Natl. Acad. Sci. USA 97, 8973-8978.
    Golan A, Yudkovsky Y, Hershko A. (2002). The cyclinubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdkl -cyclin B and Plk. J. Biol. Chem.277, 15552-15557.
    Goshima G, Kiyomitsu T, Yoda K, Yanagida M. (2003). Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J. Cell Biol. 160,25-39.
    Goshima G, Saitoh S, Yanagida M. (1999). Proper metaphase spindle length is determined by centromere proteins Mis 12 and Mis6 required for faithful chromosome segregation. Genes Dev. 13, 1664-1677.
    Grishchuk EL, Molodtsov MI, Ataullakhanov FI, Mclntosh JR. (2005). Force production by disassembling microtubules. Nature 438, 384-388.
    Hames RS, Wattam SL, Yamano H, Bacchieri R, Fry AM. (2001). APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J. 20, 7117-7127.
    Hanisch A, Sillje HH, Nigg EA. (2006). Timely anaphase onset requires a novel spindle and kinetochore complex comprising Skal and Ska2. EMBO J. 25, 5504-5515.
    Hansen DV, Loktev AV, Ban KH, Jackson PK. (2004). Plkl regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC inhibitor Emil. Mol. Biol. Cell 15, 5623-5634.
    Hardwick KG, Weiss E, Luca FC, Winey M, Murray AW. (1996). Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273,953-956.
    Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder C.L, Peters JM. (2003). The small molecule Hesperadin reveals arole for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161,281-294.
    Hayashi T, Fujita Y, Iwasaki 0, Adachi Y, Takahashi K, Yanagida M. (2004). Misl6 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118,715-729.
    Hayden JH, Bowser SS, Rieder CL. (1990). Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J.Cell Biol. 111,1039-1045.
    Hoffman DB, Pearson CG, Yen TJ, Howell BJ, Salmon ED. (2001). Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at ptkl kinetochores. Mol. Biol. Cell 12,1995-2009.
    Hori T, Haraguchi T, Hiraoka Y, Kimura H, Fukagawa T. (2003). Dynamic behavior of Nuf2-Hecl complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J. Cell Sci. 116, 3347-3362.
    Howell BJ, McEwen BF, Canman JC, Hoffman DB, Farrar EM, Rieder CL, Salmon ED. (2001).Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155,1159-1172.
    Howell BJ, Moree B, Farrar EM, Stewart S, Fang G, Salmon ED. (2004). Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol. 14,953-964.
    Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH.(2000). Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97,1148-1153.
    Hoyt MA, Totis L, Roberts BT. (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507-517.
    Hwang LH, Lau LF, Smith DL, Mistrot CA, Hardwick KG, Hwang ES, Amon A, Murray AW. (1998). Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041-1044.
    Janke C, Ortiz J, Tanaka TU, Lechner J, Schiebel E. (2002). Four new subunits of the Daml-Duol complex reveal novel functions in sister kinetochore biorientation. EMBO J. 21,181-193.
    Jaspersen SL, Charles JF, Morgan DO. (1999). Inhibitory phosphorylation of the APC regulator Hctl is controlled by the kinase Cdc28 and the phosphatase Cdcl4. Curr. Biol. 9, 227-236.
    Jeganathan KB, Baker DJ, van Deursen JM. (2006). Securin associates with APCCdhl in prometaphase but its destruction is delayed by Rael and Nup98 until the metaphase/anaphase transition. Cell Cycle 5, 366-370.
    Jeganathan KB, Malureanu L, van Deursen JM. (2005). The Rael-Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature 438, 1036-1039.
    Jin C, Cai X, Ma H, Xue Y, Yao J, Yao X. (2007). An efficient site-directed mutagenesis method for ColE1-type ori plasmid. Anal Biochem. 363, 151-3.
    Joglekar AP, Bouck DC, Molk JN, Bloom KS, Salmon ED. (2006). Molecular architecture of a kinetochore-microtubule attachment site. Nature Cell Biol. 8, 581-585.
    Jokelainen PT. (1967). The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultras. Res. 19, 19-44.
    Jones MH, Huneycutt BJ, Pearson CG, Zhang C, Morgan G, Shokat K, Bloom K, Winey M.(2005). Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis. Curr. Biol. 15, 160-165.
    Kaitna S, Pasierbek P, Jantsch M, Loidl J, Glotzer M. (2002). The Aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr. Biol. 12, 798-812.
    Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Nathke IS. (2001). A role for the adenomatous polyposis coli protein in chromosome segregation. Nat. Cell Biol. 3,429-432.
    Kapoor TM, Lampson MA, Hergert P, Cameron L, Cimini D, Salmon ED, McEwen BF,Khodjakov, A. (2006). Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388-391.
    Karess R. (2005). Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol.15, 386-392.
    Karpen GH, Allshire RC. (1997). The case for epigenetic effects on centromere identity and function. Trends Genet. 13,489-496.
    
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. (2003). A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol. 21, 86-89.
    Khodjakov A, Rieder CL. (1996). Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome. J. Cell Biol. 135, 315-327.
    Kim SH, Lin DP, Matsumoto S, Kitazone A, Matsumoto T. (1998). Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279, 1045-1047.
    King JM, Hays TS, Nicklas RB. (2000). Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. J. Cell Biol. 151, 739-748.
    King RW, Deshaies RJ, Peters JM, Kirschner MW. (1996). How proteolysis drives the cell cycle. Science 214, 1652-1659.
    Kline-Smith SL, Sandall S, Desai A. (2005). Kinetochore-spindle microtubule interactions during mitosis. Curr. Opin. Cell Biol. 17, 35-46.
    Kotani S, Tugendreich S, Fujii M, Jorgensen PM, Watanabe N, Hoog C, Hieter P, Todokoro K.(1998). PKA and MPF-activated polo-like kinase regulate anaphasepromoting complex activity and mitosis progression. Mol. Cell 1, 371-380.
    Kraft C, Herzog F, Gieffers C, Mechtler K, Hagting A, Pines J, Peters JM. (2003). Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J. 22,6598-6609.
    Kramer ER, Scheuringer N, Podtelejnikov AV, Mann M, Peters JM. (2000). Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol. Biol. Cell 11, 1555-1569.
    Lampson MA, Renduchitala K, Khodjakov A, Kapoor TM. (2004). Correcting improper chromosome-spindle attachments during cell division. Nat. Cell Biol. 6, 232-237.
    Lan W, Zhang X, Kline-Smith SL, Rosasco SE, Barrett-Wilt GA, Shabanowitz J, Hunt DF,Walczak CE, Stukenberg PT. (2004). Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14,273-286.
    Li R, Murray AW. (1991). Feedback control of mitosis in budding yeast. Cell 66, 519-531.
    Li Y, Bachant J, Alcasabas AA, Wang Y, Qin J, Elledge SJ. (2002). The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183-197.
    Liao H, Winkfein RJ, Mack G, Rattner JB, Yen TJ. (1995). CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J.Cell Biol. 130,507-518.
    Liu D, Ding X, Du J, Cai X, Huang Y, Ward T, Shaw A, Yang Y, Hu R, Jin C, Yao X.(2007).Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment. J. Biol. Chem. 282, 21415-21424.
    Liu J, Fuchs SY. (2006). Cross-talk between APC/C and CBP/p300. Cancer Biol. Ther. 5,760-762.
    Liu ST, Hittle JC, Jablonski SA, Campbell MS, Yoda K, Yen TJ. (2003). Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nat. Cell Biol. 5,341-345.
    Lou Y, Xie W, Zhang DF, Yao JH, Luo ZF, Wang YZ, Shi YY, Yao XB. Nek2A specifies the centrosomal localization of Erk2. Biochem. Biophys. Res. Commun. 321, 495-501.
    Lou Y, Yao J, Zereshki A, Dou Z, Ahmed K, Wang H, Hu J, Wang Y, Yao X. (2004). NEK2A interacts with MAD1 and possibly functions as a novel integrator of the spindle checkpoint signaling. J. Biol. Chem. 279, 20049-20057.
    Maiato H, DeLuca J, Salmon ED, Earnshaw WC. (2004). The dynamic kinetochore-microtubule interface. J. Cell Sci. 117,5461-5477.
    Maney T, Hunter AW, Wagenbach M, Wordeman L. (1998). Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787-801.
    Mao Y, Abrieu A, Cleveland DW. (2003). Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell 114, 87-98.
    Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T. (1989). A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109, 1963-1973.
    McCleland ML, Kallio MJ, Barrett-Wilt GA, Kestner CA, Shabanowitz J, Hunt DF, Gorbsky GJ, Stukenberg PT. (2004). The vertebrate Ndc80 complex contains Spc24 and Spc25
    
    homologs, which are required to establish and maintain kinetochore-microtubule attachment.Curr.Biol. 14,131-137.
    Mclntosh J, Morphew M, Mastronarde D, Yefremov A, Zhudenkov K, Grishchuk E,Ataullakhanov F. (2007). ASCB in Washington D. C, Not published.
    Meraldi P, Draviam VM, Sorger PK. (2004). Timing and checkpoints in the regulation of mitotic progression. Dev. Cell 7, 45-60.
    Merdes A, De Mey J. (1990). The mechanism of kinetochore-spindle attachment and polewards movement analyzed in PtK2 cells at the prophase-prometaphase transition. Eur. J. Cell Biol.53,313-325.
    Millband DN, Hardwick KG. (2002). Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizeds to kinetochores in a Bublp-, Bub3p-, and Mph1p-dependent manner. Mol. Cell. Biol. 22, 2728-2742.
    Miller JJ, Summers MK, Hansen DV, Nachury MV, Lehman NL, Loktev A, Jackson PK.(2006). Emil stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev. 20, 2410-2420.
    Miranda JJ, De Wulf P, Sorger PK, Harrison SC. (2005). The yeast DASH complex forms closed rings on microtubules. Nat. Struct. Mol. Biol. 12,138-143.
    Moore LL, and Roth MB. (2001). HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J. Cell Biol. 153, 1199-1208.
    Musacchio A, Salmon ED. (2007). The spindle-assembly checkpoint in space and time. Nat.Rev. Mol. Cell Biol 8, 379-393.
    Nicklas RB, Koch CA. (1969). Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J. Cell Biol. 43,40-50.
    Nigg EA. (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2,21-32.
    Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M. (2004). A conserved Mis12 centromere complex is linked to heterochromatic HPl and outer kinetochore protein Zwint-1. Aat. Cell Biol. 6, 1135-1141.
    Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA. (2001). Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209-1226.
    Ohzeki J, Nakano M, Okada T, Masumoto H. (2002). CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J. Cell Biol. 159, 765-775.
    Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR 3rd, Desai A, Fukagawa T.(2006). The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8,446-457.
    Palmer DK, O'Day K, le Trong H, Charbonneau H, Margolis RL. (1991). Purification of the centromeric protein CENP-A and demonstration that it is a centromere specific histone. Proc.Natl. Acad. Sci. USA 88,3734-3738.
    Pfleger CM, Kirschner MW. (2000). The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655-665.
    Poddar A, Stukenberg PT, Burke DJ. (2005). Two complexes of spindle checkpoint proteins containing Cdc20 and Mad2 assemble during mitosis independently of the kinetochore in Saccharomyces cerevisiae. Eukaryot. Cell 4, 867-878.
    Rattner JB, Rao A, Fritzler MJ, Valencia DW, Yen TJ. (1993). CENP-F is a.ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization. Cell Motil. Cytoskeleton 26,214-226.
    Reimann JD, Freed E, Hsu JY, Kramer ER, Peters JM, Jackson PK. (2001). Emil is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105,645-655.
    Reimann JD, Gardner BE, Margottin-Goguet F, Jackson PK. (2001). Emil regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev. 15,3278-3285.
    Rieder CL. (1982). The formation, structure and composition of the mammalian kinetochore and kinetochore fiber. Int. Rev. Cytol. 79, 51-58.
    Rieder CL, Alexander SP. (1990). Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol.110,81-95.
    Rieder CL, Cole RW, Khodjakov A, Sluder G. (1995). The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941-948.
    Rudner AD, Murray AW. (2000). Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase- promoting complex. J. Cell Biol. 149, 1377-1390.
    Salic A, Waters JC, Mitchison TJ. (2004). Vertebrate Shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567-578.
    Sanchez-Perez I, Renwick SJ, Crawley K, Karig I, Buck V, Meadows JC, Franco-Sanchez A,Fleig U, Toda T, Millar JB. (2005). The DASH complex and K1p5/K1p6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBOJ. 24, 2931-2943.
    Shah JV, Botvinick E, Bonday Z, Furnari F, Berns M, Cleveland DW. (2004). Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing.Curr. Biol. 14, 942-952.
    Shang C, Hazbun TR, Cheeseman IM, Aranda J, Fields S, Drubin DG, Barnes G. (2003).Kinetochore protein interactions and their regulation by the Aurora kinase Ip11p. Mol. Biol.Cell 14, 3342-3355.
    Stucke VM, Baumann C, Nigg EA. (2004). Kinetochore localization and microtubule interaction of the human spindle checkpoint kinase Mps1. Chromosoma 113, 1-15.
    Sudakin V, Chan GKT, Yen TJ. (2001). Checkpoint inhibition of the APA/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20 and MAD2. J. Cell Biol. 154, 925-936.
    Takahashi K, Chen ES, Yanagida M. (2000). Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215-2219.
    Takahashi K, Yamada H, Yanagida M. (1994). Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol. Biol. Cell 5, 1145-1158.
    Tanaka K, Kitamura E, Kitamura Y, Tanaka TU. (2007). Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J. Cell Biol. 178, 269-281.
    Tanaka K, Mukae N, Dewar H, van Breugel M, James EK, Prescott AR, Antony C, Tanaka TU.(2005). Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434,987-994.
    Tang Z, Bharadwaj R, Li B, Yu H. (2001). Mad2-indepent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1, 227-237.
    Tang Z, Shu H, Oncel D, Chen S, Yu H. (2004). Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Mol. Cell 16, 387-397.
    Taylor SS, Scott MI, Holland AJ. (2004). The spindle checkpoint: a quality control mechanism which ensures accurate chromosome segregation. Chromosome Res. 12, 599-616.
    Tirnauer JS, Canman JC, Salmon ED, Mitchison TJ. (2002). EB1 targets to kinetochores with attached, polymerizing microtubules. Mol. Biol. Cell 13,4308-4316.
    Tomonaga T, Nomura F. (2007). Chromosome instability and kinetochore dysfunction. Histol Histopathol. 22, 191-197.
    Tugendreich S, Tomkiel J, Earnshaw W, Hieter P. (1995). CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81, 261-268.
    Turnell AS, Stewart GS, Grand RJ, Rookes SM, Martin A, Yamano H, Elledge SJ, Gallimore PH. (2005). The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature 438, 690-695.
    Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, Goldberg ML, Yokomori K,Earnshaw WC, Sullivan KF, Brinkley BR. (2001). Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 114, 3529-3542.
    Vanoosthuyse V, Hardwick KG. (2005). Bubl and the multilayered inhibition of Cdc20-APC/C in mitosis. Trends Cell Biol. 15,231-233.
    Vergnolle MA, Taylor SS. (2007). Cenp-F links kinetochores to Ndell/Ndel/Lisl/Dynein microtubule motor complexes. Curr. Biol. 17,1173-1179.
    Vernos 1, Raats J, Hirano T, Heasman J, Karsenti E, Wylie C. (1995). Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning.Cell 81, 117-127.
    Vink M, Simonetta M, Transidico P, Ferrari K, Mapelli M, De Antoni A, Massimiliano L,Ciliberto, A., Faretta, M., Salmon, E. D. et al. (2006). In Vitro FRAP Identifies the Minimal Requirements for Mad2 Kinetochore Dynamics. Curr. Biol. 16, 755-766.
    Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A. (1998). The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709-718.
    Wassmann K, Liberal V, Benezra R. (2003). Mad2 phosphorylation regulates its association with Madl and the APC/C. EMBO J. 22,797-806.
    Wei RR., Al-Bassam J, Harrison SC. (2007). The Ndc80/HECl complex is a contact point for kinetochore-microtubule attachment. Nat. Struct. Mol. Biol. 14, 54-59.
    Wei RR, Schnell JR, Larsen, NA, Sorger PK, Chou JJ, Harrison SC. (2006). Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 14, 1003-1009.
    Wei RR, Sorger PK, Harrison SC. (2005). Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl. Acad. Sci. USA. 102, 5363-5367.
    Westermann S, Wang HW, Avila-Sakar A, Drubin DG, Nogales E, Barnes G. (2006). The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565-569.
    Wigge PA, Kilmartin JV. (2001). The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152,349-360.
    Winey M, Huneycutt BJ. (2002). Centrosomes and checkpoints: the MPS1 family of kinases.Oncogene 21, 6161-6169.
    Wojcik E, Basto R, Serr M, Scaerou F, Karess R, Hays T. (2001). Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nat. Cell Biol. 3,1001-1007.
    Wood KW, Sakowicz R, Goldstein LS, Cleveland DW. (1997). CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell. 91, 357-366.
    Wordeman L, Earnshaw WC, Bernat RL. (1996). Disruption of CENP antigen function perturbs dynein anchoring to the mitotic kinetochore. Chromosoma 104, 551-560.
    Xia G, Luo X, Habu T, Rizo J, Matsumoto T, Yu H. (2004). Conformation-specific binding of p31 (comet) antagonizes the function of Mad2 in the spindle checkpoint. EMBO J. 23,3133-3143.
    Yao J, Fu C, Ding X, Guo Z, Zenreski A, Chen Y, Ahmed K, Liao J, Dou Z, Yao X. (2004).Nek2A kinase regulates the localization of numatrin to centrosome in mitosis. FEBSLett. 575,112-118.
    Yao X, Abrieu A, Zheng Y, Sullivan KF, Cleveland DW. (2000). CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biol. 2,484-491.
    Yoon HJ, Feoktistova A, Wolfe BA, Jennings JL, Link AJ, Gould KL. (2002). Proteomics analysis identifies new components of the fission and budding yeast anaphase-promoting complexes. Curr. Biol. 12, 2048-2054.
    Zachariae W, Nasmyth K. (1999). Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13, 2039-2058.
    Zachariae W, Schwab M, Nasmyth K, Seufert W. (1998). Control of cyclin ubiquitination by CDK-regulated binding of Hctl to the anaphase promoting complex. Science 282, 1721-1724.
    Zachariae W, Shevchenko A, Andrews PD, Ciosk R, Galova M, Stark MJ, Mann M, Nasmyth K.(1998). Mass spectrometric analysis of the anaphase-promoting complex from yeast:identification of a subunit related to cullins. Science 279, 1216-1219.
    Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13,1924-1935.
    Zheng L, Chen Y, Lee WH. (1999). Heclp, an evolutionarily conserve coiled-coil protein,modulates chromosome segregation through interaction with SMC proteins. Mol. Cell Biol.19,5417-5428.
    Zinkowski RP, Meyne J, Brinkley BR. (1991). The centromere kinetochore complex: a repeat subunit model. J. Cell Biol. 113, 1091-1110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700